
Reducing
Pagerank
Communication
via Propagation
Blocking
B E A M E R , A S A N O V I C &

P A T T E R S O N

By: Isabelle Quaye

Pagerank
• Algorithm for ranking vertices by importance/popularity

• Model the web such that webpages are vertices and links connecting webpages are

edges

• The algorithm progresses in rounds/iterations

u

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑢 ! =
1 − 𝑑
|𝑉| + 𝑑 ∗ 4

"∈$!(&)

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑣 !()

|𝑁* 𝑣 |

𝑁*(𝑣): outgoing neighbours
𝑁((𝑣): incoming neighbours

Dampening factor:
introduces randomness

Reducing
Pagerank
Communication
via Propagation
Blocking
B E A M E R , A S A N O V I C &

P A T T E R S O N

Isabelle Quaye

What does “communication” mean
here?
• Communication here refers to the movement of data between the cache and memory

• When processing large graphs, input, output and intermediate values may not all fit

into cache

• So we may incur cache misses as we read and write data during execution

• Poor locality in reading/writing data = Lots of cache misses = High communication

costs

• Reducing Pagerank communication = improving locality when executing Pagerank

algorithm on large graphs

Reducing
Pagerank
Communication
via Propagation
Blocking
B E A M E R , A S A N O V I C &

P A T T E R S O N

Isabelle Quaye

What existed before propagation
blocking?
• Reordering graphs by relabelling

• Processing vertices in certain orders

• Graph compression

• Cache Blocking/Tiling

Results for Propagation Blocking(PB)

Legend

CB: Cache blocking

PB: Propagation
blocking

DPB: Deterministic
propagation blocking

Presentation Outline
• Pagerank & the problem of locality

• Idea 1: Using cache blocking

• Idea 2: Propagation blocking

• Evaluation of Propagation Blocking

• Generalization to other applications

Pagerank & Locality:
Pagerank variants

PageRank Terminology from paper

u

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑢 ! =
1 − 𝑑
|𝑉|

+ 𝑑 ∗ 4
"∈$!(&)

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑣 !()
|𝑁* 𝑣 |

𝑁*(𝑣): outgoing neighbours
𝑁((𝑣): incoming neighbours

Called sum(u)

PageRank Terminology from paper

u

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑢 ! =
1 − 𝑑
|𝑉|

+ 𝑑 ∗ 4
"∈$!(&)

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑣 !()
|𝑁* 𝑣 |

𝑁*(𝑣): outgoing neighbours
𝑁((𝑣): incoming neighbours

Single term called
the contribution of v
to sum(u)

PageRank Pull Implementation

• First iterate over vertices and

compute their contributions to their

outgoing neighbours

Contributions

Adjacency Matrix

Source

Destination

PageRank Pull Implementation

• First iterate over vertices and

compute their contributions to their

outgoing neighbours

Contributions

Adjacency Matrix

Source

Destination

PageRank Pull Implementation

• First iterate over vertices and

compute their contributions to their

outgoing neighbours

• Next, iterate through each vertex

and use the contributions computed

to calculate the sum and importance

Contributions

Adjacency Matrix

Source

Destination

Importance

PageRank Pull Implementation

• First iterate over vertices and

compute their contributions to their

outgoing neighbours

• Next, iterate through each vertex

and use the contributions computed

to calculate the sum and importance

Contributions

Adjacency Matrix

Source

Destination

Importance

PageRank Push Implementation

• First iterate through each vertex and

add its contribution to each

outgoing neighbour’s sum in the

sums array

Sums

Adjacency Matrix

Source

Destination

PageRank Push Implementation

• First iterate through each vertex and

add its contribution to each

outgoing neighbour’s sum in the

sums array

Sums

Adjacency Matrix

Source

Destination

PageRank Push Implementation

• First iterate through each vertex and

add its contribution to each

outgoing neighbour’s sum in the

sums array

• Next, iterate through each vertex

and compute it’s importance using

the computed sum

Sums

Adjacency Matrix

Source

Destination

Importance

PageRank Push Implementation

• First iterate through each vertex and

add its contribution to each

outgoing neighbour’s sum in the

sums array

• Next, iterate through each vertex

and compute it’s importance using

the computed sum

Sums

Adjacency Matrix

Source

Destination

Importance

Pagerank &
Communication: The
problem of locality

Why Pagerank can incur high
communication cost
• Both the contributions array and the sums array do not fit into cache*

• This means non-contiguous accesses to these arrays can lead to high communication

costs because we encounter more cache misses

• Notice we don’t have to worry about the adjacency matrix because the sparse matrix

representation guarantees that we achieve good locality

*= for the graphs we are looking at at least

But what technique can we use
when we have a 2D array and want

to maximize locality?
?

