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Cilk Programming

Serial fib Parallelized fib using Cilk

Cilk allows programmers to make software run faster 
using parallel processors.

Running time TS. Running time TP on P processors.

int fib(int n) {

if (n < 2) {

return n;

} else {

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

}

int fib(int n) {

if (n < 2) {

return n;

} else {

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

}
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Scheduling in Cilk

• The Cilk concurrency 
platform allows the 
programmer to 
express logical 
parallelism in an 
application.

•

•

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}
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Scheduling in Cilk

• The Cilk concurrency 
platform allows the 
programmer to 
express logical 
parallelism in an 
application.

• The Cilk scheduler 
maps the executing 
program onto the 
processor cores 
dynamically at runtime.

•

…
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Scheduling in Cilk

• The Cilk concurrency 
platform allows the 
programmer to 
express logical 
parallelism in an 
application.

• The Cilk scheduler 
maps the executing 
program onto the 
processor cores 
dynamically at runtime.

• Cilk’s work-stealing 
scheduler is provably 
efficient.

…

Memory I/O

$

P

$

P

$

P

Network

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}
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Cilk Platform

Compiler

Parallel 
Performance

Linker
Runtime 
Library

Binary

P⋯PPProgram
input

The compiler and 
runtime library 

together 
implement 

the scheduler.

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

source code
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WORK STEALING AND THE

WORK-FIRST PRINCIPLE
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Serial Execution & Stack Frames

Example:

fib(4)

int fib(int n) {

if (n < 2) return n;

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}
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Serial Execution & Stack Frames

Example:

fib(4)

4

int fib(int n) {

if (n < 2) return n;

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

4

Call stack

Execution trace
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3

Serial Execution & Stack Frames

Example:

fib(4)

4

3

int fib(int n) {

if (n < 2) return n;

int x, y;

x = fib(n-1);

y = fib(n-2);
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4

Call stack

Execution trace
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Serial Execution & Stack Frames

Example:

fib(4)

4

3

2

1 0

int fib(int n) {
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Execution trace
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Serial Execution & Stack Frames

Example:

fib(4)

4

3

2
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int fib(int n) {

if (n < 2) return n;

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

Call stack

Execution trace
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Serial Execution & Stack Frames

Example:

fib(4)

4

3

2

2

1

1 1 0

0

int fib(int n) {

if (n < 2) return n;

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

Call stack

The trace unfolds dynamically.  
The call stack keeps track of 

outstanding functions.

Execution trace
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Parallel Execution

Example:

fib(4)

4

3

2

2

1

1 1 0

0

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

The trace unfolds dynamically 
and expresses the logical 

parallelism in the program.
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Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a call stack.

P

spawned

called

called

P

spawned

PP

called

spawned

called

spawned

called

Work Stealing
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Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a call stack.

P

spawned

called

called

P

spawned

PP

called

spawned

called

spawned

called

Call!

Work Stealing
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Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a call stack.

P

spawned

called

called

called

P

spawned

PP

called

spawned

called

spawned

called

Work Stealing
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P

spawned

called

called

called

P

spawnspawned

PP

called

spawned

called

spawned

called

Spawn!

Work Stealing

Spawn!Call!

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack.
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P

spawned

called

called

called

spawned

P

spawnspawned

PP

called

spawned

called

spawned

called

Work Stealing

called

spawned

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack.
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P

spawned

called

called

called

spawned

P

spawned

PP

called

spawned

called

called

spawned

called

spawned

Steal!

Work Stealing

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack.
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P

spawned

called

called

called

spawned

P

spawned

PP

called

spawned

called

called

spawned

called

spawned

Work Stealing

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Each worker (processor) maintains a work deque of 
ready strands, and it manipulates the bottom of the 
deque like a stack.
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Parallel Speedup

TS — work of a serial program

Suppose the serial program is parallelized.  
T1 — work of the parallel program

T∞ — span of the parallel program

TP — running time of the parallel program on P cores

Parallel scalability = T1/TP 

Parallel speedup = TS/TP
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Work-Stealing Bounds

Theorem. The Cilk work-stealing scheduler achieves 
expected running time

TP ≈ T1/P + O(T∞)

on P processors.
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Work-Stealing Bounds

Theorem. The Cilk work-stealing scheduler achieves 
expected running time

TP ≈ T1/P + O(T∞)

on P processors.

Time workers 
spend working.
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Work-Stealing Bounds

Theorem. The Cilk work-stealing scheduler achieves 
expected running time

TP ≈ T1/P + O(T∞)

on P processors.

Time workers 
spend working.

Time workers 
spend stealing.
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Work-Stealing Bounds

Theorem. The Cilk work-stealing scheduler achieves 
expected running time

TP ≈ T1/P + O(T∞)

on P processors.

