
Revisiting Matrix Multiplication

6.506 Algorithm Engineering

May 11, 2023

1

Tao B. Schardl 
MIT CSAIL

Recap: 6.106 lecture 1 matrix-multiplication case study

2

cij =
n−1

∑
k=0

aikbkj

a00 a01

a10 a11

a0(n-1)

a(n-1)(n-1)a(n-1)0

…

…

…

…

…

b00 b01

b10 b11

b0(n-1)

b(n-1)(n-1)b(n-1)0

…

…
…

…

…

c00 c01

c10 c11

c0(n-1)

c(n-1)(n-1)c(n-1)0

…

…

…

…

…

As in 6.106, we will use n = 4096.

= *

C A B

Final verdict from 6.106 lecture 1

3

Version Implementation Running
time (s)

Relative
speedup

Absolute
speedup GFLOPS Fraction of

peak
1 Python 21,041.67 1  1 0.006 0%

2 Java 2,387.32 8.8  9 0.058 0.007%

3 C 1,155.77 2.1  18 0.118 0.014%

4 + interchange loops 177.68 6.5  118 0.774 0.093%

5 + optimization flags 54.63 3.3  385 2.516 0.301%

6 Parallel loops 3.04 18  6,921 45.211 5.408%

7 Parallel divide-and-conquer 1.30 1.4  16,197 105.722 12.646%

8 + compiler vectorization 0.70 1.9  30,272 196.341 23.486%

9 + AVX intrinsics 0.39 1.8  53,292 352.408 41.677%

10 Intel MKL 0.41 1  51,497 335.217 40.098%

Today’s
focus

Problem: Performance-measurement methodology

4

Version Implementation Running
time (s)

Relative
speedup

Absolute
speedup GFLOPS Fraction of

peak
1 Python 21,041.67 1  1 0.006 0%

2 Java 2,387.32 8.8  9 0.058 0.007%

3 C 1,155.77 2.1  18 0.118 0.014%

4 + interchange loops 177.68 6.5  118 0.774 0.093%

5 + optimization flags 54.63 3.3  385 2.516 0.301%

6 Parallel loops 3.04 18  6,921 45.211 5.408%

7 Parallel divide-and-conquer 1.30 1.4  16,197 105.722 12.646%

8 + compiler vectorization 0.70 1.9  30,272 196.341 23.486%

9 + AVX intrinsics 0.39 1.8  53,292 352.408 41.677%

10 Intel MKL 0.41 1  51,497 335.217 40.098%

Each running time is the
minimum of 5 runs of a

binary.

Each binary runs matrix-
multiplication once.

An overlooked performance gap

5

What happens if the binary runs matrix-multiplication many times?

The first matrix-multiply
call is slower than
subsequent calls.

Version 9 (AVX intrinsics)
takes ~0.39 seconds.

Intel MKL takes
~0.30 seconds!

The case study’s conclusions are fine, but MKL is faster than we thought!

New hardware: AWS c5.metal machine specs

6

Feature Specification
Microarchitecture Cascade Lake (Intel Xeon Platinum 8275CL)
Clock frequency 3.0 GHz
Processor chips 2
Processor cores 24 per processor chip

Floating-point unit 32 double-precision operations, including
fused-multiply-add, per core per cycle

Cache-line size 64 B
L1 data cache 32 KB private, 8-way set associative

L2 cache 1 MB private, 16-way set associative
L3 cache 35.75 MB shared, 11-way set associative

DRAM 189 GB

Theoretical peak
performance:

3.0 GHz * 2 * 24 * 32
= 4608 GFLOPS

Alternative oneMKL threading options

7

Intel oneMKL offers
different threading
options that give
different performance on
new hardware.

Version 9 (AVX intrinsics)
takes ~0.12 seconds.

oneMKL with TBB takes
~0.11 seconds.

oneMKL with OpenMP
takes ~0.06 seconds!

