
6.506:
Algorithm
Engineering

© 2018-2024 MIT Algorithm Engineering Instructors 1

LECTURE 1
Introduction
Julian Shun
February 6, 2024

© 2018-2024 MIT Algorithm Engineering Instructors 2

What is Algorithm Engineering?

• Algorithm design
• Algorithm analysis
• Algorithm implementation
• Optimization
• Profiling
• Experimental evaluation

Theory Practice

O(n log n)
O(n)

O(log n)

© 2018-2024 MIT Algorithm Engineering Instructors 3

O(n log n)
O(n)

O(log n)

• Good empirical performance
• Confidence that algorithms will perform well in many
different settings
• Ability to predict performance (e.g., in real-time
applications)
• Important to develop theoretical models to capture
properties of technologies

Use theory to inform practice and
practice to inform theory.

Bridging Theory and Practice

© 2018-2024 MIT Algorithm Engineering Instructors 4

Brief History
• In early days, implementing algorithms designed was

standard practice
• 1970s-1980s: Algorithm theory is a subdiscipline in

CS mostly devoted to ”paper and pencil” work
• Late 1980s-1990s: Researchers began noticing gaps

between theory and practice
• 1997: First Workshop on Algorithm Engineering

(WAE) by P. Italiano (now part of ESA)
• 1998: Meeting on Algorithm Engineering &

Experiments (ALENEX)
• 2003: annual Workshop on Experimental Algorithms

(WEA), now Symposium on Experimental Algorithms
(SEA)

• Nowadays many conferences have papers on
algorithm engineering

© 2018-2024 MIT Algorithm Engineering Instructors 5

What is Algorithm Engineering?

Source: “Algorithm Engineering – An Attempt at a Definition”, Peter Sanders

© 2018-2024 MIT Algorithm Engineering Instructors 6

Models of Computation
• Random-Access Machine (RAM)
∙ Infinite memory
∙ Arithmetic operations, logical operations, and

memory accesses take O(1) time
∙ Most sequential algorithms are designed using this

model (6.006/6.046)
• Nowadays computers are much more

complex
∙ Deep cache hierarchies
∙ Instruction level parallelism
∙ Multiple cores
∙ Disk if input doesn’t fit in memory
∙ Read and write costs are not necessary the same

© 2018-2024 MIT Algorithm Engineering Instructors 7

Algorithm Design & Analysis

• Constant factors matter!
• Avoid unnecessary computations
• Simplicity improves applicability and can

lead to better performance
• Think about locality and parallelism
• Think both about worst-case and real-

world inputs
• Use theory as a guide to find practical

algorithms
• Time vs. space tradeoffs
• Work vs. parallelism tradeoffs

Algorithm 1
N log2 N

Algorithm 2
1000 NComplexity

© 2018-2024 MIT Algorithm Engineering Instructors 8

Implementation
• Write clean, modular code
∙ Easier to experiment with different methods, and

can save a lot of development time
• Write correctness checkers
∙ Especially important in numerical and geometric

applications due to floating-point arithmetic,
possibly leading to different results

• Save previous versions of your code!
∙ Version control helps with this

© 2018-2024 MIT Algorithm Engineering Instructors 9

Experimentation
• Instrument code with timers and use

performance profilers (e.g., perf, gprof,
valgrind)

• Use large variety of inputs (both real-world
and synthetic)
∙ Use different sizes
∙ Use worst-case inputs to identify correctness or

performance issues
• Reproducibility
∙ Document environmental setup
∙ Fix random seeds if needed

• Run multiple times to deal with variance

© 2018-2024 MIT Algorithm Engineering Instructors 10

Experimentation II
• For parallel code, test on varying number of

processors to study scalability
• Compare with best serial code for problem
• For reproducibility, write deterministic

parallel code if possible
∙ Or make it easy to turn off non-determinism

• Use numactl to control NUMA effects on
multi-socket machines

• Useful tools: Cilkscale, Cilksan

© 2018-2024 MIT Algorithm Engineering Instructors 11

Libraries and Frameworks

• Use efficient building blocks from existing
libraries/frameworks when appropriate

