
Low-Latency Graph Streaming 
Using Compressed 

Purely-Functional Trees
Laxman Dhulipala, Guy Blelloch, and Julian Shun

1

PLDI 2019



G : graph

insert(e1)

insert(e2)

delete(e3)

insert(e4)

…

Update Stream

…

ClusteringCoefficient(v)

Connectivity(G)

Reachable(u—>v)?

…

Query Stream

Streaming Graph Processing

Goals: Serializability for updates/queries, 
achieve low latency and high throughput

2



Example: Fraud Detection
• Bank maintains a transaction graph
• Transactions occur at a high rate (1k-10k/sec)

• Goal: quickly detect anomalies in evolving transaction 
graph

3



Relaxing Serializability
• Could detect a cycle that never existed!

4

Observed graphEvolving graph



Existing Work 
• Single Version Systems

• Maintain a single version of the graph
• Common approach in graph streaming (e.g., STINGER, 

cuSTINGER, and KickStarter) 
• Need to separate queries from updates for serializability

• Multi-Version Systems
• Support multiple graph snapshots (e.g., LLAMA, Kineograph, 

GraphOne, and some graph databases)
• Snapshots are not space-efficient and lead to high latency

• Our framework Aspen uses lightweight snapshots to 
enable low-latency concurrent queries and updates 

5



Graphs Using Purely Functional Trees
• Purely functional trees can be updated efficiently 

(in logarithmic time/space) while retaining old copy of tree
• Aspen uses tree of vertices, where each vertex stores a 

tree of its incident edges

6



Updates via Path Copying
• Easy to generate new versions via path copying

7



Updates via Path Copying
• Easy to generate new versions via path copying

8



Updates via Path Copying
• Easy to generate new versions via path copying

9



Updates via Path Copying
• Easy to generate new versions via path copying

10

• We can obtain immutability versions of the tree



Immutability Enables Concurrency
11



Immutability Enables Concurrency
12



Immutability Enables Concurrency
13



Immutability Enables Concurrency
14



Immutability Enables Concurrency
15



Immutability Enables Concurrency
16



Immutability Enables Concurrency
17



Immutability Enables Concurrency
18

Garbage collect all tree nodes whose 
reference count is decremented to 0



Disadvantages of representing 
graphs using trees
• Poor Cache Usage

• One tree node per vertex and edge
• One cache miss per edge access in the worst case

• Space Inefficiency
• Need to store children pointers and metadata on tree nodes
• Lose ability to perform integer compression

Requires close to 7TB of memory to store the 
symmetrized Hyperlink 2012 graph (225B edges)!

19



Space Overhead of Graphs using Trees
20



Space Overhead of Graphs using Trees
21



C-tree
• Purely functional compressed tree data structure
• Chunking parameter = B. Fix a hash function h.
• Select elements as heads with probability 1/B using h.

Tree C-tree

Further improve space usage 
for integer C-trees by 

difference encoding chunks

• Supports parallel bulk insertions and deletions efficiently

22



Space Usage of Graphs using C-trees
23



Space Usage of Graphs using C-trees
24



Aspen Framework
• Extension of Ligra with primitives for updating graphs
• Supports single-writer multi-reader concurrency

25



Concurrent Queries and Updates
• 72-core hyper-threaded machine with 1TB RAM
• 1 hyper-thread updating graph while remaining hyper-

threads running parallel BFS

Less than 3% impact on 
queries in concurrent setting

26



Parallel Batch Updates
27

• Aspen processes the Hyperlink 2012 graph at over 100M 
edge updates per second

• About 1.4x faster than GraphOne (developed concurrently 
and independently) based on a rough comparison