New performance results on a c5.metal instance

8

Implementation Running
time (s)

Relative
speedup

Absolute
speedup GFLOPS Fraction of

peak
Parallel divide-and-conquer 1.091 1  1 125.998 2.734%

+ AVX2 compiler vectorization 0.878 1.2  1.242 156.511 3.397%
+ AVX512 compiler vectorization 0.824 1.1  1.324 166.817 3.620%

+ hand vectorization 0.052 15.9  21.087 2656.893 57.658%
oneMKL with OpenMP 0.061 0.9  18.002 2268.232 49.224%

Today, we will look at the algorithms and engineering
behind these vectorized matrix-multiplication codes.

Outline

• Compiler vectorization

• Vectorization by hand

• Vectorization by hand, another approach

• Performance-engineering the hand-vectorized version

• Intel oneMKL

9

Outline

• Compiler vectorization

• Vectorization by hand

• Vectorization by hand, another approach

• Performance-engineering the hand-vectorized version

• Intel oneMKL

10

Recap: Parallel divide-and-conquer matrix multiplication (Version 7)

11

for (size_t i = 0; i < S; ++i)
 for (size_t k = 0; k < S; ++k)
 for (size_t j = 0; j < S; ++j)

mmbase() snippet

C A B

C

i
j

k
j

i
k

void mmdac(double *restrict C, double *restrict A, 
 double *restrict B, size_t size) {
 if (size == S) {
 mmbase(C, A, B);
 } else {
 size_t s00 = 0;
 size_t s01 = size/2;
 size_t s10 = (size/2)*n;
 size_t s11 = (size/2)*(n+1);
 cilk_scope {
 cilk_spawn mmdac(C+s00, A+s00, B+s00, size/2);
 cilk_spawn mmdac(C+s01, A+s00, B+s01, size/2);
 cilk_spawn mmdac(C+s10, A+s10, B+s00, size/2);
 mmdac(C+s11, A+s10, B+s01, size/2);
 } 
 cilk_scope {
 cilk_spawn mmdac(C+s00, A+s01, B+s10, size/2);
 cilk_spawn mmdac(C+s01, A+s01, B+s11, size/2);
 cilk_spawn mmdac(C+s10, A+s11, B+s10, size/2);
 mmdac(C+s11, A+s11, B+s11, size/2);

Matrix-multiply routine
C

For an S S submatrix of C, the base case
repeatedly multiplies a row of B by a value

in A and adds the result to a row of C.

×

AVX2 and AVX512 vectors

12

• AVX2 supports 256-bit ymm
vector registers (4 doubles).

• AVX512 supports 512-bit
zmm vector registers (8
doubles).

• The machine supports 32
ymm and zmm registers.

• All ymm and zmm registers
are aliased.YMM

ZMM

We will use AVX2 and AVX512 vector instructions to speed up this code.

AVX2 and AVX512 vector instructions

13

• Vector load and store (aligned and
unaligned).

• Element-wise arithmetic, including
fused-multiply-add (FMA).

• Broadcast: Fill all entries in a
vector register with the same value.

• Shuffle: Permute the entries in a
vector register. (More on this
operation later.)

c0 c1 c2 c3 a0 a1 a2 a3 b0 b1 b2 b3

c0 c1 c2 c3 c0 c1 c2 c3

Memory Load

Store

+= *

c0 c0 c0 c0 c0

c0 c1 c2 c3 c1 c3 c2 c0

Today, we can focus on just a subset of the available vector instructions.

Disclaimer: I will typically illustrate operations using 4-
element vectors, but 8-element vectors are used in practice.

Compiler vectorization

14

for (size_t i = 0; i < S; ++i)
 for (size_t k = 0; k < S; ++k)
 for (size_t j = 0; j < S; ++j)

Matrix-multiply base case

C A B

a0 a0 a0 a0c0 c1 c2 c3
Load

b0 b1 b2 b3
Load

+= *
Store

For each k:

1. av = Broadcast(A[i,k])

2. For j [0, S) by vector width:

a. bv = Vector-load(B[k,j])

b. cv = Vector-load(C[i,j])

c. cv += av * bv

d. Vector-store(cv, C[i,j])