Time workers 
spend working.

Time workers 
spend stealing.

If the program has ample parallelism, i.e., T1/T∞ ≫ P, 
then the first term dominates, and TP ≈ T1/P.
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Parallel Speedup

TS — work of a serial program

Suppose the serial program is parallelized.  
T1 — work of the parallel program

T∞ — span of the parallel program

TP — running time of the parallel program on P cores

Parallel scalability = T1/TP 

Parallel speedup = TS/TP

To achieve linear speedup on P processors over the 
serial program, i.e., TP ≈ TS/P, we need : 
1. Ample parallelism: T1/T∞ ≫ P .
2. High work efficiency: TS/T1 ≈ 1.
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The Work-First Principle

To optimize the execution of programs with sufficient 
parallelism, the implementation of the Cilk scheduler 
aims to maintain high work efficiency by abiding by the 
work-first principle:

Optimize for ordinary serial execution, 
at the expense of some additional 

overhead in steals.
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CORE FUNCTIONALITIES

FOR WORK STEALING
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int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Cilk’s Execution Model

4

3

2

2

1

1 1 0

0
Example:

fib(4)
The trace unfolds dynamically 

and expresses the logical 
parallelism in the program.
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int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

Example:

fib(4)

4 P1

P1 %rip

4

P1
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int fib(int n) {
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int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

Example:

fib(4)

4

3 P1

P1 %rip

4

3

P1
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int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

4

3 P1

P1 %rip

Example:

fib(4)

4

3

P1
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int fib(int n) {
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int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

4

3 P1

P1 %rip

Example:

fib(4)

4

3

P1



© 2018-2023 MIT Algorithm Engineering Instructors 39

int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

4

3

2
P1

P1 %rip

Example:

fib(4)

4

3

2

P1
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int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

4

3

2 P1

P1 %rip

Example:

fib(4)

4

3

2

P1
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int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Workers Mirror Serial Execution

4

3

2 P1

P1 %rip

Example:
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4

3
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P1
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int fib(int n) {

if (n < 2) return n;
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4
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int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Successful Steals Create Parallelism

4

3

2

1 P1

P1 %rip

Example:

fib(4)

4

3

2

1

P1 P2
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int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Successful Steals Create Parallelism

4

3

2

1 P1

P2

P2 %rip

P2 resumes fib(4)

mid-execution.

P1 %rip

Example:

fib(4)

4

3

2

1

P1 P2
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int fib(int n) {
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int fib(int n) {
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int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Successful Steals Create Parallelism
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int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Successful Steals Create Parallelism

4

3

2

2

1 P1

P2

P2 %rip

P3

P3 %rip

P3 resumes fib(3)

mid-execution.

P1 %rip

Example:

fib(4)

P1 P2 P3

4

2 3

2

1
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Views of stack

4 4

2

4

3

Cilk supports C’s rule for pointers: A pointer to stack space 

can be passed from parent to child, but not from child to parent.

Cilk’s cactus stack supports multiple 

views in parallel.

Cactus Stack

P1 P2 P3
4

3

2

2

1 P1

P2P3

3

2

1
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int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

} // sync

return (x + y);

}

Syncs (cilk_scope)

4

3

2

2

1

0P1

P1 %rip

P2

P2 %rip

P3

P3 %rip

Example:

fib(4)
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int fib(int n) {
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int x, y;
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return (x + y);
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Syncs (cilk_scope)
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0P1

P1 %rip
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Example:

fib(4)
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int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {
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return (x + y);

}

Syncs (cilk_scope)
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P1 %rip
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yet!

Example:

fib(4)
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int fib(int n) {
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int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Putting Everything Together
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P3

Cactus stack

Workers

4

3

2

2

1

0
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int fib(int n) {
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int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {
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Putting Everything Together
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P2

P3

%rbx, %r10, …
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Cactus stack
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Deque
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Workers
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%rsp

%rip
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%rip
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Required Functionalities

• Each worker needs to keep track of its own 
execution context, including work that it is 
responsible for / available to be stolen.

• After a successful steal, a worker can 
resume the stolen function mid-execution.

• Upon a sync, a worker needs to know 
whether there is any spawned subroutine 
still executing on another worker.
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*henceforth simply referred to as the frame

Cilk Runtime Data Structures

The Cilk runtime utilizes three basic data 
structures as workers execute work:

• Worker deques to keep track of 
subroutines which are being executed or 
available to steal.

• A Cilk stack frame structure* to represent 
each spawning function (Cilk function) and 
store its execution context.

• A full-frame tree to represent function 
instances that have ever been stolen (to 
support true parallel execution).
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Division of Labor

The work-first principle guides the division of the Cilk
runtime between the compiler and the runtime library.

