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What is Algorithm Engineering?

• Algorithm design
• Algorithm analysis
• Algorithm implementation
• Optimization
• Profiling
• Experimental evaluation

Theory Practice

O(n log n)
O(n)

O(log n)
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O(n log n)
O(n)

O(log n)

• Good empirical performance
• Confidence that algorithms will perform well in many 
different settings
• Ability to predict performance (e.g., in real-time 
applications)
• Important to develop theoretical models to capture 
properties of technologies

Use theory to inform practice and 
practice to inform theory.

Bridging Theory and Practice
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Brief History
• In early days, implementing algorithms designed was 

standard practice 
• 1970s-1980s: Algorithm theory is a subdiscipline in 

CS mostly devoted to ”paper and pencil” work
• Late 1980s-1990s: Researchers began noticing gaps 

between theory and practice
• 1997: First Workshop on Algorithm Engineering 

(WAE) by P. Italiano (now part of ESA)
• 1998: Meeting on Algorithm Engineering & 

Experiments (ALENEX)
• 2003: annual Workshop on Experimental Algorithms 

(WEA), now Symposium on Experimental Algorithms 
(SEA)

• Nowadays many conferences have papers on 
algorithm engineering
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What is Algorithm Engineering?

Source: “Algorithm Engineering – An Attempt at a Definition”, Peter Sanders
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Models of Computation
• Random-Access Machine (RAM)
∙ Infinite memory
∙ Arithmetic operations, logical operations, and 

memory accesses take O(1) time
∙ Most sequential algorithms are designed using this 

model (6.006/6.046)
• Nowadays computers are much more 

complex
∙ Deep cache hierarchies
∙ Instruction level parallelism
∙ Multiple cores
∙ Disk if input doesn’t fit in memory
∙ Read and write costs are not necessary the same
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Algorithm Design & Analysis

• Constant factors matter!
• Avoid unnecessary computations
• Simplicity improves applicability and can 

lead to better performance
• Think about locality and parallelism
• Think both about worst-case and real-

world inputs
• Use theory as a guide to find practical 

algorithms
• Time vs. space tradeoffs
• Work vs. parallelism tradeoffs

Algorithm 1
N log2 N

Algorithm 2
1000 NComplexity
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Implementation
• Write clean, modular code
∙ Easier to experiment with different methods, and 

can save a lot of development time
• Write correctness checkers
∙ Especially important in numerical and geometric 

applications due to floating-point arithmetic, 
possibly leading to different results

• Save previous versions of your code!
∙ Version control helps with this
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Experimentation
• Instrument code with timers and use 

performance profilers (e.g., perf, gprof, 
valgrind)

• Use large variety of inputs (both real-world 
and synthetic)
∙ Use different sizes
∙ Use worst-case inputs to identify correctness or 

performance issues
• Reproducibility
∙ Document environmental setup
∙ Fix random seeds if needed

• Run multiple times to deal with variance
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Experimentation II
• For parallel code, test on varying number of 

processors to study scalability
• Compare with best serial code for problem
• For reproducibility, write deterministic 

parallel code if possible 
∙ Or make it easy to turn off non-determinism

• Use numactl to control NUMA effects on 
multi-socket machines

• Useful tools: Cilkscale, Cilksan
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Libraries and Frameworks

• Use efficient building blocks from existing 
libraries/frameworks when appropriate

• Contribute to existing libraries/frameworks or develop 
your own to help others and improve applicability
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COURSE INFORMATION
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Course Information
• Graduate-level class
∙ Undergraduates who have taken 6.122 (6.046) 

and 6.106 (6.172) are welcome
• Lectures: Tuesday/Thursday 11am-

12:30pm ET in 3-370
• Instructor: 
∙ Julian Shun (jshun@mit.edu)

• TA
∙ Amy Hu (amyhu@mit.edu) 

