
Deterministic Parallel Random-Number
Generation for Task-Parallel* Platforms 
(2012)
Charles E. Leiserson, Tao B. Schardl, Jim Sukha

Presented by Maximo Machado

*Paper refers to Task-Parallel as Dynamic Threading which is no longer in popular use



Why do we want determinism in programs?

● Debuggability
○ Determinism makes it easy to replicate situations in 

which the bug occurs
○ Allows experiments to be performed to determine what 

mismatches the expected result
● What does determinism mean in practice?

○ Typically, that the program’s execution is equivalent in 
behavior to the serial execution of a program



Why use a Task-Parallel Platform like Cilk?

● Parallelism is a desired feature which introduces 
non-determinism

● Task-Parallel Platforms are able to control and manage this 
non-determinism through their schedulers

● Contrasts with Static/POSIX Threads which are common 
but require the programmer to explicitly manage scheduling 
and load balancing



Mitigating RNG Non-determinism

● RNG is made deterministic through a seed which is its initial 
state 0

● RNG on each request to generate a new number enters a 
new state, i.e. state 0 goes to state 1

● However, parallelism complicates things, suddenly 
execution ordering can impact the ordering of RNG 
requests, thereby making a simple seed approach 
ineffective



Global RNG - Potential Solution #1

● Share a single RNG between all threads through a lock
● Lots of contention on lock and so is not very performant
● The state the RNG is in when a thread issues a request is 

dependent on the execution order of all threads



Worker-local RNG - Potential Solution #2

● No lock needed since each worker has their own RNG
○ This solves the contention issue

● However, it cannot guarantee same RNG call goes to the same 
worker every time the program is run because of the 
non-deterministic scheduler

● Problem of these two solutions is that the RNG seed is based 
on the previous state, which is dependent on execution order

● How to create a solution based on some globally fixed ID?



Outline 1. Pedigrees 
● The Solution

2. Dot-Mix 
● Pedigree Based DPRNG*

3. Results

4. Conclusion
*Deterministic Parallel Random Number Generator



What are Pedigrees and How Can They Help?

● Uniquely identifies function on 
2 key factors
○ What function spawned it? 

(Its parent)
○ How many functions did 

its parent spawn before it? 
(Its rank)

● This is scheduler independent



Spawn Tree of Recursive Parallel Fibonacci

Legend
Dotted Arrow = Spawn
Solid Arrow = Call

Oval = Rank before sync
Hexagon = Rank after sync

fib(4)

fib(3) fib(2)

0 4

0 1 1 3

0

fib(2) fib(1)0 2 1 1
0
0

fib(1) fib(0)1 10 0
0
0
0

0
0

fib(1) fib(0)0 0 2 2
1

0
0
0

0
0

0

10 0



DOT-Mix

● Pedigrees are variable length and the random numbers 
must fit into a fixed sized machine word

● We can’t directly use pedigrees to generate random 
numbers

● Use compression function that takes the pedigree and 
takes a dot product with random numbers to generate a 
word sized number



RC6 Block Cipher - The Mix in DOT-Mix

● The compression is not enough, highly correlated pedigrees 
will result in highly correlated numbers generated

● We need a mixing function, the one in DOT-Mix is as such:
● First, swap top and bottom half of bits of compressed value
● Then, apply function f to compressed value z for r rounds

○ Higher rounds creates greater overhead but better RNG



Results of RNG Quality

● Comparable to 
Mersenne Twister in 
Dieharder RNG 
benchmark

● Optimal choice of r = 4



Results of Performance Overhead

● Adding Pedigrees to Cilk 
less than 1% overhead on 
real world applications

● DOT-Mix within 
reasonable range of 
overhead for debugging 
programs



Conclusion + Future Work

● Extending 4-independent hash functions to Pedigrees
○ While unlikely, if a collision occurs, it is much more likely 

for DOT-Mix to produce many subsequent collisions

● Applications where pedigree memoization with incremental 
hash functions are performant


