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Recap: 6.106 lecture 1 matrix-multiplication case study
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As in 6.106, we will use n = 4096.
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Final verdict from 6.106 lecture 1
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Version Implementation Running 
time (s)

Relative 
speedup

Absolute 
speedup GFLOPS Fraction of 

peak
1 Python 21,041.67 1  1 0.006 0%

2 Java 2,387.32 8.8  9 0.058 0.007%

3 C 1,155.77 2.1  18 0.118 0.014%

4 + interchange loops 177.68 6.5  118 0.774 0.093%

5 + optimization flags 54.63 3.3  385 2.516 0.301%

6 Parallel loops 3.04 18  6,921 45.211 5.408%

7 Parallel divide-and-conquer 1.30 1.4  16,197 105.722 12.646%

8 + compiler vectorization 0.70 1.9  30,272 196.341 23.486%

9 + AVX intrinsics 0.39 1.8  53,292 352.408 41.677%

10 Intel MKL 0.41 1  51,497 335.217 40.098%

Today’s 
focus



Problem: Performance-measurement methodology
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Version Implementation Running 
time (s)

Relative 
speedup

Absolute 
speedup GFLOPS Fraction of 

peak
1 Python 21,041.67 1  1 0.006 0%

2 Java 2,387.32 8.8  9 0.058 0.007%

3 C 1,155.77 2.1  18 0.118 0.014%

4 + interchange loops 177.68 6.5  118 0.774 0.093%

5 + optimization flags 54.63 3.3  385 2.516 0.301%

6 Parallel loops 3.04 18  6,921 45.211 5.408%

7 Parallel divide-and-conquer 1.30 1.4  16,197 105.722 12.646%

8 + compiler vectorization 0.70 1.9  30,272 196.341 23.486%

9 + AVX intrinsics 0.39 1.8  53,292 352.408 41.677%

10 Intel MKL 0.41 1  51,497 335.217 40.098%

Each running time is the 
minimum of 5 runs of a 

binary.

Each binary runs matrix-
multiplication once.



An overlooked performance gap
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What happens if the binary runs matrix-multiplication many times?

The first matrix-multiply 
call is slower than 
subsequent calls.

Version 9 (AVX intrinsics) 
takes ~0.39 seconds.

Intel MKL takes 
~0.30 seconds!

The case study’s conclusions are fine, but MKL is faster than we thought! 



New hardware: AWS c5.metal machine specs
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Feature Specification
Microarchitecture Cascade Lake (Intel Xeon Platinum 8275CL)
Clock frequency 3.0 GHz
Processor chips 2
Processor cores 24 per processor chip

Floating-point unit 32 double-precision operations, including 
fused-multiply-add, per core per cycle

Cache-line size 64 B
L1 data cache 32 KB private, 8-way set associative

L2 cache 1 MB private, 16-way set associative
L3 cache 35.75 MB shared, 11-way set associative

DRAM 189 GB

Theoretical peak 
performance:

3.0 GHz * 2 * 24 * 32
= 4608 GFLOPS



Alternative oneMKL threading options
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Intel oneMKL offers 
different threading 
options that give 
different performance on 
new hardware.

Version 9 (AVX intrinsics) 
takes ~0.12 seconds.

oneMKL with TBB takes 
~0.11 seconds.

oneMKL with OpenMP 
takes ~0.06 seconds!



New performance results on a c5.metal instance
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Implementation Running 
time (s)

Relative 
speedup

Absolute 
speedup GFLOPS Fraction of 

peak
Parallel divide-and-conquer 1.091 1  1 125.998 2.734%

+ AVX2 compiler vectorization 0.878 1.2  1.242 156.511 3.397%
+ AVX512 compiler vectorization 0.824 1.1  1.324 166.817 3.620%

+ hand vectorization 0.052 15.9  21.087 2656.893 57.658%
oneMKL with OpenMP 0.061 0.9  18.002 2268.232 49.224%

Today, we will look at the algorithms and engineering 
behind these vectorized matrix-multiplication codes.