∈

Broadcast

a0 a0 a0 a0c4 c5 c6 c7 b4 b5 b6 b7+= *
LoadLoadStore

i
j

k
j

i
k

C

Compiler vectorization

15

%78 = load double, ptr %59, align 8
%79 = insertelement <4 x double> poison, double %78, i64 0
%80 = shufflevector <4 x double> %79, 
 <4 x double> poison, <4 x i32> zeroinitializer
%88 = getelementptr inbounds double, ptr %2, i64 %60
%89 = load <4 x double>, ptr %88, align 8
%96 = load <4 x double>, ptr %16, align 8
%100 = tail call <4 x double> @llvm.fmuladd.v4f64(<4 x double> %80, 

Snippet of compiler-vectorized base case
LLVM IR

Load and broadcast
a value from A

Vector-load from B

Vector-load from C

FMA

Vector-store into C

$ clang -o mm mm.c -fopencilk -O3 -march=native

Compiler vectorization

16

%78 = load double, ptr %59, align 8
%79 = insertelement <4 x double> poison, double %78, i64 0
%80 = shufflevector <4 x double> %79, 
 <4 x double> poison, <4 x i32> zeroinitializer
%88 = getelementptr inbounds double, ptr %2, i64 %60
%89 = load <4 x double>, ptr %88, align 8
%96 = load <4 x double>, ptr %16, align 8
%100 = tail call <4 x double> @llvm.fmuladd.v4f64(<4 x double> %80, 

Snippet of compiler-vectorized base case
LLVM IR

$ clang -o mm mm.c -fopencilk -O3 -march=native

The compiler is using 32-bit
vector registers, but AVX512
offers 64-bit vector registers!

Why isn’t the compiler using AVX512?

CPU frequency scaling with AVX instructions

17https://en.wikichip.org/wiki/intel/frequency_behavior

It is often hard to get performance out of
AVX512 instructions, due to downclocking.

• Modern Intel CPUs reduce their clock
frequency when they execute AVX512
instructions.

• This downclocking slows down non-AVX
instructions running on the core as well.

• Modern compilers are reluctant to use
AVX512, because it’s often not worth it.

• This issue has improved on newer CPUs.

Compiler vectorization with AVX512

18

We can make the compiler to use AVX512 with different compiler flags. How
much performance do we get?

Implementation Running
time (s)

Relative
speedup

Absolute
speedup GFLOPS Fraction of

peak
Parallel divide-and-conquer 1.091 1  1 125.998 2.734%

+ AVX2 compiler vectorization 0.878 1.2  1.242 156.511 3.397%

+ AVX512 compiler vectorization 0.824 1.1  1.324 166.817 3.620%

We get a small boost from AVX512, but
there’s a still a lot of performance available.

Outline

• Compiler vectorization

• Vectorization by hand

• Vectorization by hand, another approach

• Performance-engineering the hand-vectorized version

• Intel oneMKL

19

How many loads and stores?

20

C A B

a0 a0 a0 a0c0 c1 c2 c3
Load

b0 b1 b2 b3
Load

+= *
Store Broadcast

i
j

k
j

i
k

Computing a row of 16
elements in C requires:
16 * (1 + 4 + 4 + 4)
= 208 loads and stores.

The inner loop performs 4 loads from C,
4 loads from B, and 4 stores into C.

for (size_t i = 0; i < S; ++i)
 for (size_t k = 0; k < S; ++k)
 for (size_t j = 0; j < S; ++j)

Matrix-multiply base case
C

Suppose the base-case size S is 16
and uses 4-element vectors.

Alternative: Compute outer products

21

bk0 bk1 bk2 bk3

a0k c00 += a0k bk0 c01 += a0k bk1 c02 += a0k bk2 c03 += a0k bk3

a1k c10 += a1k bk0 c11 += a1k bk1 c12 += a1k bk2 c13 += a1k bk3

a2k c20 += a2k bk0 c21 += a2k bk1 c22 += a2k bk2 c23 += a2k bk3

a3k c30 += a3k bk0 c31 += a3k bk1 c32 += a3k bk2 c33 += a3k bk3

C A B
i

j
k

j
i

k

Alternatively, the base case can compute an outer product between a
subcolumn of A and a subrow of B to update a submatrix in C.

