
Multidimensional Included
and Excluded Sums

Authors: Helen Xu, Sean Fraser, Charles E. Leiserson

Presenter: Derrick Liang

Weak Included-Sums Problem

Problem: Given a 1D array A of size N,
compute range sum queries of size k

Problem: Given a 1D array A of size N,
compute range sum queries of size k

Solution: precompute prefix sums

Problem: Given a 2D array A of size N,
compute box sum queries of size k x k

Problem: Given a 2D array A of size N,
compute box sum queries of size k x k

Solution:
- Apply the inclusion-exclusion

principle
- We can extend this to d-dimensions

to answer queries in O(2d) time
- "Summed-area table" (SAT) algorithm

Strong Included-Sums Problem

Problem: Given a 1D array A of size N,
compute range max queries of size k.

Why does the previous approach fail?

Problem: Given a 1D array A of size N, compute range
max queries of size k

Why does the previous approach fail?
- Previously, we were solving the weak included-sums

problem, meaning the operator has an inverse.
- A solution to the strong included-sums problem

cannot rely on inverses

Motivation

Motivation for Problem: Strong Included-Sums

- Solving the strong problem allows us to avoid subtraction and

catastrophic cancellation or round-off errors

- Real-time image processing/filtering can require rectangular

sum queries

- Note: the included-sums problem specifically asks us to

compute the range query of size k over all positions in the

array

Problem: Given a 1D array A of size N, compute range max queries of size k

Solution:
- Let's try to stay close to the idea we had before.
- The specific issue is that we do not have an inverse (cannot subtract

prefixes)
- Insight 1: In order to use a prefix sums, the starting point of a query

must be anchored at the starting point of the prefix computation
- (e can't be floating between two endpoints)

- Insight 2: We haven't used the extra constraint of fixed query size.

Problem: Given a 1D array A of size N, compute range max queries of size k

Solution:
- "Bidirectional box-sum" (BDBS) algorithm

- Use "sum" as a stand-in for a general aggregating operation
- Create N/k chunks of size k subarrays, and precompute prefix and

suffix maxima over each.
- Any range of size k now can be

decomposed into ranges which
have an endpoint at the starting
point of some subarray's
prefix/suffix computation
- (We are guaranteed to be

anchored now)

Problem: Given a 1D array A of size N, compute range max queries of size k

Problem: Given a 1D array A of size N, compute range max queries of size k

Problem: Given a 1D array A of size N, compute range max queries of size k

Problem: Given a 1D array A of size N, compute range max queries of size k

Problem: Given a 1D array A of size N, compute range max queries of size k

Problem: Given a 1D array A of size N, compute range max queries of size k

Problem: Given a 1D array A of size N, compute range max queries of size k

Problem: Given a 1D array A of size N, compute range max queries of size k

Problem: Given a 1D array A of size N, compute range max queries of size k

Problem: Given a 2D array A of size N,
compute box max queries of size k x k

Problem: Given a 2D array A of size N, compute box max queries of size k x k

Solution:
- Apply the BDBS algorithm along one dimension to create A

1
,

where A
1
[x

1
,x

2
] = max(A[x

1
:x

1
+k, x

2
])

- Then, apply the BDBS algorithm along the second dimension to yield A
2
,

where A
2
[x

1
,x

2
] = max(A

1
[x

1
, x

2
:x

2
+k]) = max(A[x

1
:x

1
+k, x

2
:x

2
+k]),

as desired.
- This can be generalized to an d-dimensional array by induction.

Excluded-Sums Problem

Problem: Given a 1D array A of
size N, compute excluded range
max queries of size k

Problem: Given a 1D array A of size N, compute excluded
range max queries of size k

Solution: Prefix and suffix sums

Problem: Given a 2D array A of
size N, compute excluded box max
queries of size k x k

Problem: Given a 2D array A of size N,
compute excluded box max queries of size
k x k

Existing Solution:
- In general, use all 2d combinations

of prefix/suffix sums with respect
to each dimension, yielding O(2d)
time per query

- "Corners" algorithm (Demaine et al.)

Problem: Given a 2D array A of size N,
compute excluded box max queries of
size k x k

Existing Solution:
- General combinatorial construction

exists for higher dimensions

Improved Excluded Sums

Can we do better than exponential time in
number of dimensions?