Outline

• Compiler vectorization 

• Vectorization by hand 

• Vectorization by hand, another approach 

• Performance-engineering the hand-vectorized version 

• Intel oneMKL
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Recap: Parallel divide-and-conquer matrix multiplication (Version 7)

11

for (size_t i = 0; i < S; ++i)
  for (size_t k = 0; k < S; ++k)
    for (size_t j = 0; j < S; ++j)

mmbase() snippet

C A B

C

i
j

k
j

i
k

void mmdac(double *restrict C, double *restrict A, 
           double *restrict B, size_t size) {
  if (size == S) {
    mmbase(C, A, B);
  } else {
    size_t s00 = 0;
    size_t s01 = size/2;
    size_t s10 = (size/2)*n;
    size_t s11 = (size/2)*(n+1);
    cilk_scope {
      cilk_spawn mmdac(C+s00, A+s00, B+s00, size/2);
      cilk_spawn mmdac(C+s01, A+s00, B+s01, size/2);
      cilk_spawn mmdac(C+s10, A+s10, B+s00, size/2);
                 mmdac(C+s11, A+s10, B+s01, size/2);
    } 
    cilk_scope {
      cilk_spawn mmdac(C+s00, A+s01, B+s10, size/2);
      cilk_spawn mmdac(C+s01, A+s01, B+s11, size/2);
      cilk_spawn mmdac(C+s10, A+s11, B+s10, size/2);
                 mmdac(C+s11, A+s11, B+s11, size/2);

Matrix-multiply routine
C

For an S S submatrix of C, the base case 
repeatedly multiplies a row of B by a value 

in A and adds the result to a row of C.  

×



AVX2 and AVX512 vectors
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• AVX2 supports 256-bit ymm 
vector registers (4 doubles).

• AVX512 supports 512-bit 
zmm vector registers (8 
doubles).

• The machine supports 32 
ymm and zmm registers.

• All ymm and zmm registers 
are aliased.YMM

ZMM

We will use AVX2 and AVX512 vector instructions to speed up this code.



AVX2 and AVX512 vector instructions
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• Vector load and store (aligned and 
unaligned).

• Element-wise arithmetic, including 
fused-multiply-add (FMA).

• Broadcast: Fill all entries in a 
vector register with the same value.

• Shuffle: Permute the entries in a 
vector register.  (More on this 
operation later.)

c0 c1 c2 c3 a0 a1 a2 a3 b0 b1 b2 b3

c0 c1 c2 c3 c0 c1 c2 c3

Memory Load

Store

+= *

c0 c0 c0 c0 c0

c0 c1 c2 c3 c1 c3 c2 c0

Today, we can focus on just a subset of the available vector instructions.

Disclaimer: I will typically illustrate operations using 4-
element vectors, but 8-element vectors are used in practice. 



Compiler vectorization
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for (size_t i = 0; i < S; ++i)
  for (size_t k = 0; k < S; ++k)
    for (size_t j = 0; j < S; ++j)

Matrix-multiply base case

C A B

a0 a0 a0 a0c0 c1 c2 c3
Load

b0 b1 b2 b3
Load

+= *
Store

For each k:

1. av = Broadcast(A[i,k])

2. For j  [0, S) by vector width:

a. bv = Vector-load(B[k,j])

b. cv = Vector-load(C[i,j])

c. cv += av * bv

d. Vector-store(cv, C[i,j])

∈

Broadcast

a0 a0 a0 a0c4 c5 c6 c7 b4 b5 b6 b7+= *
LoadLoadStore

i
j

k
j

i
k

C



Compiler vectorization
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%78 = load double, ptr %59, align 8
%79 = insertelement <4 x double> poison, double %78, i64 0
%80 = shufflevector <4 x double> %79, 
    <4 x double> poison, <4 x i32> zeroinitializer
%88 = getelementptr inbounds double, ptr %2, i64 %60
%89 = load <4 x double>, ptr %88, align 8
%96 = load <4 x double>, ptr %16, align 8
%100 = tail call <4 x double> @llvm.fmuladd.v4f64(<4 x double> %80, 