Vectorizing outer products

22

C A B

c0 c1 c2 c3

c4 c5 c6 c7

a0 a0 a0 a0

a1 a1 a1 a1

b0 b1 b2 b3
Load

+= *
Broadcast

b0 b1 b2 b3+= *
Broadcast

c8 c9 c1 c11 a2 a2 a2 a2 b0 b1 b2 b3+= *
Broadcast

c1 c1 c1 c1 a3 a3 a3 a3 b0 b1 b2 b3+= *
Broadcast

i
j

k
j

i
k

For each k:

1. bv = Vector-load(B[k,j])

2. For x in #C-vectors:

a. av = Broadcast(A[i+x,k])

b. cv[x] += av * bv

Analysis of outer-product base case

23

C A B
i

j
k

j
i

k

If S = 16, then computing a
elements 4 4 block of
elements requires:
4 + 4 + 16 * (1 + 4)
= 88 loads and stores.

×

Computing a 4 4 block requires 4 loads
from C, 4 stores into C, and, for each k, 4

loads from A and 1 load from B.

×
Less than half the
loads and stores!

Suppose instead that the base case computes 16 elements in a 4 4 block in C
using 4-element vectors.

×

Advantages over compiler vectorization

24

• Vector registers storing
the C submatrix act like
an additional, faster
cache.

• Processing a C
submatrix results in
better data locality.

C A B

c0 c1 c2 c3

c4 c5 c6 c7

a0 a0 a0 a0

a1 a1 a1 a1

b0 b1 b2 b3
Load

+= *
Broadcast

b0 b1 b2 b3+= *
Broadcast

i
j

k
j

i
k

This base case performs fewer loads and stores than the compiler-vectorized
base case.

Implementation using the GCC vector extension

25

// Vector type
typedef double vdouble __attribute__((vector_size(sizeof(double) * 8)));

// Zero-initialize the C-submatrix vectors.
vdouble cv[8];
for (int ivec = 0; ivec < 8; ++ivec)
 cv[ivec] = (vdouble){0.0};

// Loop over k. 
for (int k = 0; k < BC; ++k) {
 // Load a vector from B.
 vdouble bv = *(const vdouble *)(&B[B_index(k, j, BC)]);
 for (int ivec = 0; ivec < 8; ++ivec)
 // Load a value from A, broadcast that value, and perform FMA.
 cv[ivec] += bv * A[A_index(i + ivec, k, BC)];
}

// Add the C-submatrix vectors to the C.

Snippet of broadcast-based
matrix-multiply base case
(simplified)

Type definition for a
vector of 8 doubles.

Vector-load from B.

Broadcast from A and
perform FMA.

Store into C.

C

Budgeting the AVX512 vector registers

26

Each zmm register stores 8 doubles.

To compute an 8 8 C submatrix requires
10 registers:

• 8 registers to store the C submatrix;

• 1 register for a value from A; and

• 1 register for a vector from B.

×

C A

B

i
j

k
j

i
k

There are 32 registers available, so compute a
larger C submatrix!

• An 8 24 C submatrix requires 24 registers
for C, 3 registers for B, and 1 register for A.

×

Instruction comparison in practice

27

Implementation Instructions L1 loads
AVX512 compiler vectorization 1.40E+10 1.00E+10

Broadcast outer product 1.68E+10 5.3E+09

Broadcast outer-product base case
performs approximately half the L1

loads in practice!

We can use performance counters on the machine to compare the operations
of these different implementations in practice.

Outline

• Compiler vectorization

• Vectorization by hand

• Vectorization by hand, another approach

• Performance-engineering the hand-vectorized version

• Intel oneMKL

28

Can we do even better?

29

C A B

c0 c1 c2 c3

c4 c5 c6 c7

a0 a0 a0 a0

a1 a1 a1 a1

b0 b1 b2 b3
Load

+= *
Broadcast

b0 b1 b2 b3+= *
Broadcast

c8 c9 c1 c11 a2 a2 a2 a2 b0 b1 b2 b3+= *
Broadcast

c1 c1 c1 c1 a3 a3 a3 a3 b0 b1 b2 b3+= *
Broadcast

i
j

k
j

i
k

Can we vectorize
the loads from A?

