
Locality Analysis of Graph
Reordering Algorithms
By Mohsen Koohi Esfahani, Peter Kilpatrick, Hans
Vandierendonck

Presented by Nick Dow

Problem: Graphs traversal is not sequential!

- Structure of graphs make vertex data
accesses essentially random as any
vertex can have an edge to any other.

- Recall the hierarchical memory model:
random accesses are bad for cache.

- More caches misses means algorithms
take more time to compute.

- Is there a way to improve these random
accesses?

The Solution: Reordering Algorithms(RAs)

- The Idea: Relabel the vertices to give
vertex data accesses better locality.

- RAs are experimentally shown to
increase performance and lower cache
misses on some graphs.

- But RAs make performance worse on
others…why?

- There is little understanding of how RAs
affect the structure of graphs

Above: RA graph performance

The Solution to The Solution: Analysis!

- We want to find the “why” of how RAs works across different RAs and
graph types.

- Key Questions:
- How much locality do natural graphs already have?
- How do different RAs affect that initial locality?
- For what types of locality are the graphs improved?
- What vertices get better locality (LDV vs. HDV; in-hubs vs. out-hubs)?

- Apply these ideas to choose appropriate RAs and even modify them

Contributions

● Locality types in a parallel graph traversal
● Introducing the Neighbour to Neighbour Average ID Distance (N2N AID)
● Using degree distributions to study impacts of RAs on vertex classes,
● Degree range decomposition and degree distribution of asymmetricity to

provide structural analysis of different graph types
● How locality manifests itself differently in a push traversal vs a pull

traversal.

Overview:

1. Background on Core Concepts

2. Description and Demonstration of Studied RAs

3. Introduced Analytical Tools

4. Analysis of RAs on cache

5. Analysis of natural graphs and traversal order on cache

6. Suggested Improvements of RAs based on analysis

Background
Concepts

Graph Structure:

- Natural graphs have
power law degree
distributions.

- This means they have
few well-connected
high degree vertices
(HDV) and many low
degree vertices (LDV)

- Hubs are HDV with
edges greater than
square root of |V|

Power Law Distribution

Example Natural Graph

Representation: Adjacency Arrays

- Core idea: Have each vertex have a list of its neighbors in order of ID.
- For directed graphs, this list can be in-neighbors or out-neighbors

Compressed Sparse Column(CSC):
- Vertex ID indexes into a list of

the vertex’s in-neighbors.

Compressed Sparse Row(CSR):
- Vertex ID indexes into a list of

the vertex’s out-neighbors

Example of CSR

Graph Traversal - SpMV

- SpMV can go in pull or push direction
depending on representation (CSC v.
CSR)

- Cache locality:
- Edge data (topological) is only read once.
- Vertex data is reused many times dependent

on the vertex’s in or out degree.
- Pull→ randomly access old in-neighbors
- Push → randomly access new out-neighbors

Reordering
Algorithms

RA Example: Slash-Burn

- Intuition: Imagine the graph as consisting of hubs of HDV and spokes off the hubs, and the
hubs being spokes of larger hubs and so on recursively.

- This structure stems from the power law properties of natural graphs.
- Theoretically gives better locality for the spokes of the graph.

Slash-Burn Pseudocode

- K-hubset - a set of k
candidate hub vertices.

- Giant Connected Component
- the largest spoke to be
recursively broken down.

RabbitOrder

RabbitOrder:

● RO tries to increase locality by merging low degree vertices together
recursively to construct local communities.

● Then RO performs parallel DFS on the tree of merges for each
communities to number the vertices.

● When merging, uses the gain function:
○ wu,v= weight of edge (u, v); degv = degree of v
○ Merged vertices merge common edge weights and vertex weights.

RabbitOrder

RabbitOrder:

● RO tries to increase locality by merging low degree vertices together
recursively to construct local communities.

GOrder

GOrder:

● GO increases locality by sequentially labeling vertices that share many in-
neighbors and have a short path.
○ Heuristic: S(v, u) = Sn(v, u) + Ss(v, u)
○ Sn(v, u) = # of in-neighbors shared between vertices u and v
○ Ss(v, u) = # of edges between v and u

● GO chooses the next vertex to label by considering a sliding window of
previous vertices and comparing with new vertices.

● By labeling vertices this way, GO aims to increase temporal locality.

Analytical
Tools

Types of Locality

- Spatial locality (Type I)
- Neighbors are loaded to cache

together
- Temporal locality (Type II)

- Subsequent vertices share
neighbors in common

- Spatio-Temporal locality (Type III)
- Subsequent vertices have different

neighbors on the same cache line
as previous vertices

- Concurrent processing temporal
locality (Type IV)

- Neighbor of a vertex is
already loaded into cache by
another thread

- Concurrent processing spatio-
temporal locality (Type IV)

- Neighbor shares a cache line
with vertex already loaded
into cache by another thread

Neighbor to Neighbor Average ID Distance

- New Metric: N2NAID
- Meant to measure how close neighbors’

IDs are
- Lower N2NAID intuitively results in

better Spatial Locality (Type I)
- Useful to think as “average gap profile”

in the CSR or CSC representation

Cache Miss Rate Degree Distribution

- Meant to quantify cache misses
as it relates to type of vertex
(HDV or LDV)

- Locality might be prioritized for
LDV as they are the most
common, or for HDV as they are
needed the most often.

Analysis of RAs

Slash-Burn

● Recall that Slash-Burn relies on
the graph’s power law property
to increase locality.

● The graph on the right shows
that this property disappears
quickly in successive iterations.

● After a certain point, SB
separates LDV from neighbors,
decreasing Type I and III locality.

● SB increases locality type II and
III for HDV of out-hubs by
grouping their IDs. This locality is
useful in pull SpMV.

Rabbit-Order

● The DFS assignment of neighbors
reduced the N2NAID of LDV.

● However, as the number of
neighbors a vertex has increases,
consecutive IDs are less likely to
be assigned to itself and other
neighbors.

● This results in poor locality for
HDV.

GOrder
● GOrder numbered vertices based on

in-degree neighbors and proximity,
aiming to increase Type II and III
locality.

● GO was found to reduce cache
misses for HDV but not for LDV. They
reasoned this was due to the scoring
heuristic and the size of the sibling
window being evaluated.

● The ordering also occupied more of
the cache with LDV rather than HDV.

Complete Results

Web-Graph & Social Graph Structures

● As we saw in previous results,
RO produced better results on
web graphs than GO, and the
same went for GO on social
graphs. Why?

● Social Graphs have highly-
symmetrical in-hubs, while web
graphs do not.

● GO performed better with social
graphs due to this symmetry;
HDVs have many HDV
neighbors.

● RO performed better with web
graphs as HDVs overwhelmingly
have LDV neighbors so LDV
locality was more important.

Push vs. Pull Locality

● The direction of traversal also leverages the structure for locality.
● Pull works better for web-graph because of the asymmetrical out-hubs;

that data is used many times.
● Push works better for social graphs due to the high in-hubs.

Applying the
Analysis

RA improvements

Slash-Burn++:

● Avoid pitfalls of SB by stopping
early, when power law stops
holding.

● Good results!

Limit reordering in RO:

● Essentially, find a range of
vertex degrees that RO is not
effective for, and have a quick
special case.

● Found pre-processing time was
reduced by 4x on some graphs.

Future Work

Combining Rabbit-Order & GOrder:

● Suggest transitioning from RO to
GO when going from LDV to HDV

● Could have best of both worlds
potentially.

Dynamically-sized Window for GO:

● Size of the window would be
large for LDVs, and small for
HDV.

● This would better reflect the
heuristic GO uses for ordering.

