
ProbGraph: High-Performance and
High-Accuracy Graph Mining with Probabilistic

Set Representations
Authors: Maciej Besta, Cesare Miglioli, Paolo Sylos Labini, Jakub Tˇetek, Patrick Iff,

Raghavendra Kanakagiri, Saleh Ashkboos, Kacper Janda, Michał Podstawski,
Grzegorz Kwa ́sniewski, Niels Gleinig, Flavio Vella, Onur Mutlu, Torsten Hoefler

Presented By: Collin Warner

Motivation

● Graph mining is slow

○ Hard to parallelize since there exists little locality and irregularities in some graphs

● Useful to many problems in modern graphs

○ Examples: Triangle Counting, Clique Counting, Vertex Similarity, Graph Clustering

Contributions

● Provides an approximate algorithm trading accuracy for speed

● Helps general class of graph problems requiring set intersections in their

routines.

● Approximation is tunable, and claims up to 50x speedups with up to 90%

accuracy

Data Review

● Claims appear to lack support in their data, there is high variance, and not a
clear link on how they get 98% or 90% accuracy claims.

Additional Data Review

Overview

● Provide background on triangle counting to use as a motivating example

● Recognize a common subroutine in computation is set intersections

● Delve into Bloom Filters and MinHash approximation algorithms

● Show approximation algorithm given in ProbGraph

Triangle Counting

● Find all unique triples such that each pair of vertices shares and edge.

● Used to analyze real world graphs: cluster coefficient, spam filtering, find structure

● There is an n3 algorithm: enumerate all triples and check

Triangle Counting

● Find all unique triples such that each pair of vertices shares and edge.

● Used in real-world graphs to figure out connectedness of a graph.

● There is an n3 algorithm: enumerate all triples and check

Triangle Counting

● Find all unique triples such that each pair of vertices shares and edge.

● Used in real-world graphs to figure out connectedness of a graph.

● There is an n3 algorithm: enumerate all triples and check

Triangle Counting

● Find all unique triples such that each pair of vertices shares and edge.

● Used in real-world graphs to figure out connectedness of a graph.

● There is an n3 algorithm: enumerate all triples and check

Triangle Counting

● Find all unique triples such that each pair of vertices shares and edge.

● Used in real-world graphs to figure out connectedness of a graph.

● There is an n3 algorithm: enumerate all triples and check

Triangle Counting

● Find all unique triples such that each pair of vertices shares and edge.

● Used in real-world graphs to figure out connectedness of a graph.

● There is an n3 algorithm: enumerate all triples and check

Triangle Counting Faster Approach

VU

● Let U, V be neighboring vertices and Nx be the neighbors of x

● Then NU ∩ NV / {U, V} are triangles

Triangle Counting Algorithm

5 6

43

// Derive a vertex order R s.t if R(v) < R(u) then dv ≤ du
for v ∈ V do: Nv

+ = {u ∈ Nv | R(v) < R(u)}

tc = 0
for v ∈ V do:

for u ∈ Nv
+ do: tc += |Nv

+ ∩ Nv
+|

● Let d be max degree and n be number of nodes
● Initial loop takes O(nd)
● Main loop takes O(nd2)

1
2

Triangle Counting Parallel Algorithm

5 6

43

// Derive a vertex order R s.t if R(v) < R(u) then dv ≤ du
for v ∈ V [in par] do: Nv

+ = {u ∈ Nv | R(v) < R(u)}

tc = 0
for v ∈ V [in par] do:

for u ∈ Nv
+ [in par] do: tc += |Nv

+ ∩ Nv
+|

1
2

Other examples

● Clique Counting

● Vertex Similarity

● Graph Clustering

Bottleneck

● |X ∩ Y| is slow

How to make |X ∩Y| faster?

● Trading some accuracy for speed

● Use of Bloom Filters and MinHash sets to approximate these intersections

Bloom Filter

● Want space efficient/fast answering to membership queries

● False positives

● Bloom filter has L element bit vector

○ Set of hashes, {hi}, computes an integer in [1, L]

● Add Element

○ Compute each hash, set corresponding bit to 1

● Retrieve Element

○ Compute each hash, if all 1, return True

2 hashes, L ∈ [1, 3]

Insert a -> {1, 1}
BF = 100
Insert b -> {3}
BF = 101

Now c -> {1, 3} would be “contained” although not
inserted

MinHash

● Take k hashes, h1, h2 ,.... hk

● Compute hash for each element

● Keep values that produce the smallest per hash values

● Variant (1-Hash): keep k smallest hash values using 1 hash function

{min {h1}, min {h2}, …, min {hk}} or {min {h}, min {h} / min {h}, … }

Approximating Intersections

● Two Options:
○ Take bitwise and of Bloom Filter and compute popcount
○ Find intersection of smaller MinHash sets

Size of bloom filter (B), cache word size
(W), size of MinHash set (k)

ProbGraph Implementation

● Set a storage limit as a percentage of the graph size

● Now Bloom Filter and MinHash representations exist for the neighborsets of every node with

parameters chosen not to exceed this size limit.

● Choose what approximate algorithm you would like to use.

● Very fast to compute as both approximations are much smaller than original neighbor sets.

● Additionally BF is easily vectorized.

Questions ?