• Units: 3-0-9
• We will use Piazza for communication
• Office hours by appointment

mailto:jshun@mit.edu
mailto:asbiswas@mit.edu
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Course Website
https://people.csail.mit.edu/jshun/6506-s24/

https://people.csail.mit.edu/jshun/6886-s19/
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Grading

Grading Breakdown
Paper Reviews 20%
Problem Set 10%
Paper Presentations 15%
Research Project 45%
Class Participation 10%

You must complete all assignments to pass the class.
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Paper Presentations
• Cover content from 2 research papers each lecture
• 25-30 minute student presentation + Q&A per paper
∙ Discuss motivation for the problem solved
∙ Key technical ideas
∙ Theoretical/experimental results
∙ Related work
∙ Strengths/weaknesses
∙ Directions for future work
∙ Include several questions for discussion
∙ Presentation should cover necessary background to 

understand paper (you may have to read related papers)
∙ Make slides but may use the whiteboard for theory

• Student presentations begin next Tuesday
• Sign-up sheet will be released soon
• Please sign up even if you are a listener
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Paper Reviews

• Submit one paper review for each lecture
∙ Starting next week
∙ Cover motivation, key ideas, results, novelty, 

strengths/weaknesses, your ideas for improving 
the techniques or evaluation, any open 
problems or directions for further work

∙ Submit on Canvas by 10am ET on the day of 
each lecture (before we cover the papers)
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Problem Set

• Complete a problem set on parallel 
algorithms
∙ To be released this week and due on Monday 

3/4
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Research Project

• Open-ended research project to be done in 
groups of 1-3 people

• Some ideas
∙ Implementation of non-trivial algorithms
∙ Analyzing/optimizing performance of existing algorithms
∙ Designing new theoretically and/or practically efficient 

algorithms
∙ Applying algorithms in the context of larger applications
∙ Improving or designing algorithm frameworks or libraries, 

parallel runtime systems, or software productivity tools
∙ Any topic may involve parallelism, cache-efficiency, I/O-

efficiency, and memory-efficiency
• Must contain an implementation component
• Can be related to research that you are doing
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Project Timeline
Assignment Due Date
Pre-proposal meeting 3/5
Proposal 3/15
Weekly progress reports 3/22, 4/5, 4/12, 4/19, 4/26, 5/3, 5/10
Mid-term report 4/16
Project presentations 5/14
Final report 5/14

• Pre-proposal meeting
∙ 15-minute meeting to run ideas by instructors

• Computing resources for the project
∙ Sign up for Google Cloud Platform for free cloud 

computing credits
∙ Talk to instructor if you need additional credits
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PARALLELISM
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Parallelism

Parallel machines are everywhere!

Data is becoming very large!

1.4 billion vertices
6.6 billion edges

(38 GB)

3.5 billion vertices
128 billion edges

(540 GB)

41 million vertices
1.5 billion edges

(6.3 GB)

Can rent machines on AWS with up to 
224 cores (448 hyper-threads) and 24TB of RAM
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Parallelism Models
• Work = number of vertices in graph 

(number of operations)
• Span (depth) = longest directed 

path in graph (dependence length)
• Running time ≤ (Work/#processors) 

+ O(Span)
• A work-efficient parallel algorithm 

has work that asymptotically 
matches that of the best sequential 
algorithm for the problem

Computation graph

Goal 1: work-efficient and low 
(polylogarithmic) span algorithms

Goal 2: simple, practical, 
and cache-friendly
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Cilk Scheduling

• Manually scheduling threads is difficult
• Cilk work-stealing scheduler
∙ How can we translate work and depth bounds into 

efficient parallel running times in theory and practice?

P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

spawn
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GRAPHS
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What is a graph?

