
References

Cache-Efficient Aggregation: Hashing Is Sorting

Anton Ni

Paper by Müller, I., Sanders, P., Lacurie, A., Lehner, W., and Färber, F.

6.506 Paper Presentation

April 24, 2023

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Motivation

Grouping with Aggregation is one of the most computationally
expensive relational database operators.

Dominant cost is movement of data.

We want to reduce accesses to slower main memory.

How can an aggregation operator be designed to be
cache-efficient?

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Motivation

Grouping with Aggregation is one of the most computationally
expensive relational database operators.

Dominant cost is movement of data.

We want to reduce accesses to slower main memory.

How can an aggregation operator be designed to be
cache-efficient?

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Data Aggregation

Input: database with N rows and C columns

General Operation: Group by a subset S of columns and perform
some aggregate function on the collection of rows that share the
same S

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Data Aggregation

General Operation: Group by a subset S of groups and perform
some aggregate function on the collection of rows that share the
same S .

Example

Input:

Student Number of Classes Hours of Sleep
A 4 8

B 5 6

C 4 6

D 5 6

E 3 9

F 3 7

Group then Average:
Number of Classes Avg. Hours of Sleep

4 7

5 6

3 8

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Two Approaches to Aggregation

[1]
Sorting Approach:

1 Sort by grouping attributes.

2 Aggregate consecutive rows of each group.

Hashing Approach:

1 Using group attributes as the key, place rows into hash table.

2 Aggregate remaining attributes in place.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Two Approaches to Aggregation

[1]
Sorting Approach:

1 Sort by grouping attributes.

2 Aggregate consecutive rows of each group.

Hashing Approach:

1 Using group attributes as the key, place rows into hash table.

2 Aggregate remaining attributes in place.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Hashing vs. Sorting

Example

Input:

Student Number of Classes Hours of Sleep
A 4 8

B 5 6

C 4 6

D 5 6

E 3 9

F 3 7

Sort:

Student Number of Classes Hours of Sleep
E 3 9

F 3 7

A 4 8

C 4 6

B 5 6

D 5 6

Hashing:
Key Value
4 8

5 6

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Hashing vs. Sorting

Example

Input:

Student Number of Classes Hours of Sleep
A 4 8

B 5 6

C 4 6

D 5 6

E 3 9

F 3 7

Sort:

Student Number of Classes Hours of Sleep
E 3 9

F 3 7

A 4 8

C 4 6

B 5 6

D 5 6

Hashing:
Key Value
4 7

5 6

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Hashing vs. Sorting

Example

Input:

Student Number of Classes Hours of Sleep
A 4 8

B 5 6

C 4 6

D 5 6

E 3 9

F 3 7

Sort:

Student Number of Classes Hours of Sleep
E 3 9

F 3 7

A 4 8

C 4 6

B 5 6

D 5 6

Hashing:

Key Value
4 7

5 6

3 8

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Hashing vs. Sorting

Hashing Sorting
“Sorts” by hash value Sorts values

Early aggregation No early aggregation

Better if groups are small Better if number of groups
to fit in cache is large

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Hashing is Sorting

Claim

Data aggregation by hashing and sorting are the same in terms of
data movement (cache line transfers) following two optimizations.

Authors prove this both by analyzing the cache-line transfers for
both paradigms and designing a framework which allows switching
between hashing and sorting during execution.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Hashing is Sorting

Claim

Data aggregation by hashing and sorting are the same in terms of
data movement (cache line transfers) following two optimizations.

Authors prove this both by analyzing the cache-line transfers for
both paradigms and designing a framework which allows switching
between hashing and sorting during execution.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Analysis of External Aggregation

Assume External-Memory (I/O) Model and the following variables:

N = number of input rows

K = number of groups in input

M = number of rows which fit into cache

B = number of rows per single cache line

Costs of an algorithm is just the number of cache line transfers in
the worst case.
Output has size K .