• Contribute to existing libraries/frameworks or develop
your own to help others and improve applicability

© 2018-2024 MIT Algorithm Engineering Instructors 12

COURSE INFORMATION

© 2018-2024 MIT Algorithm Engineering Instructors 13

Course Information
• Graduate-level class
∙ Undergraduates who have taken 6.122 (6.046)

and 6.106 (6.172) are welcome
• Lectures: Tuesday/Thursday 11am-

12:30pm ET in 3-370
• Instructor:
∙ Julian Shun (jshun@mit.edu)

• TA
∙ Amy Hu (amyhu@mit.edu)

• Units: 3-0-9
• We will use Piazza for communication
• Office hours by appointment

mailto:jshun@mit.edu
mailto:asbiswas@mit.edu

© 2018-2024 MIT Algorithm Engineering Instructors 14

Course Website
https://people.csail.mit.edu/jshun/6506-s24/

https://people.csail.mit.edu/jshun/6886-s19/

© 2018-2024 MIT Algorithm Engineering Instructors 15

Grading

Grading Breakdown
Paper Reviews 20%
Problem Set 10%
Paper Presentations 15%
Research Project 45%
Class Participation 10%

You must complete all assignments to pass the class.

© 2018-2024 MIT Algorithm Engineering Instructors 16

Paper Presentations
• Cover content from 2 research papers each lecture
• 25-30 minute student presentation + Q&A per paper
∙ Discuss motivation for the problem solved
∙ Key technical ideas
∙ Theoretical/experimental results
∙ Related work
∙ Strengths/weaknesses
∙ Directions for future work
∙ Include several questions for discussion
∙ Presentation should cover necessary background to

understand paper (you may have to read related papers)
∙ Make slides but may use the whiteboard for theory

• Student presentations begin next Tuesday
• Sign-up sheet will be released soon
• Please sign up even if you are a listener

© 2018-2024 MIT Algorithm Engineering Instructors 17

Paper Reviews

• Submit one paper review for each lecture
∙ Starting next week
∙ Cover motivation, key ideas, results, novelty,

strengths/weaknesses, your ideas for improving
the techniques or evaluation, any open
problems or directions for further work

∙ Submit on Canvas by 10am ET on the day of
each lecture (before we cover the papers)

© 2018-2024 MIT Algorithm Engineering Instructors 18

Problem Set

• Complete a problem set on parallel
algorithms
∙ To be released this week and due on Monday

3/4

© 2018-2024 MIT Algorithm Engineering Instructors 19

Research Project

• Open-ended research project to be done in
groups of 1-3 people

• Some ideas
∙ Implementation of non-trivial algorithms
∙ Analyzing/optimizing performance of existing algorithms
∙ Designing new theoretically and/or practically efficient

algorithms
∙ Applying algorithms in the context of larger applications
∙ Improving or designing algorithm frameworks or libraries,

parallel runtime systems, or software productivity tools
∙ Any topic may involve parallelism, cache-efficiency, I/O-

efficiency, and memory-efficiency
• Must contain an implementation component
• Can be related to research that you are doing

© 2018-2024 MIT Algorithm Engineering Instructors 20

Project Timeline
Assignment Due Date
Pre-proposal meeting 3/5
Proposal 3/15
Weekly progress reports 3/22, 4/5, 4/12, 4/19, 4/26, 5/3, 5/10
Mid-term report 4/16
Project presentations 5/14
Final report 5/14

• Pre-proposal meeting
∙ 15-minute meeting to run ideas by instructors

• Computing resources for the project
∙ Sign up for Google Cloud Platform for free cloud

computing credits
∙ Talk to instructor if you need additional credits

© 2018-2024 MIT Algorithm Engineering Instructors 21

PARALLELISM

© 2018-2024 MIT Algorithm Engineering Instructors 22

Parallelism

Parallel machines are everywhere!