• Vertices model objects
• Edges model relationships between objects

EdgeVertex Vertex

Alice Bob

Carol David

Eve

Fred Greg

Hannah
https://commons.wikimedia.org/wiki/File:Protein_Interaction_Net
work_for_TMEM8A.png

Julian
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Graph Representations
• Graph has n vertices and m edges
• Vertices labeled from 0 to n-1

0 1 0 0 0

1 0 0 1 1

0 0 0 1 0

0 1 1 0 0

0 1 0 0 0

Adjacency matrix
(“1” if edge exists, 

“0” otherwise)

0 1 2 3 4

0

1

3
2

4

Edge list

(0,1)
(1,0)
(1,3)
(1,4)
(2,3)
(3,1)
(3,2)
(4,1)

• O(n2) space for adjacency matrix
• O(m) space for edge list
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Graph Representations
• Adjacency list
∙ Array of pointers (one per vertex)
∙ Each vertex has an unordered list of its edges

• Space requirement is O(n+m)
• Can substitute linked lists with arrays for 

better cache performance
∙ Tradeoff: more expensive to update graph
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Graph Representations
• Compressed sparse row (CSR)
∙ Two arrays: Offsets and Edges
∙ Offsets[i] stores the offset of where vertex i’s 

edges start in Edges

0 4 5 11

2 7 9 16 0 1 6 9 12

... 

... 

Offsets

Edges

Vertex IDs        0          1          2         3

• How do we know the degree of a vertex?
• Space usage is O(n+m)
• Can also store weights on the edges with an 

additional array or interleaved with Edges
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Tradeoffs in Graph Representations

• What is the cost of different operations?
Adjacency 

matrix
Edge list Adjacency list 

(linked list)
Compressed
sparse row

Storage cost / 
scanning 

whole graph

O(n2) O(m) O(m+n) O(m+n)

Add edge O(1) O(1) O(1) O(m+n)
Delete edge 

from vertex v
O(1) O(m) O(deg(v)) O(m+n)

Finding all 
neighbors of a 

vertex v

O(n) O(m) O(deg(v)) O(deg(v))

Finding if w is 
a neighbor of v

O(1) O(m) O(deg(v)) O(deg(v))

• There are variants/combinations of 
these representations
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BREADTH-FIRST SEARCH
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Breadth-First Search (BFS)
• Given a source vertex s, visit the 

vertices in order of distance from s
• Possible outputs:
∙ Vertices in the order they were visited

■ D, B, C, E, A
∙ The distance from each vertex to s

∙ A BFS tree, where each vertex has a 
parent to a neighbor in the previous 
level

A

B

C

D

E

2 1 1 0 1
A B C D E

A

B

C

D

E

BFS tree
source = D

Applications

Betweenness
centrality

Eccentricity 
estimation

Maximum flow

Web crawlers
Network 

broadcasting
Cycle detection

…
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Sequential BFS Algorithm

Source: https://en.wikipedia.org/wiki/Breadth-first_search 

• What is the running time of BFS?
∙ Each node is enqueued and dequeued once: O(n)
∙ Each edge is visited once in each direction: O(m)

• Total: O(n+m)
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Sequential BFS Algorithm
• Assume graph is given in compressed 

sparse row format
∙ Two arrays: Offsets and Edges
∙ n vertices and m edges (assume Offsets[n] = m)

int* parent = 
 (int*) malloc(sizeof(int)*n);
int* queue = 
 (int*) malloc(sizeof(int)*n);

for(int i=0; i<n; i++) {
   parent[i] = -1;
}

queue[0] = source;
parent[source] = source;

int q_front = 0, q_back = 1;

//while queue not empty
while(q_front != q_back) {
   int current = queue[q_front++]; //dequeue
   int degree = 
 Offsets[current+1]-Offsets[current];
   for(int i=0;i<degree; i++) {
 int ngh = Edges[Offsets[current]+i];
 //check if neighbor has been visited
 if(parent[ngh] == -1) {
     parent[ngh] = current;
     //enqueue neighbor
     queue[q_back++] = ngh;
 }
   }
}

• What is the most expensive part of the code?
∙ Random accesses cost more than sequential accesses