Currently, the code
performs many scalar
loads from A for each
vector-load from B.

Scalar and vector loads
have the same cost, but
vector loads handle
more data.

Using a vector from A

30

The element-wise
vector product

produces a diagonal
of the C submatrix!

bk0 bk1 bk2 bk3

a0k c00

a1k c11

a2k c22

a3k c33

How do we get the other
values in the C submatrix?

C A B

a0 a1 a2 a3 b0 b1 b2 b3
Load

+= *
Load

i
j

k
j

i
k

Supposing we can efficiently vector-load a subcolumn of A,
there are other concerns.

Answer: Vector shuffle
instructions

Vector shuffle instructions

31

a0 a1 a2 a3

AVX2 and AVX512 offer vector-shuffle instructions for shuffling elements in
arbitrary ways.

a1 a0 a3 a2

• Some shuffles operate on 1 vector
register, while others operate on 2.

• Some shuffles have specialized
instructions, while others use a
register to describe the shuffle.

• Some shuffles are more expensive
than others.

c0 c1 c2 c3 c4 c5 c6 c7

c0 c1 c4 c5

What shuffles do we need?

32

bk0 bk1 bk2 bk3

a0k c00

a1k c11

a2k c22

a3k c33

bk0 bk1 bk2 bk3

a0k c01

a1k c10

a2k c23

a3k c32

bk0 bk1 bk2 bk3

a0k c02

a1k c13

a2k c20

a3k c31

bk0 bk1 bk2 bk3

a0k c03

a1k c12

a2k c21

a3k c30

a0 a1 a2 a3 bk bk bk bk

a1 a0 a3 a2 bk bk bk bk

a b

a’ b’

α

β

γ

δ

α β γ δ

Outer products with shuffles

33

For each k:

1. bv = Vector-load(B[k,j])

2. av = Vector-load(A[i,k])

3. cv[0] += av * bv

4. av’ = Shuffle(av, 1,0,3,2)

5. cv[1] += av’ * bv

6. bv’ = Shuffle(bv, 2,3,0,1)

7. cv[2] += av * bv’

8. cv[3] += av’ * bv’

C A B

a0 a1 a2 a3

a1 a0 a3 a2

b0 b1 b2 b3
Load

+= *
Load

b0 b1 b2 b3+= *
Shuffle

a0 a1 a2 a3 b2 b3 b0 b1+= *

a1 a0 a3 a2 b2 b3 b0 b1+= *

i
j

k
j

i
k

Shuffle

α

β

γ

δ

Comparison against broadcast base case

34

A

a0 a1 a2 a3

a1 a0 a3 a2

Load

Shuffle

a0 a1 a2 a3

a1 a0 a3 a2

i
k • The shuffle base case

performs fewer loads
than the broadcast base
case.

• Shuffles operate
entirely on registers.

• More shuffles are
needed to write the
results to C, but that
happens rarely.

A

a0 a0 a0 a0

a1 a1 a1 a1

Broadcast

Broadcast

a2 a2 a2 a2
Broadcast

a3 a3 a3 a3
Broadcast

i
k

Broadcast
base case
accesses

to A.

Shuffle
base case
accesses

to A.

Generalizing to 8-element vectors

35

a0 a1 a2 a3 bk bk bk bk

a1 a0 a3 a2 bk bk bk bk

a4 a5 a6 a7

a5 a4 a7 a6

bk bk bk bk

bk bk bk bk

bk bk bk bk bk bk bk bk

bk bk bk bk bk bk bk bk

We can generalize this idea to use 4 permutations of 8-element vectors to
compute an 8x8 C submatrix, such as by using the following 4 permutations:

