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Problem: Graphs traversal is not sequential!

- Structure of graphs make vertex data 
accesses essentially random as any 
vertex can have an edge to any other.

- Recall the hierarchical memory model: 
random accesses are bad for cache.

- More caches misses means algorithms 
take more time to compute.

- Is there a way to improve these random 
accesses?



The Solution: Reordering Algorithms(RAs)

- The Idea: Relabel the vertices to give 
vertex data accesses better locality.

- RAs are experimentally shown to 
increase performance and lower cache 
misses on some graphs.

- But RAs make performance worse on 
others…why?

- There is little understanding of how RAs 
affect the structure of graphs

Above: RA graph performance



The Solution to The Solution: Analysis!

- We want to find the “why” of how RAs works across different RAs and 
graph types.

- Key Questions:
- How much locality do natural graphs already have?
- How do different RAs affect that initial locality?
- For what types of locality are the graphs improved?
- What vertices get better locality (LDV vs. HDV; in-hubs vs. out-hubs)?

- Apply these ideas to choose appropriate RAs and even modify them



Contributions

● Locality types in a parallel graph traversal 
● Introducing the Neighbour to Neighbour Average ID Distance (N2N AID)
● Using degree distributions to study impacts of RAs on vertex classes,
● Degree range decomposition and degree distribution of asymmetricity to 

provide structural analysis of different graph types
● How locality manifests itself differently in a push traversal vs a pull 

traversal.



Overview:

1. Background on Core Concepts

2. Description and Demonstration of Studied RAs

3. Introduced Analytical Tools

4. Analysis of RAs on cache 

5. Analysis of natural graphs and traversal order on cache

6. Suggested Improvements of RAs based on analysis



Background
Concepts



Graph Structure:

- Natural graphs have 
power law degree 
distributions.

- This means they have 
few well-connected 
high degree vertices 
(HDV) and many low 
degree vertices (LDV)

- Hubs are HDV with 
edges greater than 
square root of |V|

Power Law Distribution

Example Natural Graph



Representation: Adjacency Arrays

- Core idea: Have each vertex have a list of its neighbors in order of ID.
- For directed graphs, this list can be in-neighbors or out-neighbors

Compressed Sparse Column(CSC):
- Vertex ID indexes into a list of 

the vertex’s in-neighbors.

Compressed Sparse Row(CSR):
- Vertex ID indexes into a list of 

the vertex’s out-neighbors

Example of CSR



Graph Traversal - SpMV

- SpMV can go in pull or push direction 
depending on representation (CSC v. 
CSR)

- Cache locality:
- Edge data (topological) is only read once.
- Vertex data is reused many times dependent 

on the vertex’s in or out degree.
- Pull→ randomly access old in-neighbors
- Push → randomly access new out-neighbors



Reordering 
Algorithms



RA Example: Slash-Burn

- Intuition: Imagine the graph as consisting of hubs of HDV and spokes off the hubs, and the 
hubs being spokes of larger hubs and so on recursively.

- This structure stems from the power law properties of natural graphs.
- Theoretically gives better locality for the spokes of the graph.



Slash-Burn Pseudocode

- K-hubset - a set of k 
candidate hub vertices.

- Giant Connected Component
- the largest spoke to be 
recursively broken down.



RabbitOrder

RabbitOrder:

● RO tries to increase locality by merging low degree vertices together 
recursively to construct local communities.

● Then RO performs parallel DFS on the tree of merges for each 
communities to number the vertices.

● When merging, uses the gain function:
○ wu,v= weight of edge (u, v); degv = degree of v
○ Merged vertices merge common edge weights and vertex weights.



RabbitOrder

RabbitOrder:

● RO tries to increase locality by merging low degree vertices together 
recursively to construct local communities.



