
LightNE: A Lightweight 
Graph Processing System for 
Network Embedding

Jiezhong Qiu, Laxman Dhulipala, Jie Tang, Richard Peng, Chi Wang

Steven Raphael



What Is Network Embedding?

● Take a graph and turn every node into a low-dimensional vector.
● Embedding should approximately preserve graph structure.

Original Graph                                        Network Embedding in 2D space        



Benefits of Network Embedding

Certain tasks can be completed with regression or ML models trained on the 
embedding.

● Link prediction: determining 
whether two nodes are 
connected.

● Node Classification: 
determining the label of a 
node.



Goals of the Paper

The paper develops and implements a lightweight, scalable, accurate system for 
network embedding.

● Lightweight: process graphs with up to 100 billion edges using under $100 
worth of hardware costs.

● Scalable: process a graph with a billion edges in 1.5 hours.
● Accurate: achieve higher accuracy than current state-of-the-art systems using 

similar time and budget.



Results Summary

Competing systems: NetSMF, GraphVite, PyTorch-BigGraph (PBG), ProNE+.

● The authors created ProNE+ by creating an optimized implementation of an 
existing system, ProNE.

LightNE achieves higher accuracy than NetSMF, GraphVite, and PBG while 
processing the graphs at least 8x faster.

LightNE can get slightly better accuracy and speed than ProNE+, and can get even 
better performance with more processing time.



Background

● DeepWalk
● Matrix Factorization
● DeepWalk Matrix Representation (NetMF)



DeepWalk Algorithm for Network Embedding

● Sample a bunch of random walks.
● Skip-Gram algorithm: trains a model to predict the neighboring vertices 

(context windows) in a random walk given a center vertex.
● “Hidden layer” of model converts vertices to low-dimensional embeddings.

○ Extract embeddings from hidden layer of fully trained model.
● Training time optimization: Negative sampling.

○ Only consider a few randomly selected words during the update step, instead of the loss w.r.t. 
all words.



Skip-Gram Visualization



Matrix Factorization

● Many network embedding algorithms can be replicated by factoring a chosen 
matrix.

● A VxV matrix can be approximately factored into a Vxd and dxV matrix.
● Entries in the matrix are dot products of vector embeddings and context 

embeddings.
● Paper uses singular value decomposition (SVD) for factoring.



Matrix Factorization Example

The example constructs a 2-dimensional embedding.



DeepWalk Matrix Representation (NetMF)

● Goal: Create a matrix that represents the trained model.
● Given that a certain vertex vn is in the context window of center vertex v in a 

random walk, we can explicitly find the probability that v=vi for each vi.
○ The reverse of the Skip-Gram model in some sense.

● Let A be the adjacency matrix, and let D be the diagonal matrix with the 
degree of each vertex on the diagonal.

● (D-1A)r is the transition matrix for moving r steps.



DeepWalk Matrix Representation (NetMF)

● Take average of all transition matrices (D-1A)r in the context window. 
● Multiply by D-1 to account for prior probability.
● Multiply by constant and take truncated logarithm (max of log(n) and 0).

● Computing the transition matrices is expensive!

vol(G): number of 
edges

b: number of 
negative samples



Design and Implementation

● High-Level Optimizations
● Spectral Propagation
● System Construction



System Construction Visualized



High-Level Optimizations

● NetSMF: Approximates transition matrices by sampling random walks.
○ Θ(E) samples are sufficient for a good approximation.
○ Resulting matrices are sparse, so sparse matrix construction can be used.

● Edge downsampling (novel contribution): Exclude edges in random walks from 
the matrices with edge-weighted probability.
○ Reduces costs of creating sparsified matrix.



Spectral Propagation

● After factorization, adjust the resulting matrix to get a better embedding.
● Takes step from ProNE: Multiply resulting matrix by a polynomial of the 

normalized Laplacian matrix I - D-1A.
○ It appears that this results in better accuracy.



System Construction

● Uses Graph-based Benchmark Suite (GBBS).
○ First network embedding implementation that uses GBBS!

● Graph compression: neighbors of a vertex stored in differential-encoded 
blocks.

● Choosing first edge in random walk sampling: Choose every edge a random 
number of times.
○ Avoids decompression and binary search.
○ Choosing later edges in random walk is efficient with small differential-encoded blocks.



System Construction

● Matrix construction: count edges with sparse parallel hashing.
● Matrix factorization: Randomized SVD.

○ New algorithm based on Intel Math Kernel Library.



System Construction Visualized



Evaluation

Ran on server with two Intel Xeon E5-2699 v4 CPUs.

Comparison algorithms designed for big graphs: PyTorch-BigGraph (PBG), 
GraphVite, and NetSMF.

● Unclear whether ProNE is designed for big graphs

Evaluation tasks: 

● Link prediction: determining whether two nodes are connected.
● Node classification: determining the label of a node.

It’s unclear what algorithms are used on the embeddings to complete the tasks.



Evaluation Datasets



Results

LightNE vs. PBG on Livejournal dataset:

LightNE achieves better accuracy on all metrics.



Results

LightNE vs GraphVite:  



Results

LightNE vs GraphVite:  

LightNE again achieves better accuracy on all metrics.



Results

LightNE vs. NetSMF and ProNE+:

This part uses two 
versions of LightNE: 
LightNE-Small is 
faster than LightNE-
Large but has poorer 
accuracy.



Results Summary

LightNE gets a large speedup and accuracy gain over NetSMF, GraphVite, PBG.

LightNE-Small is a slight improvement over ProNE+ in speed and accuracy.

LightNE-Large gets better accuracy than ProNE+ but slower speed.



LightNE Parameters

It’s possible to improve speed by taking fewer edge samples (LightNE-Small vs. 
LightNE-Large).

There is a tradeoff between speed and evaluation scores



Ablation Studies

How much do the optimizations help performance?

● By removing downsampling, the authors determined that downsampling 
increased the maximum number of samples by 60%.

● By comparing to NetSMF, sparse parallel hashing increased the maximum 
number of samples by 56%.



Testing on Large Graphs

● ClueWeb-Sym: 74 billion edges
● Hyperlink2014-Sym: 64 billion edges
● Matrix sparsifier only requires O(n log n) space (n is number of vertices)
● Not enough memory for spectral propagation
● Training time under 2 hours



Any questions?