Compiler
• Manages a handful of light-weight data structures 

(e.g., Cilk stack frames and deques).
• Implements optimized fast paths for execution of 

functions when no steals have occurred (i.e., no actual 
parallelism has been realized).

Runtime library
• Manages the more heavy-weight data structures (e.g., 

the full-frame tree).
• Handles slow paths of execution (e.g., when a steal 

occurs).
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SPAWNS AND STEALS:
DEQUES & CILK STACK

FRAMES
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Deque of Frames

Each Cilk worker maintains a deque of 
references to Cilk Stack frames* containing 
work available to be stolen.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

current

*We’ll discuss what these 
references are in a few slides.

P1
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Spawn

When spawning, the current frame is pushed 
onto the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

current

P1
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Spawn

When spawning, the current frame is pushed 
onto the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1
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Spawn

When spawning, the current frame is pushed 
onto the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1
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Spawn

When spawning, the current frame is pushed 
onto the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1
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Spawn

When spawning, the current frame is pushed 
onto the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1
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Return from Spawn

When returning from a spawn, the current 
frame is popped from the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1
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Return from Spawn

When returning from a spawn, the current 
frame is popped from the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1
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Return from Spawn

When returning from a spawn, the current 
frame is popped from the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1
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Return from Spawn

When returning from a spawn, the current 
frame is popped from the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

1
current

P1
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Return from Spawn

When returning from a spawn, the current 
frame is popped from the bottom of the deque.

Cactus stack

Deque 4

3

2

P1
head

tail

Worker

current

P1
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Stealing Frames

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

Workers operate on the bottom of the deque, while thieves try 

to steal work from the top of the deque.



© 2018-2023 MIT Algorithm Engineering Instructors 77

Stealing Frames

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

Workers operate on the bottom of the deque, while thieves try 

to steal work from the top of the deque.
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Stealing Frames

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

Workers operate on the bottom of the deque, while thieves try 

to steal work from the top of the deque.
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Stealing Frames

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

Some coordination 

is required.

Workers operate on the bottom of the deque, while thieves try 

to steal work from the top of the deque.
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Synchronizing Thieves and Workers

Cilk uses a mutex associated with each deque to perform 

synchronization.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current
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Synchronizing Thieves and Workers

Cilk uses a mutex associated with each deque to perform 

synchronization.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

🔒

🔒
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Synchronizing Thieves and Workers

Cilk uses a mutex associated with each deque to perform 

synchronization.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

🔒

🔒

Question: Is it more important to 

optimize the operations of workers 

or those of thieves?
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Synchronizing Thieves and Workers

Cilk uses a mutex associated with each deque to perform 

synchronization.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

🔒

🔒

Question: Is it more important to 

optimize the operations of workers 

or those of thieves? Answer: Operations 

of workers.
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Popping the Deque
36.1

When a worker is about to return from a 
spawned function, it tries to to pop the stack 
frame from the tail of the deque.  There are 
two possible outcomes:
1. If the pop succeeds, then the execution 

continues as normal.
2. If the pop fails, then the worker is out of 

work to do, and it becomes a thief and tries 
to steal.
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Popping the Deque
36.2

When a worker is about to return from a 
spawned function, it tries to to pop the stack 
frame from the tail of the deque.  There are 
two possible outcomes:
1. If the pop succeeds, then the execution 

continues as normal.
2. If the pop fails, then the worker is out of 

work to do, and it becomes a thief and tries 
to steal.

Question: Which case 
is more important to 
optimize?
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Popping the Deque
36.3

When a worker is about to return from a 
spawned function, it tries to to pop the stack 
frame from the tail of the deque.  There are 
two possible outcomes:
1. If the pop succeeds, then the execution 

continues as normal.
2. If the pop fails, then the worker is out of 

work to do, and it becomes a thief and tries 
to steal.

Question: Which case 
is more important to 
optimize?

Answer: Case 1,
successful pop.
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bool steal() {

lock(L);

head++;

if (head > tail) {

head--;

unlock(L);

return FAILURE;

}

unlock(L);

return SUCCESS;

}

The THE Protocol
37

Worker protocol

Thief protocol

The worker and the thief 
coordinate using 
the THE protocol 

void push() { tail++; }

bool pop() {

tail--;

if (head > tail) {

tail++;

lock(L);

tail--;

if (head > tail) {

tail++;

unlock(L);

return FAILURE;

}

unlock(L);

}

return SUCCESS;

}
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bool steal() {

lock(L);

head++;

if (head > tail) {

head--;

unlock(L);

return FAILURE;

}

unlock(L);

return SUCCESS;

