
A simple deterministic algorithm 
for guaranteeing the forward 

progress of transactions

Leiserson, 2016

Presented by Elie Cuevas
MIT 6.5060 – Algorithm Engineering

1Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



What This Talk Will Cover

• A brief review of currency control in parallel computing and existing 
mechanisms 
• An explanation of Transactional Memory built on Transactions
• A novel algorithm to ensure forward progress in any set of 

transactions
• Correctness arguments for that algorithm
• Real-world complications of the algorithm
• Open problems and other notes

2Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Concurrency Control

3

• Functions that access the same memory locations called in parallel 
might exhibit nondeterministic behavior if the programmer is not 
careful.

• Inconsistent interweaving of memory accesses due to scheduling 
differences cause data races.

• Concurrency control ensures that results are correct and consistent.

Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Common Solution: Locking
• Locks require a thread to “obtain” permission from another source to access memory locations.

• Common locking mechanisms include mutexes and semaphores.

Locking can be Problematic:
• Deadlocks: unbreakable sequence of threads waiting on each other
• Priority inversion: high-priority threads have to wait on completion of low-priority threads
• Overhead per resource: locks might be cumbersome to use in practice
• LOSS OF PARALLELISM!

4Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Common Solution: Nonblocking Algorithms

• Nonblocking mechanisms cannot 
cause a thread to suspend 
because of another thread’s 
suspension.
• An example of a nonblocking 

mechanism is the Compare-And-
Swap (CAS)

Nonblocking can also be 
problematic:
• HARD TO DESIGN!

5Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Transactions

• Set of instructions that perform work if and only if no conflict is present
• A conflict is when multiple transactions or threads attempt to access the 

same block of transactional memory at once.
• Transactions can:

• Commit – upon “making it through,” the work is confirmed to be done correctly
• Abort – upon a conflict, the transaction will be reverted: none of its work will be 

done, and it can be restarted

Transactions make concurrent programming easy for developers!

6Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Transactions (cont.)

7Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Transactions (cont.)

8Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Transactions (cont.)

9

MADE IT OUT OF TRANSACTION, WE CAN COMMIT

In this example, the work done by function1 and function2 has taken effect in memory. 

Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Transactions (cont.)

10Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Transactions (cont.)

11

INTERRUPTION – WE MUST ABORT AND ROLL BACK

Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Transactions (cont.)

12

In this example, the work done by function1 and function2 has NOT taken effect in memory. 
Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Transactional Memory

• Shared memory based on transactions to manage concurrency
• Allows for high-level abstraction rather than low-level synchronization

Transactional memory can still be problematic:
• Transactions can deadlock or find themselves starved of resources
• Transactions can livelock, endlessly aborting and restarting

Preventing these issues can get complicated (timestamping, 
probabilistic backoff, pessimistic/optimistic control, etc.)!

13Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



What Would be Nice

The goal is a transactional memory structure and algorithm that:
• cannot deadlock 
• cannot livelock 
• always makes forward progress (always gets closer to a commit)
• is deterministic (same behavior every time)
• is easy to reason about

14Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Idea #1 – The Ownership Array

• Owner Array A: global array of locks (mutexes)
• Every transactional memory location will be mapped to a single lock, but locks 

probably map to more than one memory location
• All locks support the following instructions:

• Acquire(lock): Try to hold the lock, block until it is available
• Try_Acquire(lock): Try to hold the lock, and return true or false for a success or failure
• Release(lock): Release the lock

• Owner function h : function that does the above-mentioned mapping
• Known globally (by all transactions)
• Probably a hash function
• If M represents all transactional memory, then h(m) is in A for all m in M.

15Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Idea #2 : Local Transaction States

• Each transaction will keep a set L of all the locks it currently has 
acquired
• Each transaction will also keep state so that it can be rolled-back
• Some transactions are irrevocable, but this is ok! Details later

16Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



The Formal Algorithm

17Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



The Algorithm, in Words

18

• When trying to access memory, first try to acquire its lock x.
• If you already have it or immediately get it, obviously just continue.

• If someone else is currently holding x, do the following:
• For all locks y in L, if h(y) > h(x), release it (but don’t forget it!).
• Block on x
• Re-acquire all locks previously dropped, in sorted order, blocking if conflicted
• Restart transaction

Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



The Algorithm, in Words

19

• When trying to access memory, first try to acquire its lock x.
• If someone else is currently holding x, do the following:
• Abort (without releasing any locks in L)
• For any lock y in L, if h(y) > h(x), release it.
• Block on x
• Re-acquire all locks previously dropped, in sorted order, blocking if conflicted
• Restart transaction

Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23

At every restart, at least one more lock 
is added to L so there must be a finite 
number of restarts

Transactions abort themselves here, rather than 
being aborted at random by conflict. This simplifies 
transaction implementation.



Lemma: Transactions do not Deadlock

20

• A transaction only blocks on a lock if that lock has a higher h value 
than any other lock it holds.
• There is thus no cycle of blocking. 

Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Lemma: Every Transaction Makes Forward Progress

21

• Every time a transaction restarts, it will hold at least one more lock 
than it did before. If there is a finite number of locks needed per 
transaction, then there is a finite number of restarts required to 
acquire all necessary locks.
• That is, Lprev is a strict subset of Lnext

• Before a restart:
• All greater locks are dropped.
• Original conflict is obtained.
• All previously dropped locks are re-obtained.
• The lesser locks were never dropped.

Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Not So Fast: Real-World Complications

• How big should the ownership array be?
• Want to reduce chances of owner function collisions (birthday paradox!)
• Don’t want to take up too much space
• Experiments have been done empirically, but theoretical analysis remains 

an open problem

• Not all transactions are reversible.
• If the algorithm knows all memory locations needed to be accessed in an 

irrevocable transaction, then it can ensure all locks are held before ever 
starting and ensure a commit.

22Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



More Related Open Problems

• Ownership array might be able to be cached for performance, owner 
function writing addresses to cache lines – empirical evidence 
needed
• Compilers might be able to optimize for groups of locks acquired in 

transactions
• Lock ordering might be dynamic rather than static, which might 

enable a faster algorithm

23Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23



Questions?

24Elie Cuevas - Simple, Deterministic Transaction Progress4/20/23