Total of m 
random accesses
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Analyzing the program

• What if we can fit a bitvector of size n in cache?
∙ Might reduce the number of cache misses
∙ More computation to do bit manipulation

int* parent = 
 (int*) malloc(sizeof(int)*n);
int* queue = 
 (int*) malloc(sizeof(int)*n);

for(int i=0; i<n; i++) {
   parent[i] = -1;
}

queue[0] = source;
parent[source] = source;

int q_front = 0; q_back = 1;

//while queue not empty
while(q_front != q_back) {
   int current = queue[q_front++]; //dequeue
   int degree = 
 Offsets[current+1]-Offsets[current];
   for(int i=0;i<degree; i++) {
 int ngh = Edges[Offsets[current]+i];
 //check if neighbor has been visited
 if(parent[ngh] == -1) {
     parent[ngh] = current;
     //enqueue neighbor
     queue[q_back++] = ngh;
 }
   }
}

Check bitvector first before 
accessing parent array

n cache misses 
instead of m
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BFS with bitvector
int* parent = 
 (int*) malloc(sizeof(int)*n);
int* queue = 
 (int*) malloc(sizeof(int)*n);
int nv = 1+n/32;
int* visited = 
 (int*) malloc(sizeof(int)*nv);

for(int i=0; i<n; i++) {
   parent[i] = -1;
}

for(int i=0; i<nv; i++) {
   visited[i] = 0;
}

queue[0] = source;
parent[source] = source;
visited[source/32] 
   = (1 << (source % 32));

int q_front = 0; q_back = 1;

//while queue not empty
while(q_front != q_back) {
   int current = queue[q_front++]; //dequeue
   int degree = 
 Offsets[current+1]-Offsets[current];
   for(int i=0;i<degree; i++) {
      int ngh = Edges[Offsets[current]+i];
      //check if neighbor has been visited
      if(!((1 << ngh%32) & visited[ngh/32])){
  visited[ngh/32] |= (1 << (ngh%32));
  parent[ngh] = current;
  //enqueue neighbor
  queue[q_back++] = ngh;
      }
   }
}

• Bitvector version is 
faster for large enough 
values of m 
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DEPTH-FIRST SEARCH
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Depth-First Search (DFS)
• Explores edges out of the most 

recently discovered vertex
• Possible outputs:
∙ Depth-first forest
∙ Vertices in the order they were first 

visited (preordering)
∙ Vertices in the order they were last 

visited (postordering)
∙ Reverse postordering

source = D

Applications

Topological sort

Solving mazes
Biconnected
components

Strongly connected 
components

Cycle detection

…

1

2

3
4 8 Preorder: D, B, A, C, E

Postorder: C, A, B, E, D
Reverse postorder: D, E, B, A, CA

B

C

D

E

/10

/7

/6
/5 /9

DFS requires O(n+m) work on n 
vertices and m edges
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TOPOLOGICAL SORT
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Topological Sort
• Given a directed acyclic graph, output the 

vertices in an order such that all 
predecessors of a vertex appear before it
∙ Application: scheduling tasks with dependencies 

(e.g., parallel computing, Makefile)
• Solution: output vertices in reverse 

postorder in DFS

A

B

C

D

E

source = D

1/10

2/7

3/6
4/5 8/9

Reverse postorder: D, E, B, A, C
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SHORTEST PATHS
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Single-Source Shortest Paths
• Given a weighted graph and a source vertex, 

output the distance from the source vertex to 
every vertex

• Non-negative weights
∙ Dijkstra’s algorithm
∙ O(m + n log n) work using Fibonacci heap

• General weights
∙ Bellman-Ford algorithm
∙ O(mn) work
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Dijkstra’s Algorithm

• O((m+n)log n) work using normal heap
• O(m + n log n) work using Fibonacci heap
∙ Extract-min takes O(log n) work but decreasing 

priority only takes O(1) work (amortized)
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Bellman-Ford Algorithm
Bellman-Ford(G, source):