}

The THE Protocol
38

Worker protocol

Thief protocol

void push() { tail++; }

bool pop() {

tail--;

if (head > tail) {

tail++;

lock(L);

tail--;

if (head > tail) {

tail++;

unlock(L);

return FAILURE;

}

unlock(L);

}

return SUCCESS;

}

Observation I: Synchronization 
is only necessary when the 

deque is almost empty.
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bool steal() {

lock(L);

head++;

if (head > tail) {

head--;

unlock(L);

return FAILURE;

}

unlock(L);

return SUCCESS;

}

The THE Protocol
39

Worker protocol

Thief protocol

void push() { tail++; }

bool pop() {

tail--;

if (head > tail) {

tail++;

lock(L);

tail--;

if (head > tail) {

tail++;

unlock(L);

return FAILURE;

}

unlock(L);

}

return SUCCESS;

}

Observation II: The pop 
operation is more likely to 

succeed than fail.
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bool steal() {

lock(L);

head++;

if (head > tail) {

head--;

unlock(L);

return FAILURE;

}

unlock(L);

return SUCCESS;

}

The THE Protocol
40.1

Worker protocol

Thief protocol

void push() { tail++; }

bool pop() {

tail--;

if (head > tail) {

tail++;

lock(L);

tail--;

if (head > tail) {

tail++;

unlock(L);

return FAILURE;

}

unlock(L);

}

return SUCCESS;

}

The Work-First 
Principle: Optimize the 
operations of workers.



© 2018-2023 MIT Algorithm Engineering Instructors 91

bool steal() {

lock(L);

head++;

if (head > tail) {

head--;

unlock(L);

return FAILURE;

}

unlock(L);

return SUCCESS;

}

The THE Protocol
40.2

Worker protocol

Thief protocol

void push() { tail++; }

bool pop() {

tail--;

if (head > tail) {

tail++;

lock(L);

tail--;

if (head > tail) {

tail++;

unlock(L);

return FAILURE;

}

unlock(L);

}

return SUCCESS;

}

The Work-First 
Principle: Optimize the 
operations of workers.

Workers pop the 
deque optimistically…
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bool steal() {

lock(L);

head++;

if (head > tail) {

head--;

unlock(L);

return FAILURE;

}

unlock(L);

return SUCCESS;

}

The THE Protocol
40.3

Worker protocol

Thief protocol

void push() { tail++; }

bool pop() {

tail--;

if (head > tail) {

tail++;

lock(L);

tail--;

if (head > tail) {

tail++;

unlock(L);

return FAILURE;

}

unlock(L);

}

return SUCCESS;

}

The Work-First 
Principle: Optimize the 
operations of workers.

Workers pop the 
deque optimistically…

…and only grab the deque’s lock 
if the deque appears to be empty.
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bool steal() {

lock(L);

head++;

if (head > tail) {

head--;

unlock(L);

return FAILURE;

}

unlock(L);

return SUCCESS;

}

The THE Protocol
40.4

Worker protocol

Thief protocol

void push() { tail++; }

bool pop() {

tail--;

if (head > tail) {

tail++;

lock(L);

tail--;

if (head > tail) {

tail++;

unlock(L);

return FAILURE;

}

unlock(L);

}

return SUCCESS;

}

The Work-First 
Principle: Optimize the 
operations of workers.

Workers pop the 
deque optimistically…

…and only grab the deque’s lock 
if the deque appears to be empty.

Thieves always
grab the lock.
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Successful Steal

Workers operate on the bottom of the deque, while thieves try 

to steal work from the top of the deque.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current
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Successful Steal

Workers operate on the bottom of the deque, while thieves try 

to steal work from the top of the deque.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current
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Successful Steal

Workers operate on the bottom of the deque, while thieves try 

to steal work from the top of the deque.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current
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Successful Steal

Workers operate on the bottom of the deque, while thieves try 

to steal work from the top of the deque.

Cactus stack

Deque

4

3

2

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

Need to set up the thief’s 
stack and processor state 
after a successful steal.
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Saving and Restoring Processor State

To save and restore processor state, the Cilk compiler 
allocates a local buffer in each frame that spawns.

x = cilk_spawn fib(n-1);

Cilk code

BUFFER ctx;
SAVE_STATE(&ctx);
if (!setjmp(&ctx))

x = fib(n-1);
// (continuation)

Compiled pseudocode
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Saving and Restoring Processor State

To save and restore processor state, the Cilk compiler 
allocates a local buffer in each frame that spawns.

x = cilk_spawn fib(n-1);

Cilk code

BUFFER ctx;
SAVE_STATE(&ctx);
if (!setjmp(&ctx))

x = fib(n-1);
// (continuation)

Compiled pseudocode

Buffer to store 
processor state.
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Saving and Restoring Processor State

To save and restore processor state, the Cilk compiler 
allocates a local buffer in each frame that spawns.

x = cilk_spawn fib(n-1);

Cilk code

BUFFER ctx;
SAVE_STATE(&ctx);
if (!setjmp(&ctx))

x = fib(n-1);
// (continuation)

Compiled pseudocode

Buffer to store 
processor state.