Snippet of compiler-vectorized base case
LLVM IR

Load and broadcast 
a value from A

Vector-load from B

Vector-load from C

FMA

Vector-store into C

$ clang -o mm mm.c -fopencilk -O3 -march=native



Compiler vectorization
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%78 = load double, ptr %59, align 8
%79 = insertelement <4 x double> poison, double %78, i64 0
%80 = shufflevector <4 x double> %79, 
    <4 x double> poison, <4 x i32> zeroinitializer
%88 = getelementptr inbounds double, ptr %2, i64 %60
%89 = load <4 x double>, ptr %88, align 8
%96 = load <4 x double>, ptr %16, align 8
%100 = tail call <4 x double> @llvm.fmuladd.v4f64(<4 x double> %80, 

Snippet of compiler-vectorized base case
LLVM IR

$ clang -o mm mm.c -fopencilk -O3 -march=native

The compiler is using 32-bit 
vector registers, but AVX512 
offers 64-bit vector registers!

Why isn’t the compiler using AVX512?



CPU frequency scaling with AVX instructions
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It is often hard to get performance out of 
AVX512 instructions, due to downclocking.

• Modern Intel CPUs reduce their clock 
frequency when they execute AVX512 
instructions.

• This downclocking slows down non-AVX 
instructions running on the core as well.

• Modern compilers are reluctant to use 
AVX512, because it’s often not worth it.

• This issue has improved on newer CPUs.



Compiler vectorization with AVX512
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We can make the compiler to use AVX512 with different compiler flags.  How 
much performance do we get?

Implementation Running 
time (s)

Relative 
speedup

Absolute 
speedup GFLOPS Fraction of 

peak
Parallel divide-and-conquer 1.091 1  1 125.998 2.734%

+ AVX2 compiler vectorization 0.878 1.2  1.242 156.511 3.397%

+ AVX512 compiler vectorization 0.824 1.1  1.324 166.817 3.620%

We get a small boost from AVX512, but 
there’s a still a lot of performance available.



Outline

• Compiler vectorization 

• Vectorization by hand 

• Vectorization by hand, another approach 

• Performance-engineering the hand-vectorized version 

• Intel oneMKL
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How many loads and stores?
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C A B

a0 a0 a0 a0c0 c1 c2 c3
Load

b0 b1 b2 b3
Load

+= *
Store Broadcast

i
j

k
j

i
k

Computing a row of 16 
elements in C requires: 
16 * (1 + 4 + 4 + 4) 
= 208 loads and stores.

The inner loop performs 4 loads from C, 
4 loads from B, and 4 stores into C.

for (size_t i = 0; i < S; ++i)
  for (size_t k = 0; k < S; ++k)
    for (size_t j = 0; j < S; ++j)

Matrix-multiply base case
C

Suppose the base-case size S is 16 
and uses 4-element vectors.



Alternative: Compute outer products
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bk0 bk1 bk2 bk3

a0k c00 += a0k bk0 c01 += a0k bk1 c02 += a0k bk2 c03 += a0k bk3

a1k c10 += a1k bk0 c11 += a1k bk1 c12 += a1k bk2 c13 += a1k bk3

a2k c20 += a2k bk0 c21 += a2k bk1 c22 += a2k bk2 c23 += a2k bk3

a3k c30 += a3k bk0 c31 += a3k bk1 c32 += a3k bk2 c33 += a3k bk3

C A B
i

j
k

j
i

k

Alternatively, the base case can compute an outer product between a 
subcolumn of A and a subrow of B to update a submatrix in C.



Vectorizing outer products
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C A B

c0 c1 c2 c3

c4 c5 c6 c7

a0 a0 a0 a0

a1 a1 a1 a1

b0 b1 b2 b3
Load

+= *
Broadcast

b0 b1 b2 b3+= *
Broadcast

c8 c9 c1 c11 a2 a2 a2 a2 b0 b1 b2 b3+= *
Broadcast

c1 c1 c1 c1 a3 a3 a3 a3 b0 b1 b2 b3+= *
Broadcast

i
j

k
j

i
k

For each k:

1. bv = Vector-load(B[k,j])

2. For x in #C-vectors:

a. av = Broadcast(A[i+x,k])

b. cv[x] += av * bv



Analysis of outer-product base case
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C A B
i

j
k

j
i

k

If S = 16, then computing a 
elements 4 4 block of 
elements requires: 
4 + 4 + 16 * (1 + 4) 
= 88 loads and stores.