Data is becoming very large!

1.4 billion vertices
6.6 billion edges

(38 GB)

3.5 billion vertices
128 billion edges

(540 GB)

41 million vertices
1.5 billion edges

(6.3 GB)

Can rent machines on AWS with up to
224 cores (448 hyper-threads) and 24TB of RAM

© 2018-2024 MIT Algorithm Engineering Instructors 23

Parallelism Models
• Work = number of vertices in graph

(number of operations)
• Span (depth) = longest directed

path in graph (dependence length)
• Running time ≤ (Work/#processors)

+ O(Span)
• A work-efficient parallel algorithm

has work that asymptotically
matches that of the best sequential
algorithm for the problem

Computation graph

Goal 1: work-efficient and low
(polylogarithmic) span algorithms

Goal 2: simple, practical,
and cache-friendly

© 2018-2024 MIT Algorithm Engineering Instructors 24

Cilk Scheduling

• Manually scheduling threads is difficult
• Cilk work-stealing scheduler
∙ How can we translate work and depth bounds into

efficient parallel running times in theory and practice?

P

spawn
call
call
call

spawn

P

spawn

PP

call
spawn

call
call

spawn
call

spawn
spawn

spawn

© 2018-2024 MIT Algorithm Engineering Instructors 25

GRAPHS

© 2018-2024 MIT Algorithm Engineering Instructors 26

What is a graph?

• Vertices model objects
• Edges model relationships between objects

EdgeVertex Vertex

Alice Bob

Carol David

Eve

Fred Greg

Hannah
https://commons.wikimedia.org/wiki/File:Protein_Interaction_Net
work_for_TMEM8A.png

Julian

© 2018-2024 MIT Algorithm Engineering Instructors 27

Graph Representations
• Graph has n vertices and m edges
• Vertices labeled from 0 to n-1

0 1 0 0 0

1 0 0 1 1

0 0 0 1 0

0 1 1 0 0

0 1 0 0 0

Adjacency matrix
(“1” if edge exists,

“0” otherwise)

0 1 2 3 4

0

1

3
2

4

Edge list

(0,1)
(1,0)
(1,3)
(1,4)
(2,3)
(3,1)
(3,2)
(4,1)

• O(n2) space for adjacency matrix
• O(m) space for edge list

© 2018-2024 MIT Algorithm Engineering Instructors 28

Graph Representations
• Adjacency list
∙ Array of pointers (one per vertex)
∙ Each vertex has an unordered list of its edges

• Space requirement is O(n+m)
• Can substitute linked lists with arrays for

better cache performance
∙ Tradeoff: more expensive to update graph

© 2018-2024 MIT Algorithm Engineering Instructors 29

Graph Representations
• Compressed sparse row (CSR)
∙ Two arrays: Offsets and Edges
∙ Offsets[i] stores the offset of where vertex i’s

edges start in Edges

0 4 5 11

2 7 9 16 0 1 6 9 12

...

...

Offsets

Edges

Vertex IDs 0 1 2 3

• How do we know the degree of a vertex?
• Space usage is O(n+m)
• Can also store weights on the edges with an

additional array or interleaved with Edges

© 2018-2024 MIT Algorithm Engineering Instructors 30

Tradeoffs in Graph Representations

• What is the cost of different operations?
Adjacency

matrix
Edge list Adjacency list

(linked list)
Compressed
sparse row

Storage cost /
scanning

whole graph

O(n2) O(m) O(m+n) O(m+n)

Add edge O(1) O(1) O(1) O(m+n)
Delete edge

from vertex v
O(1) O(m) O(deg(v)) O(m+n)

Finding all
neighbors of a

vertex v

O(n) O(m) O(deg(v)) O(deg(v))

Finding if w is
a neighbor of v

O(1) O(m) O(deg(v)) O(deg(v))