GOrder

GOrder:

● GO increases locality by sequentially labeling vertices that share many in-
neighbors and have a short path.
○ Heuristic: S(v, u) = Sn(v, u) + Ss(v, u)
○ Sn(v, u) = # of in-neighbors shared between vertices u and v
○ Ss(v, u) = # of edges between v and u

● GO chooses the next vertex to label by considering a sliding window of 
previous vertices and comparing with new vertices. 

● By labeling vertices this way, GO aims to increase temporal locality.



Analytical 
Tools



Types of Locality

- Spatial locality (Type I)
- Neighbors are loaded to cache 

together
- Temporal locality (Type II)

- Subsequent vertices share 
neighbors in common

- Spatio-Temporal locality (Type III)
- Subsequent vertices have different 

neighbors on the same cache line 
as previous vertices

- Concurrent processing temporal 
locality (Type IV)

- Neighbor of a vertex is 
already loaded into cache by 
another thread

- Concurrent processing spatio-
temporal locality (Type IV)

- Neighbor shares a cache line 
with vertex already loaded 
into cache by another thread



Neighbor to Neighbor Average ID Distance

- New Metric: N2NAID
- Meant to measure how close neighbors’ 

IDs are
- Lower N2NAID intuitively results in 

better Spatial Locality (Type I)
- Useful to think as “average gap profile” 

in the CSR or CSC representation



Cache Miss Rate Degree Distribution

- Meant to quantify cache misses 
as it relates to type of vertex 
(HDV or LDV)

- Locality might be prioritized for 
LDV as they are the most 
common, or for HDV as they are 
needed the most often.



Analysis of RAs



Slash-Burn

● Recall that Slash-Burn relies on 
the graph’s power law property 
to increase locality.

● The graph on the right shows 
that this property disappears 
quickly in successive iterations.

● After a certain point, SB 
separates LDV from neighbors, 
decreasing Type I and III locality.

● SB increases locality type II and 
III for HDV of out-hubs by 
grouping their IDs. This locality is 
useful in pull SpMV.



Rabbit-Order

● The DFS assignment of neighbors 
reduced the N2NAID of LDV.

● However, as the number of 
neighbors a vertex has increases, 
consecutive IDs are less likely to 
be assigned to itself and other 
neighbors.

● This results in poor locality for 
HDV.



GOrder
● GOrder numbered vertices based on 

in-degree neighbors and proximity, 
aiming to increase Type II and III 
locality.

● GO was found to reduce cache 
misses for HDV but not for LDV. They 
reasoned this was due to the scoring 
heuristic and the size of the sibling 
window being evaluated.

● The ordering also occupied more of 
the cache with LDV rather than HDV.



Complete Results



Web-Graph & Social Graph Structures

● As we saw in previous results, 
RO produced better results on 
web graphs than GO, and the 
same went for GO on social 
graphs. Why?

● Social Graphs have highly-
symmetrical in-hubs, while web 
graphs do not.

● GO performed better with social 
graphs due to this symmetry; 
HDVs have many HDV 
neighbors.

● RO performed better with web 
graphs as HDVs overwhelmingly 
have LDV neighbors so LDV 
locality was more important.



Push vs. Pull Locality

● The direction of traversal also leverages the structure for locality.
● Pull works better for web-graph because of the asymmetrical out-hubs; 

that data is used many times.
● Push works better for social graphs due to the high in-hubs. 



Applying the 
Analysis



RA improvements

Slash-Burn++:

● Avoid pitfalls of SB by stopping 
early, when power law stops 
holding.

● Good results!

Limit reordering in RO:

● Essentially, find a range of 
vertex degrees that RO is not 
effective for, and have a quick 
special case.

● Found pre-processing time was 
reduced by 4x on some graphs.



Future Work

Combining Rabbit-Order & GOrder:

● Suggest transitioning from RO to 
GO when going from LDV to HDV

● Could have best of both worlds 
potentially.

Dynamically-sized Window for GO:

● Size of the window would be 
large for LDVs, and small for 
HDV.

● This would better reflect the 
heuristic GO uses for ordering.