×

Computing a 4 4 block requires 4 loads 
from C, 4 stores into C, and, for each k, 4 

loads from A and 1 load from B.

×
Less than half the 
loads and stores!

Suppose instead that the base case computes 16 elements in a 4 4 block in C 
using 4-element vectors.

×



Advantages over compiler vectorization
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• Vector registers storing 
the C submatrix act like 
an additional, faster 
cache.

• Processing a C 
submatrix results in 
better data locality.

C A B

c0 c1 c2 c3

c4 c5 c6 c7

a0 a0 a0 a0

a1 a1 a1 a1

b0 b1 b2 b3
Load

+= *
Broadcast

b0 b1 b2 b3+= *
Broadcast

i
j

k
j

i
k

This base case performs fewer loads and stores than the compiler-vectorized 
base case.



Implementation using the GCC vector extension
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// Vector type
typedef double vdouble __attribute__((vector_size(sizeof(double) * 8)));

// Zero-initialize the C-submatrix vectors.
vdouble cv[8];
for (int ivec = 0; ivec < 8; ++ivec)
  cv[ivec] = (vdouble){0.0};

// Loop over k. 
for (int k = 0; k < BC; ++k) {
  // Load a vector from B.
  vdouble bv = *(const vdouble *)(&B[B_index(k, j, BC)]);
  for (int ivec = 0; ivec < 8; ++ivec)
    // Load a value from A, broadcast that value, and perform FMA.
    cv[ivec] += bv * A[A_index(i + ivec, k, BC)];
}

// Add the C-submatrix vectors to the C.

Snippet of broadcast-based 
matrix-multiply base case 
(simplified)

Type definition for a 
vector of 8 doubles.

Vector-load from B.

Broadcast from A and 
perform FMA.

Store into C.

C



Budgeting the AVX512 vector registers
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Each zmm register stores 8 doubles.

To compute an 8 8 C submatrix requires 
10 registers:

• 8 registers to store the C submatrix;

• 1 register for a value from A; and

• 1 register for a vector from B.

×

C A

B

i
j

k
j

i
k

There are 32 registers available, so compute a 
larger C submatrix!

• An 8 24 C submatrix requires 24 registers 
for C, 3 registers for B, and 1 register for A.

×



Instruction comparison in practice
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Implementation Instructions L1 loads
AVX512 compiler vectorization 1.40E+10 1.00E+10

Broadcast outer product 1.68E+10 5.3E+09

Broadcast outer-product base case 
performs approximately half the L1 

loads in practice!

We can use performance counters on the machine to compare the operations 
of these different implementations in practice.



Outline

• Compiler vectorization 

• Vectorization by hand 

• Vectorization by hand, another approach 

• Performance-engineering the hand-vectorized version 

• Intel oneMKL
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Can we do even better?
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C A B

c0 c1 c2 c3

c4 c5 c6 c7

a0 a0 a0 a0

a1 a1 a1 a1

b0 b1 b2 b3
Load

+= *
Broadcast

b0 b1 b2 b3+= *
Broadcast

c8 c9 c1 c11 a2 a2 a2 a2 b0 b1 b2 b3+= *
Broadcast

c1 c1 c1 c1 a3 a3 a3 a3 b0 b1 b2 b3+= *
Broadcast

i
j

k
j

i
k

Can we vectorize 
the loads from A?

Currently, the code 
performs many scalar 
loads from A for each 
vector-load from B.

Scalar and vector loads 
have the same cost, but 
vector loads handle 
more data.



Using a vector from A
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The element-wise 
vector product 

produces a diagonal 
of the C submatrix!

bk0 bk1 bk2 bk3

a0k c00

a1k c11

a2k c22

a3k c33

How do we get the other 
values in the C submatrix?