• There are variants/combinations of
these representations

© 2018-2024 MIT Algorithm Engineering Instructors 31

BREADTH-FIRST SEARCH

© 2018-2024 MIT Algorithm Engineering Instructors 32

Breadth-First Search (BFS)
• Given a source vertex s, visit the

vertices in order of distance from s
• Possible outputs:
∙ Vertices in the order they were visited

■ D, B, C, E, A
∙ The distance from each vertex to s

∙ A BFS tree, where each vertex has a
parent to a neighbor in the previous
level

A

B

C

D

E

2 1 1 0 1
A B C D E

A

B

C

D

E

BFS tree
source = D

Applications

Betweenness
centrality

Eccentricity
estimation

Maximum flow

Web crawlers
Network

broadcasting
Cycle detection

…

© 2018-2024 MIT Algorithm Engineering Instructors 33

Sequential BFS Algorithm

Source: https://en.wikipedia.org/wiki/Breadth-first_search

• What is the running time of BFS?
∙ Each node is enqueued and dequeued once: O(n)
∙ Each edge is visited once in each direction: O(m)

• Total: O(n+m)

© 2018-2024 MIT Algorithm Engineering Instructors 34

Sequential BFS Algorithm
• Assume graph is given in compressed

sparse row format
∙ Two arrays: Offsets and Edges
∙ n vertices and m edges (assume Offsets[n] = m)

int* parent =
 (int*) malloc(sizeof(int)*n);
int* queue =
 (int*) malloc(sizeof(int)*n);

for(int i=0; i<n; i++) {
 parent[i] = -1;
}

queue[0] = source;
parent[source] = source;

int q_front = 0, q_back = 1;

//while queue not empty
while(q_front != q_back) {
 int current = queue[q_front++]; //dequeue
 int degree =
 Offsets[current+1]-Offsets[current];
 for(int i=0;i<degree; i++) {
 int ngh = Edges[Offsets[current]+i];
 //check if neighbor has been visited
 if(parent[ngh] == -1) {
 parent[ngh] = current;
 //enqueue neighbor
 queue[q_back++] = ngh;
 }
 }
}

• What is the most expensive part of the code?
∙ Random accesses cost more than sequential accesses

Total of m
random accesses

© 2018-2024 MIT Algorithm Engineering Instructors 35

Analyzing the program

• What if we can fit a bitvector of size n in cache?
∙ Might reduce the number of cache misses
∙ More computation to do bit manipulation

int* parent =
 (int*) malloc(sizeof(int)*n);
int* queue =
 (int*) malloc(sizeof(int)*n);

for(int i=0; i<n; i++) {
 parent[i] = -1;
}

queue[0] = source;
parent[source] = source;

int q_front = 0; q_back = 1;

//while queue not empty
while(q_front != q_back) {
 int current = queue[q_front++]; //dequeue
 int degree =
 Offsets[current+1]-Offsets[current];
 for(int i=0;i<degree; i++) {
 int ngh = Edges[Offsets[current]+i];
 //check if neighbor has been visited
 if(parent[ngh] == -1) {
 parent[ngh] = current;
 //enqueue neighbor
 queue[q_back++] = ngh;
 }
 }
}

Check bitvector first before
accessing parent array

n cache misses
instead of m

© 2018-2024 MIT Algorithm Engineering Instructors 36

BFS with bitvector
int* parent =
 (int*) malloc(sizeof(int)*n);
int* queue =
 (int*) malloc(sizeof(int)*n);
int nv = 1+n/32;
int* visited =
 (int*) malloc(sizeof(int)*nv);

for(int i=0; i<n; i++) {
 parent[i] = -1;
}

for(int i=0; i<nv; i++) {
 visited[i] = 0;
}

queue[0] = source;
parent[source] = source;
visited[source/32]
 = (1 << (source % 32));

int q_front = 0; q_back = 1;