Motivation for Strong Excluded-Sums

- Solving the strong problem again helps avoid round-off errors

- N-particle simulations
- The fast multipole method (FMM) is often used in this context for

approximating long-ranged forces (excluding interactions with neighbors that

are too close) and demands a similar computation

- Note: solving the strong included-sums problem (efficiently)

means we also solved the weak included-sums problem.

- By taking the complement, we also solve the weak excluded-sums

problems (this is the BDBS-complement algorithm)

Key Insight - Partitioning the Space

- In 1D, there are two disjoint spaces to combine

- A'[x] = A
p
[x] + A

s
[x+k]

 prefix suffix k

Key Insight - Partitioning the Space

- In 2D, there are four disjoint spaces

Key Insight - Partitioning the Space

- In 3D, there are eight disjoint spaces. In general there are

2d for a d-dimensional space.

- We can see successively less tightly bound regions.

- Observation: we can either have d-1, d-2, …, 0 of the

coordinates lie within the bounds of the box's coordinates in

that dimension

Consider the spaces bounded by the green planes

Key Insight - Partitioning the Space

- Can we somehow compute the contribution of the two

spaces, then recurse onto a subproblem with d-1

dimensions?
- Loosely, we're taking out the top and bottom "buns" and then recursing

on the "patty"

- Box-Complement algorithm

Consider the spaces bounded by the green planes

Box-Complement

- Definition: the i-complement of a box is all elements that is

"out of range" in some dimension j ≤ i and "in range" for all
dimensions > i.
- The first condition ensures that it doesn't intersect with the excluded box

- Notice: the (i+1)-complement contains the i-complement

Understanding The Recursive Step

- Recall the 1D solution the problem.
- A'[x] = A

p
[x] + A

s
[x+k]

- For the 2D problem, let's first try to compute the 1-complement
- These are all elements within the vertical bound, and outside the horizontal

bound of a given excluded box

- First, compute the prefixes and suffixes along one dimension.

- A
p
[x

1
, x

2
] = A[:x

1
,x

2
]

- A
s
[x

1
, x

2
] = A[x

1
:,x

2
]

Here, we consider an arbitrary point p at

the top left corner of the red box

Understanding The Recursive Step

- Next, we use the included sum algorithm (BDBS) to aggregate

the horizontal strips of prefixes and suffixes

- A[x
1
, x

2
] = A

p
[x

1
,x

2
:x

2
+k]+A

s
[x

1
+k,x

2
:x

2
+k]

- At this point, all of the green area in the figure below is stored into the

top left corner of the red box

Understanding The Recursive Step

- Now, we need to add the contribution of the 2-complement that

wasn't added by the 1-complement.
- This is the remaining green area in the diagram

- We can construct A', where A'[x
2
] = A

p
[n

1
,x

2
]

- This reduces one dimension down (projecting it all onto the last coordinate

of dimension 1 which is n
1
)

- We can now pass this onto the 1-dimensional solver!

General Algorithm

- For d steps, compute the contribution of the new elements of

the current i-complement
- Apply prefix and suffix sums on the ith dimension

- Apply the BDBS algorithm d-i times and collect the contributions of the two

disjoint spaces

- Use the nth tensor on the ith dimension as the new tensor

- Time: O(dN), Space: O(N)
- Intuitively, the space and work exponentially shrinks on each level, of the

recursion, so the runtime is dominated

by the root

- The implementation reuses space to

achieve linear complexity

Pseudocode

Comparison of Current Algorithms

Note: these are the complexities to compute the query answers at all possible starting
positions in the input array.

Experimental Results

- We can see the approaches in this

paper show linearity in time with

dimension number, while previous

approaches are exponential.

Experimental Results

- The box-complement beats other

existing algorithms as the

computation of the operator

increases.
- Box-complement performs ~12 operations

per element while the best corners

algorithm performs ~22.

Paper Review

- The problem was really interesting and had lots of layers.

- Diagrams in the paper were helpful, but if it showed more

examples to work up to the full generalized algorithm it

would've helped make it easier to understand.

- Ideas for future directions:
- Proving these are optimal

- Loosening the restrictions on box size to a range of desired sizes

- Creating parallel implementations

References

https://epubs.siam.org/doi/epdf/10.1137/1.9781611976830.17

http://persson.berkeley.edu/pub/demaine05blocks.pdf

https://epubs.siam.org/doi/epdf/10.1137/1.9781611976830.17
http://persson.berkeley.edu/pub/demaine05blocks.pdf