Save processor state into 
ctx, and allow a worker to 
resume the continuation.
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Deque References to Frames

Worker deques store references to the buffers in each frame, 

from which thieves can retrieve processor state.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

ctx

ctx

ctx
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Deque References to Frames

Worker deques store references to the buffers in each frame, 

from which thieves can retrieve processor state.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

ctx

ctx

ctx
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Deque References to Frames

Worker deques store references to the buffers in each frame, 

from which thieves can retrieve processor state.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

ctx

ctx

ctx

%rbx, %r10, …
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SYNCS:
THE FULL-FRAME TREE
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int fib(int n) {

if (n < 2) return n;

int x, y;

cilk_scope {

x = cilk_spawn fib(n-1);

y = fib(n-2);

}

return (x + y);

}

Semantics of Sync

Example:

fib(4)

2

1P2

A cilk_scope waits on child frames, not on workers.

3

2

0P1

P3

4
Can’t sync

yet!
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Nested Synchronization

called

spawned

spawned spawned

spawnedspawned

calledspawned

spawned

P1

P2

P3

P5

Cilk supports nested synchronization, where a frame 
waits only on its child subcomputations.

called

Waiting on 
3 children.

spawned spawned

spawned

P4

Waiting on 
2 children.
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Nested Synchronization

called

spawned

spawned spawned

spawnedspawned

calledspawned

spawned

P1

P2

P3

P5

Cilk supports nested synchronization, where a frame 
waits only on its child subcomputations.

called

Waiting on 
3 children.

spawned spawned

spawned

P4

Waiting on 
2 children.

How does Cilk keep track of 

who’s waiting on whom?
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Full-Frame Tree

called

spawned

spawned spawned

spawnedspawned

calledspawned

spawned

P1

P2

P3

P5
called

spawned spawned

spawned

P4

The Cilk runtime maintains a tree of full frames to keep 
track of synchronization information.

Processors work 
on active frames.

Other frames are 
suspended.

Each full frame 
corresponds with at least 

one function frame.
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Full-Frame Data

P1 P2 P3

To maintain the state of the running program, 
each full frame maintains:

• A join counter of the 
number of (unsynched) 
child frames.

• References to parent
and child full frames.

• References into the 
corresponding Cilk
stack frames on the 
cactus stack.

spawned

spawned

called

spawned

called

spawned

spawned

called

called

called

spawned

called
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Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called
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Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!

spawned

called

spawned

called
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Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!

spawned

called

spawned

called
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Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!

spawned

called

spawned

called
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Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!

spawned

called

spawned

called

The thief steals the 
full frame and creates 
a new full frame for 

the victim.
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Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!

spawned

called

spawned

called

The thief steals the 
full frame and creates 
a new full frame for 

the victim.
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Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!

spawned

called

spawned

called

The thief steals the 
full frame and creates 
a new full frame for 

the victim.

The victim’s new full 
frame is a child of the 

stolen full frame.
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Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

The thief steals the 
full frame and creates 
a new full frame for 

the victim.
spawned

called

spawned

called
The victim’s new full 
frame is a child of the 

stolen full frame.
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Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!
spawned

called

The thief steals the 
full frame and creates 
a new full frame for 

the victim.
spawned

called

spawned

called
The victim’s new full 
frame is a child of the 

stolen full frame.
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spawned

called

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!
spawned

called

spawned

called

The thief steals the 
full frame and creates 
a new full frame for 

the victim.

The victim’s new full 
frame is a child of the 

stolen full frame.
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spawned

called

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!
spawned

called

spawned

called

The thief steals the 
full frame and creates 
a new full frame for 

the victim.

The victim’s new full 
frame is a child of the 

stolen full frame.
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spawned

called

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!
spawned

called

spawned

called

The thief steals the 
full frame and creates 
a new full frame for 

the victim.

The victim’s new full 
frame is a child of the 

stolen full frame.
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spawned

called

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!
spawned

called

spawned

called

The thief steals the 
full frame and creates 
a new full frame for 

the victim.

The victim’s new full 
frame is a child of the 

stolen full frame.
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spawned

called

Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

Steal!
spawned

called

spawned

called

The thief steals the 
full frame and creates 
a new full frame for 

the victim.

The victim’s new full 
frame is a child of the 

stolen full frame.
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Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called

spawned

called
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Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called

spawned

called

Sync?
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Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called

spawned

called

Sync?