ShortestPaths = {∞, ∞, …, ∞} //size n; stores shortest path distances
ShortestPaths[source] = 0
for i=1 to n:

for each vertex v in G:
for each w in neighbors(v):

if(ShortestPaths[v] + weight(v,w) < ShortestPaths[w]):
ShortestPaths[w] = ShortestPaths[v] + weight(v,w)

if no shortest paths changed:
return ShortestPaths

report “negative cycle”

• At most O(n) rounds, each doing O(n+m) 
work

• Total work = O(mn)
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More Graph Algorithms
• We will study algorithms for particular 

problems
∙ Parallelism, cache-efficiency, dynamic updates

Breadth-first search Betweenness centrality
PageRank Spanning forest

Low-diameter decomposition Maximal independent set

Connected components Graph clustering
Graph neural networks Subgraph matching
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GRAPH PROCESSING
FRAMEWORKS



© 2018-2024 MIT Algorithm Engineering Instructors 47

Graph Processing Frameworks

Graph processing frameworks/libraries
Pregel, Giraph, GPS, GraphLab, PowerGraph, PRISM, Pegasus, Knowledge Discovery 
Toolbox, CombBLAS, GraphChi, GraphX, Galois, X-Stream, Gunrock, GraphMat, 
Ringo, TurboGraph, TurboGraph++, FlashGraph, Grace, PathGraph, Polymer, GPSA, 
GoFFish, Blogel, LightGraph, MapGraph, PowerLyra, PowerSwitch, Imitator, XDGP, 
Signal/Collect, PrefEdge, EmptyHeaded, Gemini, Wukong, Parallel BGL, KLA, Grappa, 
Chronos, Green-Marl, GraphHP, P++, LLAMA, Venus, Cyclops, Medusa, NScale, 
Neo4J, Trinity, GBase, HyperGraphDB, Horton, GSPARQL, Titan, ZipG, Cagra, Milk, 
Ligra, Ligra+, Julienne, GraphPad, Mosaic, BigSparse, Graphene, Mizan, Green-Marl, 
PGX, PGX.D, Wukong+S, Stinger, cuStinger, Distinger, Hornet, GraphIn, Tornado, 
Bagel, KickStarter, Naiad, Kineograph, GraphMap, Presto, Cube, Giraph++, Photon, 
TuX2, GRAPE, GraM, Congra, MTGL, GridGraph, NXgraph, Chaos, Mmap, Clip, Floe, 
GraphGrind, DualSim, ScaleMine, Arabesque, GraMi, SAHAD, Facebook TAO, 
Weaver, G-SQL, G-SPARQL, gStore, Horton+, S2RDF, Quegel, EAGRE, Shape, RDF-
3X, CuSha, Garaph, Totem, GTS, Frog, GBTL-CUDA, Graphulo, Zorro, Coral, 
GraphTau, Wonderland, GraphP, GraphIt, GraPu, GraphJet, ImmortalGraph, LA3, 
CellIQ, AsyncStripe, Cgraph, GraphD, GraphH, ASAP, RStream, and many others…

• Provides high-level primitives for graph algorithms
• Reduce programming effort of writing efficient 

parallel graph programs
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DYNAMIC GRAPHS
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Dynamic Graphs

• Many graphs are changing over time
∙ Adding/deleting connections on social networks
∙ Traffic conditions changing
∙ Communication networks (email, IMs)
∙ World Wide Web
∙ Content sharing (Youtube, Flickr, Pinterest)

• Need graph data structures that allow for 
efficient updates (in parallel)

• Need (parallel) algorithms that respond to 
changes without re-computing from scratch
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COMPRESSION
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Large Graphs

1.4 billion vertices
6.6 billion edges

(38 GB)

3.5 billion vertices
128 billion edges

(540 GB)

• What if you cannot fit a graph on your machine?
• Cost of machines increases with memory size

Ru
nn

in
g 

Ti
m

e

Memory Required

Available RAM

Graph Compression

41 million vertices
1.5 billion edges

(6.3 GB)
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Graph Compression on CSR

0 4 5 11

2 7 9 16 0 1 6 9 12

... 