//while queue not empty
while(q_front != q_back) {
 int current = queue[q_front++]; //dequeue
 int degree =
 Offsets[current+1]-Offsets[current];
 for(int i=0;i<degree; i++) {
 int ngh = Edges[Offsets[current]+i];
 //check if neighbor has been visited
 if(!((1 << ngh%32) & visited[ngh/32])){
 visited[ngh/32] |= (1 << (ngh%32));
 parent[ngh] = current;
 //enqueue neighbor
 queue[q_back++] = ngh;
 }
 }
}

• Bitvector version is
faster for large enough
values of m

© 2018-2024 MIT Algorithm Engineering Instructors 37

DEPTH-FIRST SEARCH

© 2018-2024 MIT Algorithm Engineering Instructors 38

Depth-First Search (DFS)
• Explores edges out of the most

recently discovered vertex
• Possible outputs:
∙ Depth-first forest
∙ Vertices in the order they were first

visited (preordering)
∙ Vertices in the order they were last

visited (postordering)
∙ Reverse postordering

source = D

Applications

Topological sort

Solving mazes
Biconnected
components

Strongly connected
components

Cycle detection

…

1

2

3
4 8 Preorder: D, B, A, C, E

Postorder: C, A, B, E, D
Reverse postorder: D, E, B, A, CA

B

C

D

E

/10

/7

/6
/5 /9

DFS requires O(n+m) work on n
vertices and m edges

© 2018-2024 MIT Algorithm Engineering Instructors 39

TOPOLOGICAL SORT

© 2018-2024 MIT Algorithm Engineering Instructors 40

Topological Sort
• Given a directed acyclic graph, output the

vertices in an order such that all
predecessors of a vertex appear before it
∙ Application: scheduling tasks with dependencies

(e.g., parallel computing, Makefile)
• Solution: output vertices in reverse

postorder in DFS

A

B

C

D

E

source = D

1/10

2/7

3/6
4/5 8/9

Reverse postorder: D, E, B, A, C

© 2018-2024 MIT Algorithm Engineering Instructors 41

SHORTEST PATHS

© 2018-2024 MIT Algorithm Engineering Instructors 42

Single-Source Shortest Paths
• Given a weighted graph and a source vertex,

output the distance from the source vertex to
every vertex

• Non-negative weights
∙ Dijkstra’s algorithm
∙ O(m + n log n) work using Fibonacci heap

• General weights
∙ Bellman-Ford algorithm
∙ O(mn) work

© 2018-2024 MIT Algorithm Engineering Instructors 43

Dijkstra’s Algorithm

• O((m+n)log n) work using normal heap
• O(m + n log n) work using Fibonacci heap
∙ Extract-min takes O(log n) work but decreasing

priority only takes O(1) work (amortized)

© 2018-2024 MIT Algorithm Engineering Instructors 44

Bellman-Ford Algorithm
Bellman-Ford(G, source):

ShortestPaths = {∞, ∞, …, ∞} //size n; stores shortest path distances
ShortestPaths[source] = 0
for i=1 to n:

for each vertex v in G:
for each w in neighbors(v):

if(ShortestPaths[v] + weight(v,w) < ShortestPaths[w]):
ShortestPaths[w] = ShortestPaths[v] + weight(v,w)

if no shortest paths changed:
return ShortestPaths

report “negative cycle”

• At most O(n) rounds, each doing O(n+m)
work

• Total work = O(mn)