C A B

a0 a1 a2 a3 b0 b1 b2 b3
Load

+= *
Load

i
j

k
j

i
k

Supposing we can efficiently vector-load a subcolumn of A, 
there are other concerns.

Answer: Vector shuffle 
instructions



Vector shuffle instructions
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a0 a1 a2 a3

AVX2 and AVX512 offer vector-shuffle instructions for shuffling elements in 
arbitrary ways.

a1 a0 a3 a2

• Some shuffles operate on 1 vector 
register, while others operate on 2.

• Some shuffles have specialized 
instructions, while others use a 
register to describe the shuffle.

• Some shuffles are more expensive 
than others. 

c0 c1 c2 c3 c4 c5 c6 c7

c0 c1 c4 c5



What shuffles do we need?
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bk0 bk1 bk2 bk3

a0k c00

a1k c11

a2k c22

a3k c33

bk0 bk1 bk2 bk3

a0k c01

a1k c10

a2k c23

a3k c32

bk0 bk1 bk2 bk3

a0k c02

a1k c13

a2k c20

a3k c31

bk0 bk1 bk2 bk3

a0k c03

a1k c12

a2k c21

a3k c30

a0 a1 a2 a3 bk bk bk bk

a1 a0 a3 a2 bk bk bk bk

a b

a’ b’

α

β

γ

δ

α β γ δ



Outer products with shuffles
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For each k:

1. bv = Vector-load(B[k,j])

2. av = Vector-load(A[i,k])

3. cv[0] += av * bv

4. av’ = Shuffle(av, 1,0,3,2)

5. cv[1] += av’ * bv

6. bv’ = Shuffle(bv, 2,3,0,1)

7. cv[2] += av * bv’

8. cv[3] += av’ * bv’

C A B

a0 a1 a2 a3

a1 a0 a3 a2

b0 b1 b2 b3
Load

+= *
Load

b0 b1 b2 b3+= *
Shuffle

a0 a1 a2 a3 b2 b3 b0 b1+= *

a1 a0 a3 a2 b2 b3 b0 b1+= *

i
j

k
j

i
k

Shuffle

α

β

γ

δ



Comparison against broadcast base case
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A

a0 a1 a2 a3

a1 a0 a3 a2

Load

Shuffle

a0 a1 a2 a3

a1 a0 a3 a2

i
k • The shuffle base case 

performs fewer loads 
than the broadcast base 
case.

• Shuffles operate 
entirely on registers.

• More shuffles are 
needed to write the 
results to C, but that 
happens rarely.

A

a0 a0 a0 a0

a1 a1 a1 a1

Broadcast

Broadcast

a2 a2 a2 a2
Broadcast

a3 a3 a3 a3
Broadcast

i
k

Broadcast 
base case 
accesses 

to A.

Shuffle 
base case 
accesses 

to A.



Generalizing to 8-element vectors
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a0 a1 a2 a3 bk bk bk bk

a1 a0 a3 a2 bk bk bk bk

a4 a5 a6 a7

a5 a4 a7 a6

bk bk bk bk

bk bk bk bk

bk bk bk bk bk bk bk bk

bk bk bk bk bk bk bk bk

We can generalize this idea to use 4 permutations of 8-element vectors to 
compute an 8x8 C submatrix, such as by using the following 4 permutations:

Permutations of A Permutations of B
Loaded Loaded



Implementating the shuffle base case using the GCC vector extension
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// Vector type
typedef double vdouble __attribute__((vector_size(sizeof(double) * 8)));
// Zero-initialize the C-submatrix vectors…
// Loop over k. 
for (int k = 0; k < BC; ++k) {
  // Load vectors from A and B.
  vdouble bv = *(const vdouble *)(&B[B_index(k, j, BC)]);
  vdouble av = *(const vdouble *)(&A[A_index(i, k, BC)]);
  // av_p = A1 A0 A3 A2 A5 A4 A7 A6
  vF a_p = __builtin_shufflevector(av, av, 1, 0, 3, 2, 5, 4, 7, 6);
  // bv_p0 = B2 B3 B0 B1 B6 B7 B4 B5
  vF bv_p0 = __builtin_shufflevector(bv, bv, 2, 3, 0, 1, 6, 7, 4, 5);
  cv[0] += av * bv;
  cv[1] += av_p * bv;
  // bv_p1 = B4 B5 B6 B7 B0 B1 B2 B3
  vF bv_p1 = __builtin_shufflevector(bv, bv, 4, 5, 6, 7, 0, 1, 2, 3);

