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Weak Included-Sums Problem



Problem: Given a 1D array A of size N, 
compute range sum queries of size k



Problem: Given a 1D array A of size N, 
compute range sum queries of size k

Solution: precompute prefix sums



Problem: Given a 2D array A of size N, 
compute box sum queries of size k x k



Problem: Given a 2D array A of size N, 
compute box sum queries of size k x k

Solution:
- Apply the inclusion-exclusion 

principle
- We can extend this to d-dimensions  

to answer queries in O(2d) time
- "Summed-area table" (SAT) algorithm



Strong Included-Sums Problem



Problem: Given a 1D array A of size N, 
compute range max queries of size k.

Why does the previous approach fail?



Problem: Given a 1D array A of size N, compute range 
max queries of size k

Why does the previous approach fail? 
- Previously, we were solving the weak included-sums 

problem, meaning the operator has an inverse. 
- A solution to the strong included-sums problem 

cannot rely on inverses



Motivation



Motivation for Problem: Strong Included-Sums

- Solving the strong problem allows us to avoid subtraction and 

catastrophic cancellation or round-off errors

- Real-time image processing/filtering can require rectangular 

sum queries

- Note: the included-sums problem specifically asks us to 

compute the range query of size k over all positions in the 

array



Problem: Given a 1D array A of size N, compute range max queries of size k

Solution: 
- Let's try to stay close to the idea we had before.
- The specific issue is that we do not have an inverse (cannot subtract 

prefixes)
- Insight 1: In order to use a prefix sums, the starting point of a query 

must be anchored at the starting point of the prefix computation
- (e can't be floating between two endpoints)

- Insight 2: We haven't used the extra constraint of fixed query size.



Problem: Given a 1D array A of size N, compute range max queries of size k

Solution: 
- "Bidirectional box-sum" (BDBS) algorithm

- Use "sum" as a stand-in for a general aggregating operation
- Create N/k chunks of size k subarrays, and precompute prefix and 

suffix maxima over each.
- Any range of size k now can be 

decomposed into ranges which
have an endpoint at the starting
point of some subarray's
prefix/suffix computation
- (We are guaranteed to be 

anchored now)



Problem: Given a 1D array A of size N, compute range max queries of size k
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Problem: Given a 1D array A of size N, compute range max queries of size k



Problem: Given a 1D array A of size N, compute range max queries of size k



Problem: Given a 2D array A of size N, 
compute box max queries of size k x k



Problem: Given a 2D array A of size N, compute box max queries of size k x k

Solution: 
- Apply the BDBS algorithm along one dimension to create A
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as desired.
- This can be generalized to an d-dimensional array by induction.



Excluded-Sums Problem



Problem: Given a 1D array A of 
size N, compute excluded range 
max queries of size k



Problem: Given a 1D array A of size N, compute excluded 
range max queries of size k

Solution: Prefix and suffix sums



Problem: Given a 2D array A of 
size N, compute excluded box max 
queries of size k x k



Problem: Given a 2D array A of size N, 
compute excluded box max queries of size 
k x k

Existing Solution:
- In general, use all 2d combinations 

of prefix/suffix sums with respect 
to each dimension, yielding O(2d) 
time per query

- "Corners" algorithm (Demaine et al.)



Problem: Given a 2D array A of size N, 
compute excluded box max queries of 
size k x k

Existing Solution:
- General combinatorial construction 

exists for higher dimensions



Improved Excluded Sums



Can we do better than exponential time in 
number of dimensions? 



Motivation for Strong Excluded-Sums

- Solving the strong problem again helps avoid round-off errors

- N-particle simulations
- The fast multipole method (FMM) is often used in this context for 

approximating long-ranged forces (excluding interactions with neighbors that 

are too close) and demands a similar computation

- Note: solving the strong included-sums problem (efficiently) 

means we also solved the weak included-sums problem. 

- By taking the complement, we also solve the weak excluded-sums 

problems (this is the BDBS-complement algorithm)



Key Insight - Partitioning the Space

- In 1D, there are two disjoint spaces to combine

- A'[x] = A
p
[x] + A

s
[x+k]

 prefix                           suffix         k



Key Insight - Partitioning the Space

- In 2D, there are four disjoint spaces



Key Insight - Partitioning the Space

- In 3D, there are eight disjoint spaces. In general there are 

2d for a d-dimensional space.

- We can see successively less tightly bound regions. 

- Observation: we can either have d-1, d-2, …, 0 of the 

coordinates lie within the bounds of the box's coordinates in 

that dimension

Consider the spaces bounded by the green planes



Key Insight - Partitioning the Space

- Can we somehow compute the contribution of the two 

spaces, then recurse onto a subproblem with d-1 

dimensions?
- Loosely, we're taking out the top and bottom "buns" and then recursing 

on the "patty"

- Box-Complement algorithm

Consider the spaces bounded by the green planes



Box-Complement

- Definition: the i-complement of a box is all elements that is 

"out of range" in some dimension j ≤ i and "in range" for all 
dimensions > i.
- The first condition ensures that it doesn't intersect with the excluded box

- Notice: the (i+1)-complement contains the i-complement



Understanding The Recursive Step

- Recall the 1D solution the problem.
- A'[x] = A

p
[x] + A

s
[x+k]

- For the 2D problem, let's first try to compute the 1-complement
- These are all elements within the vertical bound, and outside the horizontal 

bound of a given excluded box

- First, compute the prefixes and suffixes along one dimension. 
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Here, we consider an arbitrary point p at 

the top left corner of the red box



Understanding The Recursive Step

- Next, we use the included sum algorithm (BDBS) to aggregate 

the horizontal strips of prefixes and suffixes
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- At this point, all of the green area in the figure below is stored into the 

top left corner of the red box



Understanding The Recursive Step

- Now, we need to add the contribution of the 2-complement that 

wasn't added by the 1-complement.
- This is the remaining green area in the diagram

- We can construct A', where A'[x
2
] = A

p
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- This reduces one dimension down (projecting it all onto the last coordinate 

of dimension 1 which is n
1
)

- We can now pass this onto the 1-dimensional solver!



General Algorithm

- For d steps, compute the contribution of the new elements of 

the current i-complement
- Apply prefix and suffix sums on the ith dimension

- Apply the BDBS algorithm d-i times and collect the contributions of the two 

disjoint spaces

- Use the nth tensor on the ith dimension as the new tensor

- Time: O(dN), Space: O(N)
- Intuitively, the space and work exponentially shrinks on each level, of the 

recursion, so the runtime is dominated

by the root

- The implementation reuses space to

achieve linear complexity



Pseudocode



Comparison of Current Algorithms

Note: these are the complexities to compute the query answers at all possible starting 
positions in the input array.



Experimental Results

- We can see the approaches in this 

paper show linearity in time with 

dimension number, while previous 

approaches are exponential.



Experimental Results

- The box-complement beats other 

existing algorithms as the 

computation of the operator 

increases.
- Box-complement performs ~12 operations 

per element while the best corners 

algorithm performs ~22.



Paper Review

- The problem was really interesting and had lots of layers.

- Diagrams in the paper were helpful, but if it showed more 

examples to work up to the full generalized algorithm it 

would've helped make it easier to understand.

- Ideas for future directions:
- Proving these are optimal

- Loosening the restrictions on box size to a range of desired sizes

- Creating parallel implementations
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