© 2018-2024 MIT Algorithm Engineering Instructors 45

More Graph Algorithms
• We will study algorithms for particular

problems
∙ Parallelism, cache-efficiency, dynamic updates

Breadth-first search Betweenness centrality
PageRank Spanning forest

Low-diameter decomposition Maximal independent set

Connected components Graph clustering
Graph neural networks Subgraph matching

© 2018-2024 MIT Algorithm Engineering Instructors 46

GRAPH PROCESSING
FRAMEWORKS

© 2018-2024 MIT Algorithm Engineering Instructors 47

Graph Processing Frameworks

Graph processing frameworks/libraries
Pregel, Giraph, GPS, GraphLab, PowerGraph, PRISM, Pegasus, Knowledge Discovery
Toolbox, CombBLAS, GraphChi, GraphX, Galois, X-Stream, Gunrock, GraphMat,
Ringo, TurboGraph, TurboGraph++, FlashGraph, Grace, PathGraph, Polymer, GPSA,
GoFFish, Blogel, LightGraph, MapGraph, PowerLyra, PowerSwitch, Imitator, XDGP,
Signal/Collect, PrefEdge, EmptyHeaded, Gemini, Wukong, Parallel BGL, KLA, Grappa,
Chronos, Green-Marl, GraphHP, P++, LLAMA, Venus, Cyclops, Medusa, NScale,
Neo4J, Trinity, GBase, HyperGraphDB, Horton, GSPARQL, Titan, ZipG, Cagra, Milk,
Ligra, Ligra+, Julienne, GraphPad, Mosaic, BigSparse, Graphene, Mizan, Green-Marl,
PGX, PGX.D, Wukong+S, Stinger, cuStinger, Distinger, Hornet, GraphIn, Tornado,
Bagel, KickStarter, Naiad, Kineograph, GraphMap, Presto, Cube, Giraph++, Photon,
TuX2, GRAPE, GraM, Congra, MTGL, GridGraph, NXgraph, Chaos, Mmap, Clip, Floe,
GraphGrind, DualSim, ScaleMine, Arabesque, GraMi, SAHAD, Facebook TAO,
Weaver, G-SQL, G-SPARQL, gStore, Horton+, S2RDF, Quegel, EAGRE, Shape, RDF-
3X, CuSha, Garaph, Totem, GTS, Frog, GBTL-CUDA, Graphulo, Zorro, Coral,
GraphTau, Wonderland, GraphP, GraphIt, GraPu, GraphJet, ImmortalGraph, LA3,
CellIQ, AsyncStripe, Cgraph, GraphD, GraphH, ASAP, RStream, and many others…

• Provides high-level primitives for graph algorithms
• Reduce programming effort of writing efficient

parallel graph programs

© 2018-2024 MIT Algorithm Engineering Instructors 48

DYNAMIC GRAPHS

© 2018-2024 MIT Algorithm Engineering Instructors 49

Dynamic Graphs

• Many graphs are changing over time
∙ Adding/deleting connections on social networks
∙ Traffic conditions changing
∙ Communication networks (email, IMs)
∙ World Wide Web
∙ Content sharing (Youtube, Flickr, Pinterest)

• Need graph data structures that allow for
efficient updates (in parallel)

• Need (parallel) algorithms that respond to
changes without re-computing from scratch

© 2018-2024 MIT Algorithm Engineering Instructors 50

COMPRESSION

© 2018-2024 MIT Algorithm Engineering Instructors 51

Large Graphs

1.4 billion vertices
6.6 billion edges

(38 GB)

3.5 billion vertices
128 billion edges

(540 GB)

• What if you cannot fit a graph on your machine?
• Cost of machines increases with memory size

Ru
nn

in
g

Ti
m

e

Memory Required

Available RAM

Graph Compression

41 million vertices
1.5 billion edges

(6.3 GB)

© 2018-2024 MIT Algorithm Engineering Instructors 52

Graph Compression on CSR

0 4 5 11

2 7 9 16 0 1 6 9 12

...

...

Offsets

Edges

2 5 2 7 -1 -1 5 3 3 ...
Compressed

Edges

Vertex IDs 0 1 2 3
Sort edges and encode

differences

2 - 0 = 2 7 - 2 = 5 1 - 2 = -1

• For each vertex v:
• First edge: difference is Edges[Offsets[v]]-v
• i’th edge (i>1): difference is Edges[Offsets[v]+i]-

Edges[Offsets[v]+i-1]
• Want to use fewer than 32 or 64 bits per value
• Compression can improve running time

© 2018-2024 MIT Algorithm Engineering Instructors 53

• Reassign IDs to vertices to improve locality
∙ Goal: Make vertex IDs close to their neighbors’ IDs

and neighbors’ IDs close to each other

Graph Reordering

• Can improve compression rate due to smaller
“differences”

• Can improve performance due to higher cache
hit rate

• Various methods: BFS, DFS, METIS, degree, etc.