A full frame suspends at 
a sync if it has 

outstanding child frames.
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Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called

spawned

called

Sync?

A full frame suspends at 
a sync if it has 

outstanding child frames.
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Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called

spawned

called

Suspend

A full frame suspends at 
a sync if it has 

outstanding child frames.
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Maintaining the Full-Frame Tree

P1 P2 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called

spawned

called

Suspend

A full frame suspends at 
a sync if it has 

outstanding child frames.
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Maintaining the Full-Frame Tree

P1 P3

Let’s see how the tree structure is maintained.

spawned

called

spawned

called

spawned

called

A full frame suspends at 
a sync if it has 

outstanding child frames.



© 2018-2023 MIT Algorithm Engineering Instructors 131

Common Case for Sync

Question: If the program has ample 
parallelism, what do we expect typically 
happens when the program execution reaches 
the end of a cilk_scope?
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Common Case for Sync

Question: If the program has ample 
parallelism, what do we expect typically 
happens when the program execution reaches 
the end of a cilk_scope?

Answer: The executing function contains no 
outstanding spawned children.
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Common Case for Sync

Question: If the program has ample 
parallelism, what do we expect typically 
happens when the program execution reaches 
the end of a cilk_scope?

Answer: The executing function contains no 
outstanding spawned children.

How does the 
runtime optimize 

for this case?
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Managing the Full-Frame Tree: Sync

P P PP

spawned

called

called

spawned

called
spawned

called

spawned

called
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Managing the Full-Frame Tree: Sync

P P PP

spawned

called

called

spawned

called
spawned

called

spawned

called

A flags field in each Cilk stack frame 
maintains the frame’s status, which is 

set when stolen.  Only stolen 
spawning frames need nontrivial sync.



© 2018-2023 MIT Algorithm Engineering Instructors 136

BUFFER ctx;
…
if (WAS_STOLEN)

if (!setjmp(&ctx))
__cilkrts_sync(&ctx);

Compiled Code for Sync

C pseudocode

cilk_scope { … };

Cilk code

Like cilk_spawn, a cilk_scope is compiled 
using setjmp, in order to save the processor’s 
state when the frame is suspended.
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BUFFER ctx;
…
if (WAS_STOLEN)

if (!setjmp(&ctx))
__cilkrts_sync(&ctx);

Compiled Code for Sync

C pseudocode

cilk_scope { … };

Cilk code

Like cilk_spawn, a cilk_scope is compiled 
using setjmp, in order to save the processor’s 
state when the frame is suspended.

Same buffer as 
used for spawns.
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BUFFER ctx;
…
if (WAS_STOLEN)

if (!setjmp(&ctx))
__cilkrts_sync(&ctx);

Compiled Code for Sync

C pseudocode

cilk_scope { … };

Cilk code

Like cilk_spawn, a cilk_scope is compiled 
using setjmp, in order to save the processor’s 
state when the frame is suspended.

Same buffer as 
used for spawns.

Call into the runtime 
to suspend the frame.
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DESIGN CHOICES
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The Work-First Principle

To optimize the execution of programs with sufficient 
parallelism, the implementation of the Cilk runtime 
system works to maintain high work-efficiency by 
abiding by the work-first principle:

Optimize for the ordinary serial 
execution, at the expense of some 

additional overhead in steals.
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Division of Labor

The work-first principle guides the division of the Cilk
runtime system between the compiler and the runtime 
library.

• The compiler implements optimized fast paths for 
execution of functions when no steals have occurred 
(i.e., no actual parallelism has been realized).

• The runtime library handles slow paths of execution, 
e.g., when a steal occurs.
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Division of Labor

The work-first principle guides the division of the Cilk
runtime system between the compiler and the runtime 
library.

• The compiler implements optimized fast paths for 
execution of functions when no steals have occurred 
(i.e., no actual parallelism has been realized).

• The runtime library handles slow paths of execution, 
e.g., when a steal occurs.

Examples: 
• The THE protocol
• The implementation of cilk_spawn and cilk_sync
• The organization of full frames vs Cilk stack frames
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Choice of Whom / What to Steal

Classic randomized work-stealing: 
Steal from a randomly chosen victim and steal from 
the top of its deque.
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Choice of Whom / What to Steal

Classic randomized work-stealing: 
Steal from a randomly chosen victim and steal from 
the top of its deque.

• The random choice and stealing from top allow us 
to amortize the cost of steals against the span 
term. 
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Choice of Whom / What to Steal

Classic randomized work-stealing: 
Steal from a randomly chosen victim and steal from 
the top of its deque.

• The random choice and stealing from top allow us 
to amortize the cost of steals against the span 
term. 

• Randomness also avoids contention.
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Choice of Whom / What to Steal

Classic randomized work-stealing: 
Steal from a randomly chosen victim and steal from 
the top of its deque.