What’s the solution to this?

But what technique can we use
when we have a 2D array and want

to maximize locality?
Yay Blocking!

What’s the solution to this?

Blocking to improve
locality/reduce

communication costs

Idea 1: Cache Blocking

Cache Blocking to improve locality
in pull direction
• When reading from the

contributions array, first break up

the array into blocks/tiles

• Create a sums array

• Go block by block reading the

contribution array and adding it to

sums array
Adjacency Matrix

Source

Destination

Contributions

Sums

Cache Blocking to improve locality
in pull direction
• When reading from the

contributions array, first break up

the array into blocks/tiles

• Create a sums array

• Go block by block reading the

contribution array and adding it to

sums array
Adjacency Matrix

Source

Destination

Contributions

Sums

Cache Blocking to improve locality
in pull direction
• When reading from the

contributions array, first break up

the array into blocks/tiles

• Create a sums array

• Go block by block reading the

contribution array and adding it to

sums array
Adjacency Matrix

Source

Destination

Contributions

Sums

Cache Blocking to improve locality
in push direction
• When computing the sums array,

break up the graph into blocks and

compute sums for each vertex

block by block

Sums

Adjacency Matrix

Source

Destination

Cache Blocking to improve locality
in push direction
• When computing the sums array,

break up the graph into blocks and

compute sums for each vertex

block by block

Sums

Adjacency Matrix

Source

Destination

Cache Blocking to improve locality
in push direction
• When computing the sums array,

break up the graph into blocks and

compute sums for each vertex

block by block

Sums

Adjacency Matrix

Source

Destination

We still have a problem!

• For the pull direction we made it better for reading values from the

contributions array but made it worse for calculating sums

• For the push direction we made it better for writing values to the sums

array but may have made it worse for calculating contributions.

• Also cache blocking doesn’t scale!

Idea 2: Propagation
Blocking

Propagation blocking definition

• We will block propagations rather than the graph!

• Propagations here are the contribution each vertex makes to its outgoing neighbours’

sums.

• This way our blocking scales with the updates per round and not the graph size per

se.

Propagation blocking stages

Binning Accumulate

Binning

. . .

• Sub-divide your destination vertices into
bins

• Note that multiple destination vertices
will map to a bin

• Vertices next to each other are in the
same bin

Adjacency Matrix
Destination

Source

• As we compute the contribution of a source to it’s
destination vertices, we do not add this to the sums array

• We first put it in the corresponding bin of that
destination vertex

• Because multiple vertices map to a bin, you must
include the destination vertex of the contribution

Propagation blocking first phase

contribution, destination

Accumulate

. . .

• Process each bin consecutively
• Adding the contribution to the sum of

the destination vertex in the sums array

Sums

Propagation blocking second phase

Accumulate

. . .

• Process each bin consecutively
• Adding the contribution to the sum of

the destination vertex in the sums array

Sums

Propagation blocking second phase

Why is propagation blocking a
good idea?
• The paper focuses on running Pagerank on a sparse graph and so the number of

updates to vertices is relatively small (low edge traffic)

• This means the space taken up by buckets << the number of vertices

• So we are better off writing to buckets first than directly to the sums array

• This way, when we write back to the sums array we will enjoy high spatial locality and

subsequently lower communication cost

Evaluating Propagation
Blocking

What do we compare?
• They compare the performance of four different PageRank implementations:

• Baseline(PageRank implementation from existing graph processing libraries)

• Cache Blocking

• Propagation Blocking

• Deterministic Propagation Blocking

. . .

Contribution, destination

Taxonomy for graphs used in
evaluation

Graphs

Synthetic
Graphs

Low locality
graphs

High Locality
Graphs

Real-world
graphs

Low locality
graphs

High Locality
Graphs

urand grpahs kron webrnd web

Communication reduction for graphs

Significant speedups for those graphs that suffer from low locality.

Communication reduction vs. Speedup

The decrease in communication cost does not translate to an equivalent decrease in runtime.

Best technique depends on the size
of the graph
• For small graphs, baseline implementation without blocking provides the best performance

• For medium sized graphs, cache blocking with the push implementation provides the best

performance

• For large graphs, propagation blocking works best and scales best.

• Here small, medium and large is relative to size of cache.

Generalization of
Propagation Blocking

Applications beyond PageRank
• Not limited to PageRank

• In fact propagation blocking is a powerful idea that tries to scale communication cost

with the amount of actual computation work we do

• Idea also applicable to SpMV(sparse matrix vector multiplication) since most graph

problems share a duality with matrix computation problems