cv[2] += av * bv_p0;
cv[3] += av_p * bv_p0;

  // bv_p2 = B6 B7 B4 B5 B2 B3 B0 B1
  vF bv_p2 = __builtin_shufflevector(bv_p0, bv_p0, 4, 5, 6, 7, 0, 1, 2, 3);

cv[4] += av * bv_p1;
cv[5] += av_p * bv_p1;

Snippet of shuffle-based matrix- 
multiply base case (simplified)

C

Type definition for a 
vector of 8 doubles.

Vector-loads from A 
and B.

Shuffle A.

Shuffle B.

Shuffle B again.

Shuffle B yet again.



Budgeting the AVX512 vector registers for the shuffle base case
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Each of the 32 zmm registers stores 8 doubles.

To compute an 8 8 C submatrix requires 14 registers:
• 8 registers to store the C submatrix;
• 2 registers for A and its permutation; and
• 4 registers for B and its permutations.

Can we compute an 8 24 C submatrix?
• An 8 24 C submatrix seems to require 34 registers: 24 for C, 6 for A and its 

permutations, and 4 for B and its permutations.
• If we order the operations carefully, we can reuse registers for different 

permutations and require just 2 registers for B.

×

×
×



Comparison in practice
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Outer-product base case Instructions L1 loads Running time (s)

Broadcast 1.68E+10 5.30E+09 0.052    

Shuffle 1.64E+10 2.53E+09 0.063    

The shuffle base case performs fewer instructions 
and half the L1 loads, but runs slower!

How do the broadcast and shuffle outer-product base cases compare in 
practice?



Why wasn’t it faster?
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Problem: We’re running out of functional units on the core to perform 
arithmetic and shuffles.

Recall complex 
pipelining: 
A processor core in a 
modern multicore chip 
has many functional units 
on different paths through 
the execution pipeline.



Not enough ports
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On Intel CPUs, different 
ports support different 
functional units.

• Ports 0/1 and 5 handle 
FMAs.

• Ports 2 and 3 load 
from memory.

• Port 5 handles all 
shuffle instructions.

Source: https://en.wikichip.org/wiki/intel/
microarchitectures/cascade_lake

Cascade Lake execution engine schematic



Hope remains!

41

“Note that on 3rd Gen…and 4th Gen 
Intel Xeon Scalable processors…, 
port 1 also can execute some shuffle 
instructions…”

The shuffle outer-product base 
case might be faster on the next 
generation of CPU hardware.



Outline

• Compiler vectorization 

• Vectorization by hand 

• Vectorization by hand, another approach 

• Performance-engineering the hand-vectorized version 

• Intel oneMKL
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Order of memory accesses
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C A B
i

j
k

j
i

k

For each k, the base case accesses a 
subcolumn of elements of A.

For each k, the base case accesses a 
subrow of elements of B.

Ideally, the base case should access all memory in order.



Ideal data layouts for A and B
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A B
k

j
i

k

a0
a1
a2
a3

b0 b0 b0 b0

a0
a1
a2
a3

a0
a1
a2
a3

a0 a1 a2 a3 a0 a1 a2 a3 a0 a1 a2 a3

b0 b0 b0 b0
b1 b1 b1 b1
b2 b2 b2 b2

b1 b1 b1 b1 b2 b2 b2 b2

…

…

…

…

Can we get the ideal data 
layouts for A and B?