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Sort-Based Aggregation

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Sort-Based Aggregation

Idea: Use bucket sort to recursively partition input into buckets
until data is sorted.

Recursion stops when buckets are size B since we can sort “for
free” within a cache line.

Number of Leaves in Recursion Tree =
N

B

Tree has degree M
B since number of partitions is limited by number

of cache lines.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Sort-Based Aggregation

Idea: Use bucket sort to recursively partition input into buckets
until data is sorted.

Recursion stops when buckets are size B since we can sort “for
free” within a cache line.

Number of Leaves in Recursion Tree =
N

B

Tree has degree M
B since number of partitions is limited by number

of cache lines.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Sort-Based Aggregation

Idea: Use bucket sort to recursively partition input into buckets
until data is sorted.

Recursion stops when buckets are size B since we can sort “for
free” within a cache line.

Number of Leaves in Recursion Tree =
N

B

Tree has degree M
B since number of partitions is limited by number

of cache lines.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Sort-Based Aggregation

Assuming roughly balanced sorting tree, height is
⌈
logM/B

N
B

⌉
.

Input is read and written one time each per level of the tree. Then
there is one aggregation pass and one write to output.

Approximation for cost:

2 · N
B

·
⌈
logM/B

N

B

⌉
+

N

B
+

K

B

assuming static depth of call tree.
Now we relax this assumption by using the fact that recursion
stops earlier when K < N.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Sort-Based Aggregation

Assuming roughly balanced sorting tree, height is
⌈
logM/B

N
B

⌉
.

Input is read and written one time each per level of the tree. Then
there is one aggregation pass and one write to output.

Approximation for cost:

2 · N
B

·
⌈
logM/B

N

B

⌉
+

N

B
+

K

B

assuming static depth of call tree.
Now we relax this assumption by using the fact that recursion
stops earlier when K < N.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Sort-Based Aggregation

Assuming roughly balanced sorting tree, height is
⌈
logM/B

N
B

⌉
.

Input is read and written one time each per level of the tree. Then
there is one aggregation pass and one write to output.

Approximation for cost:

2 · N
B

·
⌈
logM/B

N

B

⌉
+

N

B
+

K

B

assuming static depth of call tree.
Now we relax this assumption by using the fact that recursion
stops earlier when K < N.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Sort-Based Aggregation Analysis Optimization

When K < N, recursion stops earlier, so cost is:

2 · N
B

·
⌈
logM/B(min(K ,

N

B
))

⌉
+

N

B
+

K

B

Well known lower bound for multiset sorting.

What if we merge the last sort pass with final aggregation pass?
Instead of writing to memory when the buffer of a partition runs
full, aggregate to make space. Results in only K/B leaves.
Optimized cost:

N

B
+

K

B
+ 2 · N

B

(⌈
logM/B

K

B

⌉
− 1

)
Note that intermediate results must be O(1) which is usually true.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Sort-Based Aggregation Analysis Optimization

When K < N, recursion stops earlier, so cost is:

2 · N
B

·
⌈
logM/B(min(K ,

N

B
))

⌉
+

N

B
+

K

B

Well known lower bound for multiset sorting.

What if we merge the last sort pass with final aggregation pass?
Instead of writing to memory when the buffer of a partition runs
full, aggregate to make space. Results in only K/B leaves.
Optimized cost:

N

B
+

K

B
+ 2 · N

B

(⌈
logM/B

K

B

⌉
− 1

)
Note that intermediate results must be O(1) which is usually true.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Hash-Based Aggregation

Hash-Based Aggregation:
We need K/B cache lines to write, N/B cache lines to read. If
K > N, only M/K proportion of rows can be in the cache at any
time, so 2 cache line transfers for each other row. We get that the
cost is:

N

B
+

{
K/B if K < M

2N(1−M/K ) otherwise

Very good efficiency when K fits into cache, very poor otherwise.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Hash-Based Aggregation Optimization

Optimization: recursively partition input by value and apply hash
aggregation on each group separately. This reduces the effective
K , algorithm works in cache. We now have additional costs from
partitioning analogous to sort-based aggregation. With(⌈

logM/B
K
B

⌉
− 1

)
partitioning passes, cost becomes

N

B
+

K

B
+ 2 · N

B

(⌈
logM/B

K

B

⌉
− 1

)
which is the same as optimized sorting aggregation.