• The random choice and stealing from top allow us 
to amortize the cost of steals against the span 
term. 

• Randomness also avoids contention.

• An old performance bug in the runtime: every 
worker had a random number generator initialized 
with the same seed, which leads to high contention 
because everyone chose the same sequence of 
victims.
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int foo(int n) {

int x, y;

cilk_scope {

x = cilk_spawn bar(n);

y = baz(n);

}

return x + y;

}

Spawn Semantics

Continuation-stealing (work-first): execute the 
spawned child and prepare the continuation to be 
stolen.
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int foo(int n) {

int x, y;

cilk_scope {

x = cilk_spawn bar(n);

y = baz(n);

}

return x + y;

}

Spawn Semantics

Continuation-stealing (work-first): execute the 
spawned child and prepare the continuation to be 
stolen.

Child-stealing (help-first): push the spawned child 
onto the deque so it can be stolen and continue 
executing the spawning function.  Pop off spawned 
children to execute when encountering a sync.
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cilk_scope {

for(int i=0; i<1000; i++) {

cilk_spawn foo(i);

}

}

Issues with Child-Stealing: Space

Child-stealing: create 1000 work items and push 
them onto the deque before start doing any work!

Continuation-stealing: work on the spawned 
iteration and let the rest of the loops to be stolen 
potentially.
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Continuation-Stealing vs Child-Stealing

Continuation-stealing:

• Bounded space 
utilization.

• Better work-efficiency.
• One-worker execution 

follows that of serial 
projection.

• For private caches, one 
can bound the cache 
misses during parallel 
executions.

Child-stealing:

• Potentially unbounded 
space utilization.

• Worse work-efficiency.
• One-worker execution 

does NOT follow that 
of serial projection.

• No proven bound on 
cache misses during 
parallel executions.
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Continuation-Stealing vs Child-Stealing

Continuation-stealing:

• Bounded space 
utilization.

• Better work-efficiency.
• One-worker execution 

follows that of serial 
projection.

• For private caches, one 
can bound the cache 
misses during parallel 
executions.

Child-stealing:

• Potentially unbounded 
space utilization.

• Worse work-efficiency.
• One-worker execution 

does NOT follow that 
of serial projection.

• No proven bound on 
cache misses during 
parallel executions.

Only monsters steal children!


