
Efficient Sorting, Duplicate 
Removal, Grouping, and 
Aggregation

Thanh Do, Goetz Graefe, and Jeffrey Naughton (2022)

Adam Janicki
April 25th, 2023



A better title

“Improving the performance of duplicate removal, grouping, 
and aggregation queries via efficient sorting.”



Contributions

● Developed 2 new techniques to improve sorting-based aggregation, grouping, and 
duplicate deletion queries: early aggregation and wide merging.

● Sorting-based aggregation is made competitive with hashing-based aggregation.
● Eliminates the need for query engine to pick an algorithm before execution by having 

one algorithm that is always optimal.

Comparison of 
spillage (amount of 
external memory 
used) by hashing, 
and early 
aggregation 
(in-sort) techniques



Motivation

● Removing duplicates, grouping, and aggregations are very common relational 
database operations. 

● Authors come from perspective of Google’s F1 Query (SQL at massive scale), 
so efficiency matters significantly for large data.

● Currently, there exist a few different algorithms to execute these queries, but 
they are optimal under different circumstances.



Talk Overview

1. Background
2. Technique 1: Early Aggregation
3. Technique 2: Wide Merging
4. Performance Results
5. Conclusion



Removing Duplicates

● Get rid of duplicates based on a condition.
● SELECT DISTINCT name FROM users;
● This query returns all unique names from the table of users.

Username Name

ajanicki Adam

rose4 Rose

adam2 Adam

mike_1 Mike

Name

Adam

Rose

Mike



Grouping

● Organize the output by a set of columns.
● SELECT name, username FROM users GROUP BY name;
● This query returns all usernames and names which are organized into 

contiguous chunks of entries with the same name.

Username Name

ajanicki Adam

rose4 Rose

adam2 Adam

mike_1 Mike

Username Name

ajanicki Adam

adam2 Adam

rose4 Rose

mike_1 Mike



Aggregation

● Calculates additional data based on the table.
● Examples include sum, count, avg, etc.
● SELECT name, COUNT(*) AS frequency FROM users GROUP BY name;

Username Name

ajanicki Adam

rose4 Rose

adam2 Adam

mike_1 Mike

Name frequency

Adam 2

Rose 1

Mike 1



Current methods

● Two primary ways: hashing-based, and sorting-based.
● Each come with benefits and drawbacks, and work better in different 

scenarios.
● Currently, one of them is picked before query execution based on estimation 

of which one is better.



Hashing

● A divide and conquer algorithm that hashes rows into disjoint subgroups.
● Allows for removal of duplicates on the fly, reducing memory usage.
● Hashing is the optimal choice if the in-memory size M is greater than the 

output size O



Traditional Sorting

● Also a divide and conquer algorithm, this approach works by applying a merge 
sort to the elements.

● Sorting can produce interesting orderings, which are orderings produced by 
sorting which speed up subsequent join and grouping operations.

● Sorting is the optimal choice if the in-memory size M is less than the output 
size O, and if interesting orderings would benefit the following queries.



Efficiency Factors

● When evaluating the methods for querying, there are two main factors of 
efficiency that are considered.

● Execution/CPU time, which is the speed that queries can be executed.
● Spillage (amount of external memory used), which matters a lot more for large 

databases where space becomes an issue.



Technique 1: Early Aggregation
● Early aggregation feeds into the input of the external merge sort, reducing the 

amount of work the sort has to do.
● Uses a data structure, such as a B-tree, to create and maintain a sorted index 

of rows.
● Similar to a hash table, duplicate values can be detected and absorbed on 

insertion into this index.
● In the case where the output cannot fit in memory (O > M), scans will evict 

items from the B-tree into temporary external memory.



Technique 2: Wide Merge
● Wide merge takes effect during the merge step of the external merge sort.
● It means the fan-in (input) on the last merge in the sort is not specified, which 

eliminates memory used for intermediate merge steps.
● Instead of using a separate page for each buffer for each input, it uses one 

single buffer, spanning all available memory, to store inputs to the merge.
● Only applies to the final merge step, sometimes traditional merges are needed 

for intermediate steps.
● Reduces the amount of temporary memory needed by the sort by eliminating 

waste.



Authors’ Hypothesis

● Traditional Sorting is not competitive with hashing because it cannot use early 
aggregation like hashing can, so it doesn’t work well when M > O.

● The new approach is competitive with hashing by using early aggregation and 
wide merging.

● The new sorting approach is superior to hashing if interesting orderings, 
produced by sorting but not hashing, matter for making future operations 
faster.



Early Aggregation Performance

● Figures show a comparison of spillage (amount of external temporary memory 
used) at different input sizes 



Wide Merge Performance

● Figure shows a comparison of spillage



Benefits of the new sorting approach

● Now sorting is just as efficient as hashing.
● It has the additional benefit of producing interesting orderings for the sort 

order.
● Only one algorithm is needed, which eliminates the engine having to predict 

which algorithm is more efficient before execution.
● Significantly reduces code size, which also reduces engineering work, and 

chances that bugs are introduced.
● Improves modularity and portability overall — good software engineering as 

well as performance engineering!



Conclusion

● Important to recognize that simpler solutions provide benefits beyond 
performance engineering.

● How could parallelization be applied to improve performance?
● Paper is new, so unclear where it will be applied beyond Google.
● Will other places attempt to adopt this novel approach to making these 

operations faster?
● Are there any other systems where efficiency can be gained simply by 

reducing complexity?