Permutations of A Permutations of B
Loaded Loaded

Implementating the shuffle base case using the GCC vector extension

36

// Vector type
typedef double vdouble __attribute__((vector_size(sizeof(double) * 8)));
// Zero-initialize the C-submatrix vectors…
// Loop over k. 
for (int k = 0; k < BC; ++k) {
 // Load vectors from A and B.
 vdouble bv = *(const vdouble *)(&B[B_index(k, j, BC)]);
 vdouble av = *(const vdouble *)(&A[A_index(i, k, BC)]);
 // av_p = A1 A0 A3 A2 A5 A4 A7 A6
 vF a_p = __builtin_shufflevector(av, av, 1, 0, 3, 2, 5, 4, 7, 6);
 // bv_p0 = B2 B3 B0 B1 B6 B7 B4 B5
 vF bv_p0 = __builtin_shufflevector(bv, bv, 2, 3, 0, 1, 6, 7, 4, 5);
 cv[0] += av * bv;
 cv[1] += av_p * bv;
 // bv_p1 = B4 B5 B6 B7 B0 B1 B2 B3
 vF bv_p1 = __builtin_shufflevector(bv, bv, 4, 5, 6, 7, 0, 1, 2, 3);

cv[2] += av * bv_p0;
cv[3] += av_p * bv_p0;

 // bv_p2 = B6 B7 B4 B5 B2 B3 B0 B1
 vF bv_p2 = __builtin_shufflevector(bv_p0, bv_p0, 4, 5, 6, 7, 0, 1, 2, 3);

cv[4] += av * bv_p1;
cv[5] += av_p * bv_p1;

Snippet of shuffle-based matrix-
multiply base case (simplified)

C

Type definition for a
vector of 8 doubles.

Vector-loads from A
and B.

Shuffle A.

Shuffle B.

Shuffle B again.

Shuffle B yet again.

Budgeting the AVX512 vector registers for the shuffle base case

37

Each of the 32 zmm registers stores 8 doubles.

To compute an 8 8 C submatrix requires 14 registers:
• 8 registers to store the C submatrix;
• 2 registers for A and its permutation; and
• 4 registers for B and its permutations.

Can we compute an 8 24 C submatrix?
• An 8 24 C submatrix seems to require 34 registers: 24 for C, 6 for A and its

permutations, and 4 for B and its permutations.
• If we order the operations carefully, we can reuse registers for different

permutations and require just 2 registers for B.

×

×
×

Comparison in practice

38

Outer-product base case Instructions L1 loads Running time (s)

Broadcast 1.68E+10 5.30E+09 0.052   

Shuffle 1.64E+10 2.53E+09 0.063   

The shuffle base case performs fewer instructions
and half the L1 loads, but runs slower!

How do the broadcast and shuffle outer-product base cases compare in
practice?

Why wasn’t it faster?

39

Problem: We’re running out of functional units on the core to perform
arithmetic and shuffles.

Recall complex
pipelining:
A processor core in a
modern multicore chip
has many functional units
on different paths through
the execution pipeline.

Not enough ports

40

On Intel CPUs, different
ports support different
functional units.

• Ports 0/1 and 5 handle
FMAs.

• Ports 2 and 3 load
from memory.

• Port 5 handles all
shuffle instructions.

Source: https://en.wikichip.org/wiki/intel/
microarchitectures/cascade_lake

Cascade Lake execution engine schematic

Hope remains!

41

“Note that on 3rd Gen…and 4th Gen
Intel Xeon Scalable processors…,
port 1 also can execute some shuffle
instructions…”

The shuffle outer-product base
case might be faster on the next
generation of CPU hardware.

Outline

• Compiler vectorization

• Vectorization by hand

• Vectorization by hand, another approach

• Performance-engineering the hand-vectorized version

• Intel oneMKL

42

Order of memory accesses

43

C A B
i

j
k

j
i

k

For each k, the base case accesses a
subcolumn of elements of A.

For each k, the base case accesses a
subrow of elements of B.

Ideally, the base case should access all memory in order.

Ideal data layouts for A and B

44

A B
k

j
i

k

a0
a1
a2
a3

b0 b0 b0 b0

a0
a1
a2
a3

a0
a1
a2
a3

a0 a1 a2 a3 a0 a1 a2 a3 a0 a1 a2 a3

b0 b0 b0 b0
b1 b1 b1 b1
b2 b2 b2 b2

b1 b1 b1 b1 b2 b2 b2 b2

…

…

…

…

Can we get the ideal data
layouts for A and B?

