
Accelerating Training and 
Inference of Graph Neural 
Networks with Fast Sampling and 
Pipelining

Tim Kaler, Nickolas Stathas, Anne Ouyang, Alexandros-Stavros Iliopoulos, 
Tao B. Schardl, Charles E. Leiserson, Jie Chen

Presentation by 
Helen Yang



3x
Speedup over standard 

PyTorch-Geometric 
implementation with a single 

GPU

8x
Speedup over standard 

PyTorch-Geometric 
implementation on multiple 

GPUs

Through performance engineering, 
they achieve:



Accelerating Training and 
Inference of Graph Neural 
Networks with Fast Sampling and 
Pipelining



Graphs and Neural Networks

A graph G=(V,E) contain nodes V 
connected by edges in the set E.

Neural networks are a network of 
artificial neurons that map some 
given input to an output prediction.
● Usually composed of many 

layers with functions and 
nonlinearities between.

● Embedding (hidden) layers map 
input from high to low 
dimensionality.

● Ex: CNNs, RNNs, GNNs!!

1
4

2

3 5
Input

Hidden

Output



Accelerating Training and 
Inference of Graph Neural 
Networks with Fast Sampling and 
Pipelining



Neural Network Training and Inference

● Training is the process of teaching a neural 
network how to perform a task.
○ Ex: Classify an animal based on an image.

● Neural networks need to be trained with at 
least thousands of examples.
○ Ex: ChatGPT is trained on 300 billion 

words!
● Inference is the process of inputting data into 

a model to get a prediction

Input

Hidden

Output



Accelerating Training and 
Inference of Graph Neural 
Networks with Fast Sampling and 
Pipelining



What are graph neural networks 
(GNNs)?

Neural networks, but with graph inputs!



Why Care About GNNs??
● Recent developments have increased GNN capabilities.
● Three main categories of GNN tasks:

○ Graph-level tasks (e.g. predicting smell of molecule)
○ Node-level tasks (e.g. predicting allegiance)
○ Edge-level tasks (e.g. predicting relationships)

● Applications include:
○ antibacterial discovery
○ physics simulations
○ fake news detection
○ traffic prediction
○ recommendation systems



Lots of 
challenges 
though…

● How to represent the 
relationships in a 
graph in a 
space-efficient manner 
and map them to 
embedding space?

● Graphs can be REALLY 
big nowadays
○ 111M nodes, 1.6B 

edges



GNN Architecture – Input

Vertex (or node) attribute vectors
e.g., node identity, number of neighbors

Global attribute vectors
e.g., number of nodes, longest path

Edge attribute vectors
e.g., edge identity, edge weight



GNN Architecture - One Layer

● A single layer of a simple GNN.
● Given an input graph, each component (V,E,U) gets updated by some 

update function to produce a new graph. 
● Each function subscript indicates a separate function for a different graph 

attribute at the n-th layer of a GNN model.



GNN Architecture – Classification

● Let’s say we want to make some binary classification on the nodes of 
the graph!

● For each node embedding, apply a linear classifier, c.
● Can do the same if we want to make a prediction on edges or the 

whole graph.



GNN Architecture – Overview

● Given an input graph, we can apply several layers of update functions to 
get our transformed graph

● Once we have the transformed graph, we can apply some classification 
function to nodes, edges, or global attributes to get our final prediction.

● Note, this is a simplified overview! There are more complex techniques we 
could use such as pooling and aggregation.



Existing GNN Frameworks
● PyTorch Geometric (PyG): a library 

built upon PyTorch to easily write and 
train GNNs
○ Comes with mini-batch loaders
○ multi-GPU support

● Deep Graph Library (DGL): 
memory-efficient message passing 
primitives for training GNNs



Accelerating Training and 
Inference of Graph Neural 
Networks with Fast Sampling and 
Pipelining



Sampling Graphs and Batching
● Common practice in standard NNs: update network with gradients 

calculated from a subset of the training data – we call this subset a 
mini-batch.
○ More efficient due to memory constraints

● Selecting a subset (sampling) a graph is more complicated and 
is an open research question.
○ Important because many graphs are too large to fit in 

memory.
● Idea: neighborhoods!

○ Randomly sample some nodes → node-set
○ add neighboring nodes of distance k adjacent to 

the node-set, including their edges



Start at a 
sampled node 
and expand 
outwards until all 
neighbors are 
reached



Batching continued…
● In this paper, batch preparation entails: 

○ expanding the sampled neighborhood for a mini-batch of 
nodes

○ slicing out the feature vectors of all involved nodes
○ transfer subgraph and feature vectors to GPU

Standard 
impl. of 
GNN 
training 
with node 
features x 
and labels 
y



Accelerating Training and 
Inference of Graph Neural 
Networks with Fast Sampling and 
Pipelining



What is pipelining?

