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What is Log(Graph)?

A Near-Optimal High Performance Graph Representation

Near-Optimal: Graph encoding approaches storage lower bounds
High Performance: Enables fast operations/algorithms on graphs
Graph Representation: Technique to store graph in computer memory 

Implemented as a modular C++ library
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Why do we need Log(Graph)?

1. Modern graphs are huge
2. Traditional graph representations 

are inefficient or waste space
3. Traditional compression is slow

Smaller Graph Representation:
- Enables better performance
- Consumes fewer hardware 

resources
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Understanding Lower Storage Bounds

If we have a set of S elements, how many bits do we need to store any given 
element?
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⌈log(S)⌉
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Understanding Lower Storage Bounds
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Understanding Lower Storage Bounds

If we have a set of S elements, how many bits do we need to store any given 
element?

⌈log(S)⌉

If we have a n vertices in a graph, how many bits do we need to store any 
given vertex?

⌈log(n)⌉
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Understanding Lower Storage Bounds

We need ⌈log(n)⌉ bits to store a vertex if there are n vertices

Let’s say in our graph we have n = 1024, so our vertices are 0, 1, 2, … 1023 

We need ⌈log(1024)⌉ = 10 bits to store a given element

However, a memory word can be 32 or 64 bits! Meaning that we are wasting 
a lot of space potentially if we store these vertices many times
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Understanding Lower Storage Bounds

If we have a graph with n nodes and m edges, what is the theoretical 
storage lower bound? 
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Applying Lower Storage Bounds

Let’s say n = 2^40 = ~1.09 trillion vertices

We have our adjacency array:
0   |   2   3   5   7   11   …   97
1   |   … 
… 

Idea: Use 7 bits for 0’s neighborhood, saving 25 * 33 = 825 bits
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Applying Lower Storage Bounds

Our adjacency array:
0   |   2   3   5   7   11   …   97   2^30
1   |   … 
… 

Idea: Relabel the vertex with ID 2^30 to a smaller ID so we can use < 
30 bits 
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Heuristic Examples

Our adjacency array:
0   |   2   3   5   7   11   …   97   2^30
1   |   … 
… 

1. Assign vertices that appear often smaller vertex IDs to leverage local 
storage bounds

2. Use ILP to minimize the maximum vertex IDs of neighborhoods
12



Technical Definitions

- Log(Graph) structure utilizes unique vertex IDs, an adjacency array 
(edgeArray), and an offset array (vertexArray)

- A neighborhood is an adjacency array for a single vertex
- A permuter is a function that relabels vertex IDs
- A transformer is a function that maps vertex IDs to bits, modifies AA
- A data structure is compact if it uses O(OPT) bits and succinct if it 

uses OPT + o(OPT) where OPT is the optimal # of bits
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Technical Definitions
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Log(Graph) Overview

Organized into three main components/modules:
1. Logarithmize Fine Elements
2. Logarithmize Offset Structure
3. Logarithmize Adjacency Structure
 
Each component can take on numerous variants and 
be combined with other components to form many 
possible Log(Graph) implementations
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Log(Graph) Overview
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Log(Graph) Implementation

Implemented as C++ Library - templates are used for performance reasons and to control complexity
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Accessing Values

The bextr operation consumes 2 CPU cycles and extracts a contiguous sequence of bits 
For each neighborhood, we simply store the bit length next to offset 18



Logarithmize Fine Elements 

Fine elements are vertices and edges
We can apply storage lower bounds to both

For vertex IDs, we can apply storage lower 
bounds globally based on n or locally based on 
the largest vertex in a neighborhood

For edges, we apply storage lower bounds 
globally or locally based on maximal edge weight

Vertex Id Example:
0   |   2   3   5   7   11   …   97  
1   |   … 
… 

Idea: Use 7 bits for 0’s 
neighborhood
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Logarithmize Fine Elements Strategy #1

Incorporate ILP

Use ILP to reduce maximal IDs in as many neighborhoods as possible - 
maximal IDs are weighted based on inverse of neighborhood size
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Logarithmize Fine Elements Strategy #2

Incorporate Fixed-Size Gap Encoding

AA Structure: [a   (b - a)   (c - b)]

Maximum difference within a given domain determines number of 
bits used to encode - we can aim to minimize differences if the 
numbers themselves are very large but close in value
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Logarithmize Fine Elements Strategy #3

Greedy Vertex Labeling

Sort vertices in non-decreasing order of their degrees - then, traverse the 
vertices in sorted order and assign smallest ID possible to vertex and 
neighborhood

Used as a heuristic for ILP due to ILP being NP-hard
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Logarithmize Offset Array - Bit Vector

Use A Bit Vector

Idea: Instead of storing the offsets in an 
array, we can use bit vectors to represent

If arr[i] == 1 and this is the jth set 
bit, then the neighborhood for vertex 
j starts at the ith block of AA
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Logarithmize Offset Array - Bit Vector

But …

Using this bit vector can potentially be very slow if 
we have to iterate over it linearly to calculate 

We can use an additional o(n) space in order to 
significantly speed up query operations on this bit 
vector, so the bit vector structure remains succinct
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Succinct Bit Vector Example

Uses o(n) additional bookkeeping space to enable efficient select(x) and rank(x) queries
25



Logarithmize Adjacency Array 

Techniques on Separable Graphs

A graph is separable if we can divide a graph into two sets of vertices so 
that the size of the cut separating the vertices is much smaller than |V|

The two techniques we will examine are Recursive Bisectioning and 
Binary Recursive Bisectioning 
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Logarithmize Adjacency Array Strategy #1

Recursive Bisectioning: Relabel vertices to minimize differences between labels of 
consecutive neighbors
1. Bisect recursively on vertices/edges
2. Perform inorder traversal on resulting binary separator tree
3. Label vertices IDs with increasing values
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Logarithmize Adjacency Array Strategy #2

Binary Recursive Bisectioning: When bisecting recursively, label subgraphs with 0 or 1 
appended to existing prefix - clusters will have large common prefixes 

End up with a hierarchical AA that incurs less overhead than Recursive Bisectioning
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RB vs BRB Comparison
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Distributed Setting

We assume hierarchical machines 
where computation is distributed 
among them

We can divide a vertex ID into an intra 
part that is unique within a machine 
and an inter part that encodes the 
vertex in the distributed-memory 
structure
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Evaluation Example
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Evaluation Strategy

Examined algorithms in the GAP benchmark suite such as BFS, 
PageRank, SSSP,  SSSP, Betweenness Centrality, Connected 
Components, and Triangle Counting

Compared Log(Graph) against Zlib (a traditional compression scheme), 
Webgraph Library, and other forms of Recursive Partitioning
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Key Findings

- Logarithmizing fine elements reduces storage while ensuring 
high-performance

- Logarithmizing the offset array with succinct bit vectors reduces the size of the 
offset array while matching performance for higher thread counts 

- Logarithmizing the adjacency array with DMd (degree-minimizing with 
differences encoded) offers a strong space/performance tradeoff as it trades a 
small amount of storage for faster access but is still very small 

- If we have frequent accesses to neighbors, use RB - if instead we have a large or 
constantly evolving graph, use BRB

33



Thoughts & Questions

- Overall, felt that Log(Graph) was a pretty cool paper
- Unfortunate that the C++ implementation has still not been released yet
- Paper overall does a good job of explaining concepts
- However, doesn’t explain how Log(Graph) handles a graph that evolves quickly
- Possible directions for future work might be exploring how different component 

variants work with each other and if certain variants are specialized for certain 
graph types/properties

Any Questions?
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