Local buffers

45

A B
k

j
i

k

a0
a1
a2
a3

a0
a1
a2
a3

a0
a1
a2
a3

b0 b0 b0 b0
b1 b1 b1 b1
b2 b2 b2 b2

…

… A_local_buffer
a0 a1 a2 a3
a0 a1 a2 a3

a0 a1 a2 a3

B_local_buffer
b0 b0 b0 b0
b1 b1 b1 b1

b2 b2 b2 b2

……

Copy subrows of B.Copy and transpose
subcolumns of A.

Idea: At the start of the base case, move the relevant entries in A and B into
small, local buffers.

Indexing buffers for A and B

46

int64_t A_index(int64_t i, int64_t k, int64_t BC) {
 return ((i / 8) * BC * 8) + (k * 8) + (i % 8);

Index calculation for A buffer
C

int64_t B_index(int64_t j, int64_t k, int64_t BC) {
 return ((j / 24) * BC * 24) + (k * 24) + (j % 24);

Index calculation for B buffer
C

The compiler can optimize
the divisions by constants in

these index calculations.

In the loop over k in the base
case, these addresses simply

increase.

To index matrix elements in these local buffers, interleave the bits of the
matrix index.

What do these buffers cost?

47

A B
k

j
i

k

a0
a1
a2
a3

a0
a1
a2
a3

a0
a1
a2
a3

b0 b0 b0 b0
b1 b1 b1 b1
b2 b2 b2 b2

…

…

A_local_buffer
a0 a1 a2 a3
a0 a1 a2 a3

a0 a1 a2 a3

B_local_buffer
b0 b0 b0 b0
b1 b1 b1 b1

b2 b2 b2 b2

……

How much work does this filling a local buffer add to the base case of size S?

• In theory, (S2), which the (S3) work of the base case dominates.

• In practice, after optimizing the (S3) base-case work, this cost is noticeable.

Θ Θ

Θ

Copy subrows of B.Copy and transpose
subcolumns of A.

void mmdac(double *restrict C, double *restrict A, 
 double *restrict B, size_t size) {
 if (size == S) {
 mmbase(C, A, B);
 } else {
 size_t s00 = 0;
 size_t s01 = size/2;
 size_t s10 = (size/2)*n;
 size_t s11 = (size/2)*(n+1);
 cilk_scope {
 cilk_spawn mmdac(C+s00, A+s00, B+s00, size/2);
 cilk_spawn mmdac(C+s01, A+s00, B+s01, size/2);
 cilk_spawn mmdac(C+s10, A+s10, B+s00, size/2);
 mmdac(C+s11, A+s10, B+s01, size/2);
 } 
 cilk_scope {
 cilk_spawn mmdac(C+s00, A+s01, B+s10, size/2);
 cilk_spawn mmdac(C+s01, A+s01, B+s11, size/2);

Matrix-multiply routine

Avoiding unnecessary work

48

C A B
i

j
k

j
i

k

C00 C01

C10 C11

A00 A01

A10 A11

B00 B01

B10 B11

If we use the same
input submatrix
between calls to

mmbase(), we don’t
need to refill the

corresponding buffer.

Reorder the calls to
the base case to avoid

refilling buffers!

C

How can we reduce the extra work of filling local buffers?

A new subdivision strategy

49

C A B
i

j
k

j
i

k

A00 A01

B00

A02 B10

B20

C A B
i

j
k

j
i

k

B00A00
A10
A20
A30

C00
C10
C20
C30

C A B
i

j
k

j
i

k

A00 B0
0

B0
1

B0
2

B0
3

B0
4

B0
5

C0
0

C0
1

C0
2

C0
3

C0
4

C0
5

1. Divide the k dimension into large pieces.

2. Divide the i dimension into medium pieces.

3. Divide the j dimension
into small pieces.

Why does this subdivision strategy work?