Local buffers
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A B
k

j
i

k

a0
a1
a2
a3

a0
a1
a2
a3

a0
a1
a2
a3

b0 b0 b0 b0
b1 b1 b1 b1
b2 b2 b2 b2

…

… A_local_buffer
a0 a1 a2 a3
a0 a1 a2 a3

a0 a1 a2 a3

B_local_buffer
b0 b0 b0 b0
b1 b1 b1 b1

b2 b2 b2 b2

……

Copy subrows of B.Copy and transpose 
subcolumns of A.

Idea: At the start of the base case, move the relevant entries in A and B into 
small, local buffers.



Indexing buffers for A and B
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int64_t A_index(int64_t i, int64_t k, int64_t BC) {
  return ((i / 8) * BC * 8) + (k * 8) + (i % 8);

Index calculation for A buffer
C

int64_t B_index(int64_t j, int64_t k, int64_t BC) {
  return ((j / 24) * BC * 24) + (k * 24) + (j % 24);

Index calculation for B buffer
C

The compiler can optimize 
the divisions by constants in 

these index calculations.

In the loop over k in the base 
case, these addresses simply 

increase.

To index matrix elements in these local buffers, interleave the bits of the 
matrix index.



What do these buffers cost?
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A B
k

j
i

k

a0
a1
a2
a3

a0
a1
a2
a3

a0
a1
a2
a3

b0 b0 b0 b0
b1 b1 b1 b1
b2 b2 b2 b2

…

…

A_local_buffer
a0 a1 a2 a3
a0 a1 a2 a3

a0 a1 a2 a3

B_local_buffer
b0 b0 b0 b0
b1 b1 b1 b1

b2 b2 b2 b2

……

How much work does this filling a local buffer add to the base case of size S?

• In theory, (S2), which the (S3) work of the base case dominates.

• In practice, after optimizing the (S3) base-case work, this cost is noticeable.

Θ Θ

Θ

Copy subrows of B.Copy and transpose 
subcolumns of A.



void mmdac(double *restrict C, double *restrict A, 
           double *restrict B, size_t size) {
  if (size == S) {
    mmbase(C, A, B);
  } else {
    size_t s00 = 0;
    size_t s01 = size/2;
    size_t s10 = (size/2)*n;
    size_t s11 = (size/2)*(n+1);
    cilk_scope {
      cilk_spawn mmdac(C+s00, A+s00, B+s00, size/2);
      cilk_spawn mmdac(C+s01, A+s00, B+s01, size/2);
      cilk_spawn mmdac(C+s10, A+s10, B+s00, size/2);
                 mmdac(C+s11, A+s10, B+s01, size/2);
    } 
    cilk_scope {
      cilk_spawn mmdac(C+s00, A+s01, B+s10, size/2);
      cilk_spawn mmdac(C+s01, A+s01, B+s11, size/2);

Matrix-multiply routine

Avoiding unnecessary work

48

C A B
i

j
k

j
i

k

C00 C01

C10 C11

A00 A01

A10 A11

B00 B01

B10 B11

If we use the same 
input submatrix 
between calls to 

mmbase(), we don’t 
need to refill the 

corresponding buffer. 

Reorder the calls to 
the base case to avoid 

refilling buffers!

C

How can we reduce the extra work of filling local buffers?



A new subdivision strategy
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C A B
i

j
k

j
i

k

A00 A01

B00

A02 B10

B20

C A B
i

j
k

j
i

k

B00A00
A10
A20
A30

C00
C10
C20
C30

C A B
i

j
k

j
i

k

A00 B0
0

B0
1

B0
2

B0
3

B0
4

B0
5

C0
0

C0
1

C0
2

C0
3

C0
4

C0
5

1. Divide the k dimension into large pieces.

2. Divide the i dimension into medium pieces.

3. Divide the j dimension 
into small pieces.



Why does this subdivision strategy work?

50

C A B
i

j
k

j
i

k

A00 A01

B00

A02 B10

B20

C A B
i

j
k

j
i

k

B00A00
A10
A20
A30

C00
C10
C20
C30

C A B
i

j
k

j
i

k

A00 B0
0

B0
1

B0
2

B0
3

B0
4

B0
5

C0
0

C0
1

C0
2

C0
3

C0
4

C0
5

1. Divide the k dimension into large pieces.

2. Divide the i dimension into medium pieces.

3. Divide the j dimension 
into small pieces.

It’s cheaper to 
copy from B than 

to copy and 
transpose from A.

