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Streaming Graph Processing

Goals: Serializability for updates/queries, 
achieve low latency and high throughput
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Example: Fraud Detection
• Bank maintains a transaction graph
• Transactions occur at a high rate (1k-10k/sec)

• Goal: quickly detect anomalies in evolving transaction 
graph
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Relaxing Serializability
• Could detect a cycle that never existed!
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Existing Work 
• Single Version Systems

• Maintain a single version of the graph
• Common approach in graph streaming (e.g., STINGER, 

cuSTINGER, and KickStarter) 
• Need to separate queries from updates for serializability

• Multi-Version Systems
• Support multiple graph snapshots (e.g., LLAMA, Kineograph, 

GraphOne, and some graph databases)
• Snapshots are not space-efficient and lead to high latency

• Our framework Aspen uses lightweight snapshots to 
enable low-latency concurrent queries and updates 
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Graphs Using Purely Functional Trees
• Purely functional trees can be updated efficiently 

(in logarithmic time/space) while retaining old copy of tree
• Aspen uses tree of vertices, where each vertex stores a 

tree of its incident edges
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Updates via Path Copying
• Easy to generate new versions via path copying
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Updates via Path Copying
• Easy to generate new versions via path copying
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• We can obtain immutability versions of the tree



Immutability Enables Concurrency
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Immutability Enables Concurrency
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Garbage collect all tree nodes whose 
reference count is decremented to 0



Disadvantages of representing 
graphs using trees
• Poor Cache Usage

• One tree node per vertex and edge
• One cache miss per edge access in the worst case

• Space Inefficiency
• Need to store children pointers and metadata on tree nodes
• Lose ability to perform integer compression

Requires close to 7TB of memory to store the 
symmetrized Hyperlink 2012 graph (225B edges)!
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Space Overhead of Graphs using Trees
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Space Overhead of Graphs using Trees
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C-tree
• Purely functional compressed tree data structure
• Chunking parameter = B. Fix a hash function h.
• Select elements as heads with probability 1/B using h.

Tree C-tree

Further improve space usage 
for integer C-trees by 

difference encoding chunks

• Supports parallel bulk insertions and deletions efficiently
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Space Usage of Graphs using C-trees
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Space Usage of Graphs using C-trees
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Aspen Framework
• Extension of Ligra with primitives for updating graphs
• Supports single-writer multi-reader concurrency
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Concurrent Queries and Updates
• 72-core hyper-threaded machine with 1TB RAM
• 1 hyper-thread updating graph while remaining hyper-

threads running parallel BFS

Less than 3% impact on 
queries in concurrent setting
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Parallel Batch Updates
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• Aspen processes the Hyperlink 2012 graph at over 100M 
edge updates per second

• About 1.4x faster than GraphOne (developed concurrently 
and independently) based on a rough comparison