... 

Offsets

Edges

2 5 2 7 -1 -1 5 3 3 ... 
Compressed

Edges

Vertex IDs        0          1          2         3
Sort edges and encode 

differences

2 - 0 = 2 7 - 2 = 5 1 - 2 = -1 

• For each vertex v:
• First edge: difference is Edges[Offsets[v]]-v
• i’th edge (i>1): difference is Edges[Offsets[v]+i]-

Edges[Offsets[v]+i-1]
• Want to use fewer than 32 or 64 bits per value
• Compression can improve running time
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• Reassign IDs to vertices to improve locality
∙ Goal: Make vertex IDs close to their neighbors’ IDs 

and neighbors’ IDs close to each other

Graph Reordering

• Can improve compression rate due to smaller 
“differences”

• Can improve performance due to higher cache 
hit rate

• Various methods: BFS, DFS, METIS, degree, etc.

4 1

0 2

3 0 3

1 2

4

Sum of differences = 23 Sum of differences = 20 

55
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CACHE-EFFICIENCY AND
I/O-EFFICIENCY
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Cache Hierarchies

Memory level Approx latency
L1 Cache 1-2ns
L2 Cache 3-5ns
L3 cache 12-40ns
DRAM 60-100ns

Design cache-
efficient and cache-
oblivious algorithms 
to improve locality
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I/O Efficiency

• Need to read input from disk at least once
• May need to read many more times if input 

doesn’t fit in memory
Memory Latency Throughput
DRAM 60-100 ns Tens of GB/s
SSD Tens of µs 500 MB-2 GB/s (seq), 50-200 MB/s (rand)
HDD Tens of ms 200 MB/s (seq), 1 MB/s (rand)

Source: https://www.pcgamer.com/hard-drive-vs-ssd-performance/2/
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SORTING ALGORITHMS
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Sorting

• Lots of research on engineering sorting 
algorithms

• Will study parallel comparison sorting and 
integer sorting algorithms

• http://sortbenchmark.org/

http://sortbenchmark.org/
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JOINS AND AGGREGATION
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Joins and Aggregation

• JOIN and GROUPBY are two of the most 
expensive operations in database systems

• We will study algorithms and optimizations 
for these operations (in main-memory)
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STENCIL COMPUTATIONS
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Stencil Computations
• Computations that iteratively update data 

based on a fixed pattern (stencil)
∙ For example, can be used to 

approximately solve heat equation
• We will study algorithms for

stencil computations that 
improve on work, parallelism, and 
cache-efficiency over standard
approaches

Source: https://en.wikipedia.org/wiki/Iterative_Stencil_Loops
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CLUSTERING
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Clustering

• Group “similar” objects 
together, and separate 
“dissimilar” objects 

• Can be applied to graph data 
and spatial data

• Applications: Community 
detection, bioinformatics, 
parallel/distributed 
processing, visualization, 
image segmentation, anomaly 
detection, document analysis, 
machine learning, etc. 
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GRAPH NEURAL NETWORKS
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Graph Neural Networks (GNNs)

• Traditional neural networks have a fixed 
topology, but in GNNs the topology is the graph
∙ Repeatedly pass messages to neighbors, and 

aggregate messages received to update node
∙ Each node has a different computation graph!
∙ Many different graph neural networks, based on how 

they pass and aggregate messages
∙ We’ll study some high-performance GNN approaches

Source: https://snap-stanford.github.io/cs224w-notes/machine-learning-with-networks/graph-neural-networks

Can be neural networks
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Summary

• Lots of exciting research going on in 
algorithm engineering!

• Take this course to learn about latest results 
and try out research in the area

O(n log n)
O(n)

O(log n)