4 1

0 2

3 0 3

1 2

4

Sum of differences = 23 Sum of differences = 20

55

© 2018-2024 MIT Algorithm Engineering Instructors 54

CACHE-EFFICIENCY AND
I/O-EFFICIENCY

© 2018-2024 MIT Algorithm Engineering Instructors 55

Cache Hierarchies

Memory level Approx latency
L1 Cache 1-2ns
L2 Cache 3-5ns
L3 cache 12-40ns
DRAM 60-100ns

Design cache-
efficient and cache-
oblivious algorithms
to improve locality

© 2018-2024 MIT Algorithm Engineering Instructors 57

I/O Efficiency

• Need to read input from disk at least once
• May need to read many more times if input

doesn’t fit in memory
Memory Latency Throughput
DRAM 60-100 ns Tens of GB/s
SSD Tens of µs 500 MB-2 GB/s (seq), 50-200 MB/s (rand)
HDD Tens of ms 200 MB/s (seq), 1 MB/s (rand)

Source: https://www.pcgamer.com/hard-drive-vs-ssd-performance/2/

© 2018-2024 MIT Algorithm Engineering Instructors 58

SORTING ALGORITHMS

© 2018-2024 MIT Algorithm Engineering Instructors 59

Sorting

• Lots of research on engineering sorting
algorithms

• Will study parallel comparison sorting and
integer sorting algorithms

• http://sortbenchmark.org/

http://sortbenchmark.org/

© 2018-2024 MIT Algorithm Engineering Instructors 60

JOINS AND AGGREGATION

© 2018-2024 MIT Algorithm Engineering Instructors 61

Joins and Aggregation

• JOIN and GROUPBY are two of the most
expensive operations in database systems

• We will study algorithms and optimizations
for these operations (in main-memory)

© 2018-2024 MIT Algorithm Engineering Instructors 62

STENCIL COMPUTATIONS

© 2018-2024 MIT Algorithm Engineering Instructors 63

Stencil Computations
• Computations that iteratively update data

based on a fixed pattern (stencil)
∙ For example, can be used to

approximately solve heat equation
• We will study algorithms for

stencil computations that
improve on work, parallelism, and
cache-efficiency over standard
approaches

Source: https://en.wikipedia.org/wiki/Iterative_Stencil_Loops

© 2018-2024 MIT Algorithm Engineering Instructors 64

CLUSTERING

© 2018-2024 MIT Algorithm Engineering Instructors 65

Clustering

• Group “similar” objects
together, and separate
“dissimilar” objects

• Can be applied to graph data
and spatial data

• Applications: Community
detection, bioinformatics,
parallel/distributed
processing, visualization,
image segmentation, anomaly
detection, document analysis,
machine learning, etc.

© 2018-2024 MIT Algorithm Engineering Instructors 66

GRAPH NEURAL NETWORKS

© 2018-2024 MIT Algorithm Engineering Instructors 67

Graph Neural Networks (GNNs)

• Traditional neural networks have a fixed
topology, but in GNNs the topology is the graph
∙ Repeatedly pass messages to neighbors, and

aggregate messages received to update node
∙ Each node has a different computation graph!
∙ Many different graph neural networks, based on how

they pass and aggregate messages
∙ We’ll study some high-performance GNN approaches

Source: https://snap-stanford.github.io/cs224w-notes/machine-learning-with-networks/graph-neural-networks

Can be neural networks

© 2018-2024 MIT Algorithm Engineering Instructors 68

Summary

• Lots of exciting research going on in
algorithm engineering!

• Take this course to learn about latest results
and try out research in the area

O(n log n)
O(n)

O(log n)