Base-cases fill local buffers with 1 copy and 
transpose from A and many copies from B.

Larger k for the 
base case means 
fewer loads and 
stores from C.



Outline

• Compiler vectorization 

• Vectorization by hand 

• Vectorization by hand, another approach 

• Performance-engineering the hand-vectorized version 

• Intel oneMKL
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Performance results versus oneMKL
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Implementation Running 
time (s) GFLOPS Fraction of 

peak
Cilk, hand-vectorization 0.052 2656.893 57.658%

oneMKL with OpenMP 0.061 2268.232 49.224%

Implementation Running 
time (s) GFLOPS Fraction of 

peak
Cilk, hand-vectorization 0.092 1494.807 32.439%

oneMKL with OpenMP 0.082 1670.604 36.254%

On 48 cores, this hand-vectorized implementation outperforms the latest 
version of Intel oneMKL 
with OpenMP threads.

But on 24 cores on 1 chip, the performance difference is reversed!

What’s causing this 
performance difference?



Intel oneMKL
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C A B
i

j
k

j
i

k

A00C0
0

C0
1

C0
2

C0
3

C0
4

C0
5

B0
0

B0
1

B0
2

B0
3

B0
4

B0
5 Base case for B: 

384 24×

Intel oneMKL matrix subdivision on 1 thread

Base case for A: 
4096 384×

Total base-case 
size: ~12MB

Intel oneMKL uses the same broadcast outer-product base case and local 
buffers, but it subdivides the problem differently. 

In comparison, 
L2 is 1MB.



Software prefetching
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Intel oneMKL’s base case uses software prefetching to speed up memory 
accesses.
• The base case mixes a few 

software-prefetch operations 
to load locations in A and B 
local buffers to be accessed in 
the future.

• During the last few iterations 
before storing into C, the base 
case software-prefetches 
locations in C.

// Loop over k. 
for (int k = 0; k < BC; ++k) {
  // Prefetch from A.
  __builtin_prefetch(&A[A_index(i, k + 4, BC)]);

  // Load a vector from B.
  vdouble bv = *(const vdouble *)(&B[B_index(k, j, BC)]);
  for (int ivec = 0; ivec < 8; ++ivec)
    // Load a value from A, broadcast that value, 
    // and perform FMA.
    cv[ivec] += bv * A[A_index(i + ivec, k, BC)];

Snippet of broadcast-based matrix-multiply base case (simplified)

Load a value from A that will be 
used in a future loop iteration.

C



My experience with software prefetching
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Software prefetch instructions are tricky to use.

• Software prefetches increase instruction counts, memory traffic, and data in 
residing in cache.

• Software prefetches can only improve performance if their use hides 
memory latency more effectively than the hardware prefetchers.

Careful uses of software prefetch instructions can improve performance by a 
few percent, but poor uses can hurt performance.



Takeaways
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• One can use OpenCilk to implement parallel programs with state-of-the-art 
performance that competes with professionally engineered high-
performance software.

• Many theoretically good algorithms can have the performance impact that 
theory predicts, but many systems issues need to be handled first.

• Even when most of a program’s running time is spent in a small amount of 
the code, the keys to optimizing that hot spot might lie elsewhere in the 
code.

• Check your performance-testing methodology and your raw performance 
data!



Questions?
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C A B

c0 c1 c2 c3

c4 c5 c6 c7

a0 a0 a0 a0

a1 a1 a1 a1

b0 b1 b2 b3
Load

+= *
Broadcast

b0 b1 b2 b3+= *
Broadcast

c8 c9 c1 c11 a2 a2 a2 a2 b0 b1 b2 b3+= *
Broadcast

c1 c1 c1 c1 a3 a3 a3 a3 b0 b1 b2 b3+= *
Broadcast

i
j

k
j

i
k
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