● Technique for implementing instruction-level parallelism 
within a single processor. 
○ Key technique to building fast processors!

● Successive steps of an instruction sequence are executed in 
turn by modules that are able operate concurrently.

● Allows another instruction to begin before the previous one 
is finished.



Accelerating Training and 
Inference of Graph Neural 
Networks with Fast Sampling 
and Pipelining



Table of contents

01

02

03

Performance Benchmarking

Evaluation

SALIENT



Performance Bottlenecks
What makes GNN training and inference slow

01



Benchmarking

26%46%

On products dataset, with standard 3-layer GraphSAGE 
architecture implemented in PyG, running on a 20-core Intel 
Xeon Gold 6248 CPU and a single NVIDIA Volta V100 GPU

28%

Batch 
Preparation Data Transfer GPU Training



Performance Analysis

● Batch preparation and data transfer take substantially 
longer than core training operations (loss, gradient, etc)

● Batch preparation time is dominated by the neighborhood 
sampling time, about 6x the time taken by slicing.



SALIENT
a system for fast data-parallel GNN training

02



Key Features of SALIENT

1

2

3

4

Optimized neighborhood sampling

CPU-to-GPU data transfer optimizations

Efficient parallel batch preparation

Seamless compatibility with PyTorch



Fast Neighborhood Sampling

● Given an input graph G, a set of 
nodes V = {v1, . . . , vk} which define 
a mini-batch, and a fanout d. 

● For each node vi ∈ V, sample d of 
its neighbors → sampled 
neighborhood.

● Sampled neighborhoods organized 
into a bipartite graph.

● Multi-hop neighborhoods form a 
message-flow graph (MFG).

● Most impactful optimizations involved 
changing around data structures.

● Data structures optimized:
○ Global-to-local node ID mapping between the 

input graph and sampled MFG
○ Set DS to support neighbor sampling 

● C++ STL hash map and hash set → flat 
swiss-table
○ 2x speedup

● Array instead of a hash table for the set: 17% 
improvement
○ Cache locality!

Base Implementation Optimizations



● SALIENT uses shared-memory multi-threading to 
parallelize batch prep

● Key advantages over PyTorch multiprocessing:
1. Lower synchronization overhead
2. Zero-copy communication with main training 

process
● The 2nd key advantage allows us to perform slicing at the 

same time the main process is blocked on training.
○ worker thread writes sliced tensors directly into pinned 

memory accessible by the main process

Shared-memory Parallel Batch Prep



Data Transfer Optimizations and Pipelining

● Redundant assertions during data transfer in the PyG library. 
● Adding an option to skip assertions → achieve 99% of peak data 

transfer throughput.
○ Significant improvement over the previous 75% throughput.

● Increase GPU utilization by overlapping data transfers with GPU 
training
○ Separate GPU streams for computation and data transfer
○ Synchronize streams to ensure a training iteration begins 

after the necessary data is transferred



Helpful Visualization From Paper

Standard 
PyTorch 
workflow

SALIENT 
implementation

The “Bi” blocks refer to 
operations with the 
i-th minibatch



Results of Optimizations



Evaluation
Experiments on SALIENT!

03



Specs & Models & Datasets
Experiments conducted on a cluster of compute nodes.

● Each compute node equipped with two 20-core Intel Xeon Gold 6248 
CPUs, 384GB DRAM, and two NVIDIA V100 GPUs (32GB RAM). 

● Benchmarking is based on PyTorch 1.8.1 and PyG 1.7.0
● Models: GraphSAGE, GAT, GIN, and GraphSAGE-RI

Three standard datasets used in evaluation:



Single GPU Improvement over PyG

● Owes to less time spent blocked on sampling and data transfer.
● Pipelined design results in per-epoch runtime being nearly equal 

to GPU compute time for training

3-3.4x 
speedup!!



Good Multi-GPU Scaling 

● Larger datasets see better parallel speedup since they amortize 
the latency of starting an epoch (time to prepare the first sets of 
mini-batches) over a greater amount of work per GPU

4.45-8.05× speedup!!



Performance Comparison Summary

On the largest data set, ogbnpapers100M, SALIENT’s 2.0s 
per-epoch training time is orders of magnitude faster than that 
of other systems such as DeepGalois and DistDGL.



Final thoughts



Summary and Future Work
● Identified major bottlenecks in GNN training and inference

○ Batch preparation and data transfer
● Proposed three complementary improvements

○ Optimized neighborhood sampling, shared-memory parallel 
sampling and slicing, and pipelined data transfers

● SALIENT achieves near-perfect overlap of batch preparation, 
transfer, and training computations.

● Can easily be integrated into GNN without affecting training.
● One avenue of future work is to apply these optimizations in a 

distributed environment to even larger graphs.



Thank you!


