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Motivation

● Graph mining is slow

○ Hard to parallelize since there exists little locality and irregularities in some graphs

● Useful to many problems in modern graphs

○ Examples: Triangle Counting, Clique Counting, Vertex Similarity, Graph Clustering



Contributions

● Provides an approximate algorithm trading accuracy for speed

● Helps general class of graph problems requiring set intersections in their 

routines.

● Approximation is tunable, and claims up to 50x speedups with up to 90% 

accuracy



Data Review

● Claims appear to lack support in their data, there is high variance, and not a 
clear link on how they get 98% or 90% accuracy claims.



Additional Data Review



Overview

● Provide background on triangle counting to use as a motivating example

● Recognize a common subroutine in computation is set intersections

● Delve into Bloom Filters and MinHash approximation algorithms

● Show approximation algorithm given in ProbGraph



Triangle Counting

● Find all unique triples such that each pair of vertices shares and edge.

● Used to analyze real world graphs: cluster coefficient, spam filtering, find structure

● There is an n3 algorithm: enumerate all triples and check
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Triangle Counting Faster Approach

VU

● Let U, V be neighboring vertices and Nx be the neighbors of x

● Then NU ∩ NV / {U, V} are triangles



Triangle Counting Algorithm
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// Derive a vertex order R s.t if R(v) < R(u) then dv ≤ du
for v ∈ V do: Nv

+ = {u ∈ Nv | R(v) < R(u)}

tc = 0
for v ∈ V do:

for u ∈ Nv
+  do: tc += |Nv

+ ∩ Nv
+|

● Let d be max degree and n be number of nodes
● Initial loop takes O(nd)
● Main loop takes O(nd2)
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Triangle Counting Parallel Algorithm
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// Derive a vertex order R s.t if R(v) < R(u) then dv ≤ du
for v ∈ V [in par] do: Nv

+ = {u ∈ Nv | R(v) < R(u)}

tc = 0
for v ∈ V [in par] do:

for u ∈ Nv
+  [in par] do: tc += |Nv

+ ∩ Nv
+|
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Other examples

● Clique Counting

● Vertex Similarity

● Graph Clustering



Bottleneck

● |X ∩ Y| is slow



How to make |X ∩Y| faster?

● Trading some accuracy for speed

● Use of Bloom Filters and MinHash sets to approximate these intersections



Bloom Filter

● Want space efficient/fast answering to membership queries

● False positives

● Bloom filter has L element bit vector

○ Set of hashes, {hi}, computes an integer in [1, L]

● Add Element

○ Compute each hash, set corresponding bit to 1

● Retrieve Element

○ Compute each hash, if all 1, return True

2 hashes, L ∈ [1, 3]

Insert a -> {1, 1}
BF = 100
Insert b -> {3}
BF = 101

Now c -> {1, 3} would be “contained” although not 
inserted



MinHash

● Take k hashes, h1, h2 ,.... hk

● Compute hash for each element

● Keep values that produce the smallest per hash values

● Variant (1-Hash): keep k smallest hash values using 1 hash function

{min {h1}, min {h2}, …, min {hk}}           or            {min {h}, min {h} / min {h}, … }



Approximating Intersections

● Two Options:
○ Take bitwise and of Bloom Filter and compute popcount
○ Find intersection of smaller MinHash sets

Size of bloom filter (B), cache word size 
(W), size of MinHash set (k)



ProbGraph Implementation

● Set a storage limit as a percentage of the graph size

● Now Bloom Filter and MinHash representations exist for the neighborsets of every node with 

parameters chosen not to exceed this size limit.

● Choose what approximate algorithm you would like to use.

● Very fast to compute as both approximations are much smaller than original neighbor sets. 

● Additionally BF is easily vectorized.



Questions ?