	Slide 1: Lecture 4  The Cilk Runtime System
	Slide 2: Cilk Programming
	Slide 3: Scheduling in Cilk
	Slide 4: Scheduling in Cilk
	Slide 5: Scheduling in Cilk
	Slide 6: Cilk Platform
	Slide 7: Work Stealing and the Work-First Principle
	Slide 8: Serial Execution & Stack Frames
	Slide 9: Serial Execution & Stack Frames
	Slide 10: Serial Execution & Stack Frames
	Slide 11: Serial Execution & Stack Frames
	Slide 12: Serial Execution & Stack Frames
	Slide 13: Serial Execution & Stack Frames
	Slide 14: Serial Execution & Stack Frames
	Slide 15: Serial Execution & Stack Frames
	Slide 16: Serial Execution & Stack Frames
	Slide 17: Parallel Execution
	Slide 18: Work Stealing
	Slide 19: Work Stealing
	Slide 20: Work Stealing
	Slide 21: Work Stealing
	Slide 22: Work Stealing
	Slide 23: Work Stealing
	Slide 24: Work Stealing
	Slide 25: Parallel Speedup
	Slide 26: Work-Stealing Bounds
	Slide 27: Work-Stealing Bounds
	Slide 28: Work-Stealing Bounds
	Slide 29: Work-Stealing Bounds
	Slide 30: Parallel Speedup
	Slide 31: The Work-First Principle
	Slide 32: Core Functionalities for Work Stealing
	Slide 33: Cilk’s Execution Model
	Slide 34: Workers Mirror Serial Execution
	Slide 35: Workers Mirror Serial Execution
	Slide 36: Workers Mirror Serial Execution
	Slide 37: Workers Mirror Serial Execution
	Slide 38: Workers Mirror Serial Execution
	Slide 39: Workers Mirror Serial Execution
	Slide 40: Workers Mirror Serial Execution
	Slide 41: Workers Mirror Serial Execution
	Slide 42: Workers Mirror Serial Execution
	Slide 43: Successful Steals Create Parallelism
	Slide 44: Successful Steals Create Parallelism
	Slide 45: Successful Steals Create Parallelism
	Slide 46: Successful Steals Create Parallelism
	Slide 47: Successful Steals Create Parallelism
	Slide 48: Successful Steals Create Parallelism
	Slide 49: Successful Steals Create Parallelism
	Slide 50: Cactus Stack
	Slide 51: Syncs (cilk_scope)
	Slide 52: Syncs (cilk_scope)
	Slide 53: Syncs (cilk_scope)
	Slide 54: Syncs (cilk_scope)
	Slide 55: Syncs (cilk_scope)
	Slide 56: Putting Everything Together
	Slide 57: Putting Everything Together
	Slide 58: Putting Everything Together
	Slide 59: Putting Everything Together
	Slide 60: Putting Everything Together
	Slide 61: Required Functionalities
	Slide 62: Cilk Runtime Data Structures
	Slide 63: Division of Labor
	Slide 64: Spawns and Steals: Deques & Cilk Stack Frames
	Slide 65: Deque of Frames
	Slide 66: Spawn
	Slide 67: Spawn
	Slide 68: Spawn
	Slide 69: Spawn
	Slide 70: Spawn
	Slide 71: Return from Spawn
	Slide 72: Return from Spawn
	Slide 73: Return from Spawn
	Slide 74: Return from Spawn
	Slide 75: Return from Spawn
	Slide 76: Stealing Frames
	Slide 77: Stealing Frames
	Slide 78: Stealing Frames
	Slide 79: Stealing Frames
	Slide 80: Synchronizing Thieves and Workers
	Slide 81: Synchronizing Thieves and Workers
	Slide 82: Synchronizing Thieves and Workers
	Slide 83: Synchronizing Thieves and Workers
	Slide 84: Popping the Deque
	Slide 85: Popping the Deque
	Slide 86: Popping the Deque
	Slide 87: The THE Protocol
	Slide 88: The THE Protocol
	Slide 89: The THE Protocol
	Slide 90: The THE Protocol
	Slide 91: The THE Protocol
	Slide 92: The THE Protocol
	Slide 93: The THE Protocol
	Slide 94: Successful Steal
	Slide 95: Successful Steal
	Slide 96: Successful Steal
	Slide 97: Successful Steal
	Slide 98: Saving and Restoring Processor State
	Slide 99: Saving and Restoring Processor State
	Slide 100: Saving and Restoring Processor State
	Slide 101: Deque References to Frames
	Slide 102: Deque References to Frames
	Slide 103: Deque References to Frames
	Slide 104: Syncs: The Full-Frame Tree
	Slide 105: Semantics of Sync
	Slide 106: Nested Synchronization
	Slide 107: Nested Synchronization
	Slide 108: Full-Frame Tree
	Slide 109: Full-Frame Data
	Slide 110: Maintaining the Full-Frame Tree
	Slide 111: Maintaining the Full-Frame Tree
	Slide 112: Maintaining the Full-Frame Tree
	Slide 113: Maintaining the Full-Frame Tree
	Slide 114: Maintaining the Full-Frame Tree
	Slide 115: Maintaining the Full-Frame Tree
	Slide 116: Maintaining the Full-Frame Tree
	Slide 117: Maintaining the Full-Frame Tree
	Slide 118: Maintaining the Full-Frame Tree
	Slide 119: Maintaining the Full-Frame Tree
	Slide 120: Maintaining the Full-Frame Tree
	Slide 121: Maintaining the Full-Frame Tree
	Slide 122: Maintaining the Full-Frame Tree
	Slide 123: Maintaining the Full-Frame Tree
	Slide 124: Maintaining the Full-Frame Tree
	Slide 125: Maintaining the Full-Frame Tree
	Slide 126: Maintaining the Full-Frame Tree
	Slide 127: Maintaining the Full-Frame Tree
	Slide 128: Maintaining the Full-Frame Tree
	Slide 129: Maintaining the Full-Frame Tree
	Slide 130: Maintaining the Full-Frame Tree
	Slide 131: Common Case for Sync
	Slide 132: Common Case for Sync
	Slide 133: Common Case for Sync
	Slide 134: Managing the Full-Frame Tree: Sync
	Slide 135: Managing the Full-Frame Tree: Sync
	Slide 136: Compiled Code for Sync
	Slide 137: Compiled Code for Sync
	Slide 138: Compiled Code for Sync
	Slide 139: Design Choices
	Slide 140: The Work-First Principle
	Slide 141: Division of Labor
	Slide 142: Division of Labor
	Slide 143: Choice of Whom / What to Steal
	Slide 144: Choice of Whom / What to Steal
	Slide 145: Choice of Whom / What to Steal
	Slide 146: Choice of Whom / What to Steal
	Slide 147: Spawn Semantics
	Slide 148: Spawn Semantics
	Slide 149: Issues with Child-Stealing: Space
	Slide 150: Continuation-Stealing vs Child-Stealing
	Slide 151: Continuation-Stealing vs Child-Stealing