No such duality between hashing and sorting!
Question: How to engineer a single aggregation algorithm similar
to optimized versions of both aggregation algorithms?

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Hash-Based Aggregation Optimization

Optimization: recursively partition input by value and apply hash
aggregation on each group separately. This reduces the effective
K , algorithm works in cache. We now have additional costs from
partitioning analogous to sort-based aggregation. With(⌈

logM/B
K
B

⌉
− 1

)
partitioning passes, cost becomes

N

B
+

K

B
+ 2 · N

B

(⌈
logM/B

K

B

⌉
− 1

)
which is the same as optimized sorting aggregation.
No such duality between hashing and sorting!
Question: How to engineer a single aggregation algorithm similar
to optimized versions of both aggregation algorithms?

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Mixing Hashing and Sorting

Partitioning Routines:

Both functions partition by hash value.
Partition: simple partition by hash value
Hashing: starts with hash table size of cache and replaces the
current hash table with a new one every time it is filled

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Aggregation Framework

1 Split input into runs.

2 Process input either by hashing or partitioning.

3 Each step of recursive partitioning has more and more hash
digits in common within a bucket.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Aggregation Framework

Some Key Features:

Framework supports hashing and partitioning interchangeably.

Hashing is used when we can exploit locality of groups.

Aggregation can be performed at all levels of recursion.

Aggregation is in a way similar to semi-sorting.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Parallelization Details

All phases of algorithm can be fully parallelized.

Line 5 can be performed in parallel.
Minimial synchronization is needed for unions on line 8.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Minimizing Computations

Hash table optimization:

single hash table with linear probing

size equal to L3 cache

collisions rare enough to not affect runtime

Partitioning optimization:

“software write-combining” to reduce read-before-write
overhead and TLB misses

data structure which eliminates a counting pass to determine
output positions and offsets

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Hashing or Sorting?

General strategy: If K > N and data is uniform (cannot exploit
data locality), partition first. Otherwise, use hashing.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Adaptive Strategy

1 Start with hashing.

2 When a hash table gets full, compute α := nin
nout

.

3 If α is above threshold, continue with hashing.

4 Switch to partitioning once α is below threshold.

5 When enough data has been processed
(nin = c · (cache size)), try hashing again.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Hashing or Sorting?

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Scalability

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Comparison with Other Frameworks

A DISTINCT query with no aggregate columns was used for
comparison to abstract from architectural differences.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Skew Resistance

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Conclusion

Summary and Strengths

Cache line transfers are the main cost in database aggregation
algorithms.

Hashing and Sorting algorithms are equivalent in the external
memory model.

Being able to switch freely between the two protocols is an
inherent advantage.

System reliably outperforms competitors.

Potential Weaknesses:

A lot of the intermediate aggregation requires O(1) additional
space. Unlikely same framework is possible for aggregation
computations which require more than O(1) additional space.

No comparison on groups with more than 1 column were
compared with competitors.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

Discussion Questions and Future Research Directions

1 Prove the lower bound on cache line transfers for an
aggregation query.

2 Demonstrate runtime advantages with other aggregation
functions.

3 How do we improve skew resistance?

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting



References

References

I. Müller, P. Sanders, A. Lacurie, W. Lehner, and F. Färber.
Cache-Efficient Aggregation: Hashing Is Sorting. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1123–1136, 2015.

Anton Ni Cache-Efficient Aggregation: Hashing Is Sorting


	References

