
Executing Dynamic
Data-Graph Computations

Deterministically Using
Chromatic Scheduling

Student presenter: Nikola Samardzic

Motivation

- Data graph computation is useful
- Dynamic data graph computation is even more useful

- Dynamic data graph := active set depends on data
- Parallelism is good
- Determinism is good

- Debugging (and even performance!)
- We want it all!

Key Contribution

- Deterministic execution of dynamic data graph computations

Serial Baseline

f(v) returns the subset
of v’s neighbors

activated by the update

Serial Baseline

OK, so just make Q
thread-safe, enqueue an
entire round of active
nodes, and run this for loop
in parallel for each active
node?

Determinism Aids Parallelism

- Nondeterministic programs are a pain to debug
- Locks suck

- Implies lock acquisition and contention overheads
- An alternative: chromatic scheduling

- Gives us determinism
- And (basically) no locks!

Prism

Prism
Coloring need not be

perfect; ~solved
problem

Prism

Multibag
funny

business!

Prism

MB-Collect: Empty all
bags from multibag Q
into a collection C that
is easy to iterate over

MB-Insert: Insert node u in
bag color[u] of multibag Q

Prism

Parallel compare and
swap (CAS) only here
to ensure each node
receives at most one

update per round

Prism

MB-Collect: Empty all
bags from multibag Q
into a collection C that
is easy to iterate over

MB-Insert: Insert node u in
bag color[u] of multibag Q

Questions?

Key Idea: Parallel Lock-free Multibags

- Problem: How to make MB-Collect work-efficient?
- Just using over a bitmap of active nodes won’t do

- Theta(V * Color) work to do a round; not work-efficient
- Just having each P maintain Color many local arrays of active elements also

won’t do
- Theta(P * Color) work to do a round; not work-efficient

Key Idea: Parallel Lock-free Multibags

MB-Insert

MB-Collect (Board)

MB-Collect (Board)

MB-Collect

Multibags Performance

- MB-insert is Theta(1)
- For m number of total subbags
- MB-Collect is O(m + Color + P) work and O(log(m) + Color + log(P)) span
- For all the obvious reasons… (use prefix sum and friends)

Final Theoretical Result

- Suppose that Prism colors a degree-D data graph G=(V, E) using xi colors
and then executes the data-graph computation (G, f, Q_0). Then, on P
processors, Prism executes updates on all vertices in the activation set Q_r
for a round r using

Work: O(size(Q_r) + P)

Span: O(xi * (log(Q_r/xi) + log(D)) + log(P)),

where size(Q) := |Q| + sum_{v in Q} deg(v)

Work: Theta(deg(v)); Span: Theta(log(deg(v)))

Work: Theta(S); Span: Theta(log(S))

Work: Theta(size(C));

Span: Theta(log(C) + log(D))

Work: Theta(size(Q_r) + xi)

Span: Theta(xi*(log(Q_r/xi) + log(D)))

O(m + Color + P) work and O(log(m) + Color + log(P)) span

Experimental Results

Coloring Need Not Be Perfect

Thanks! Questions?