50

C A B
i

j
k

j
i

k

A00 A01

B00

A02 B10

B20

C A B
i

j
k

j
i

k

B00A00
A10
A20
A30

C00
C10
C20
C30

C A B
i

j
k

j
i

k

A00 B0
0

B0
1

B0
2

B0
3

B0
4

B0
5

C0
0

C0
1

C0
2

C0
3

C0
4

C0
5

1. Divide the k dimension into large pieces.

2. Divide the i dimension into medium pieces.

3. Divide the j dimension
into small pieces.

It’s cheaper to
copy from B than

to copy and
transpose from A.

Base-cases fill local buffers with 1 copy and
transpose from A and many copies from B.

Larger k for the
base case means
fewer loads and
stores from C.

Outline

• Compiler vectorization

• Vectorization by hand

• Vectorization by hand, another approach

• Performance-engineering the hand-vectorized version

• Intel oneMKL

51

Performance results versus oneMKL

52

Implementation Running
time (s) GFLOPS Fraction of

peak
Cilk, hand-vectorization 0.052 2656.893 57.658%

oneMKL with OpenMP 0.061 2268.232 49.224%

Implementation Running
time (s) GFLOPS Fraction of

peak
Cilk, hand-vectorization 0.092 1494.807 32.439%

oneMKL with OpenMP 0.082 1670.604 36.254%

On 48 cores, this hand-vectorized implementation outperforms the latest
version of Intel oneMKL
with OpenMP threads.

But on 24 cores on 1 chip, the performance difference is reversed!

What’s causing this
performance difference?

Intel oneMKL

53

C A B
i

j
k

j
i

k

A00C0
0

C0
1

C0
2

C0
3

C0
4

C0
5

B0
0

B0
1

B0
2

B0
3

B0
4

B0
5 Base case for B:

384 24×

Intel oneMKL matrix subdivision on 1 thread

Base case for A:
4096 384×

Total base-case
size: ~12MB

Intel oneMKL uses the same broadcast outer-product base case and local
buffers, but it subdivides the problem differently.

In comparison,
L2 is 1MB.

Software prefetching

54

Intel oneMKL’s base case uses software prefetching to speed up memory
accesses.
• The base case mixes a few

software-prefetch operations
to load locations in A and B
local buffers to be accessed in
the future.

• During the last few iterations
before storing into C, the base
case software-prefetches
locations in C.

// Loop over k. 
for (int k = 0; k < BC; ++k) {
 // Prefetch from A.
 __builtin_prefetch(&A[A_index(i, k + 4, BC)]);

 // Load a vector from B.
 vdouble bv = *(const vdouble *)(&B[B_index(k, j, BC)]);
 for (int ivec = 0; ivec < 8; ++ivec)
 // Load a value from A, broadcast that value, 
 // and perform FMA.
 cv[ivec] += bv * A[A_index(i + ivec, k, BC)];

Snippet of broadcast-based matrix-multiply base case (simplified)

Load a value from A that will be
used in a future loop iteration.

C

My experience with software prefetching

55

Software prefetch instructions are tricky to use.

• Software prefetches increase instruction counts, memory traffic, and data in
residing in cache.

• Software prefetches can only improve performance if their use hides
memory latency more effectively than the hardware prefetchers.

Careful uses of software prefetch instructions can improve performance by a
few percent, but poor uses can hurt performance.

Takeaways

56

• One can use OpenCilk to implement parallel programs with state-of-the-art
performance that competes with professionally engineered high-
performance software.

• Many theoretically good algorithms can have the performance impact that
theory predicts, but many systems issues need to be handled first.

• Even when most of a program’s running time is spent in a small amount of
the code, the keys to optimizing that hot spot might lie elsewhere in the
code.

• Check your performance-testing methodology and your raw performance
data!

Questions?

57

C A B

c0 c1 c2 c3

c4 c5 c6 c7

a0 a0 a0 a0

a1 a1 a1 a1

b0 b1 b2 b3
Load

+= *
Broadcast

b0 b1 b2 b3+= *
Broadcast

c8 c9 c1 c11 a2 a2 a2 a2 b0 b1 b2 b3+= *
Broadcast

c1 c1 c1 c1 a3 a3 a3 a3 b0 b1 b2 b3+= *
Broadcast

i
j

k
j

i
k

58

