
Techniques for
Inverted Index Compression

Giulio Ermanno Pibiri, ISTI-CNR
Rossano Venturini, University of Pisa

6.506 Algorithm Engineering – Paper Presentation
Presenter: Joseph Zhang

Problem and Background

Inverted Index – Example

- Document 0 : here are some terms
- Document 1 : some more terms
- Document 2 : even more terms

Inverted Index:

- here : 0
- are : 0
- some : 0, 1
- terms : 0, 1, 2
- more : 1, 2
- even : 2

Inverted Index

For each term t in collection of documents, we want to keep track of the
documents where the term appears in inverted lists

Wide range of applications, for example:

- large-scale search engines
- social networks
- data storage architectures
- database searching

Many indexed documents and heavy query loads – compression can help!

Inverted Index Compression

Inverted Index Compression – Timeline

Goals

Survey of encoding algorithms useful for inverted index compression

- hierarchical division in three main classes

Characterize performance of inverted index through experimentation

- compression effectiveness
- query operation performance
- sequential decoding speed

Inverted Index Compression – Organization

Techniques organized into three main classes:

Integer Codes: algorithms that compress a single integer

List Compressors: algorithms that compress lists of many integers together

Index Compressors: algorithms that represent many lists together

Integer Codes

Overview

Assign each integer x a uniquely decodable variable length code

- want to be able to decode without ambiguity from left to right

Ideal codeword length for integer x is log2(1/P(x)) bits

- we can derive optimal distribution for an encoding from this

Prefix-Free Codes

No codeword is a prefix
of another codeword

Lexicographic ordering:
codewords in same
order as the integers,
and this can help us
speed up the encoding
and decoding process

Prefix-Free Codes

Unary Coding

x-1 ones followed
by a single zero

length is x

optimal when

 P(x) = 2^-x

Binary Coding

representation of
x-1 in binary

length is k, where
the integers are
bounded by 2^k

optimal when

 P(x) = 2^-k

Gamma Coding

U(|bin(x)|) followed
by last |bin(x)-1|
bits from bin(x)

length is 2|bin(x)|-1

optimal when

 P(x) = 1/2k^2

Delta Coding

γ(|bin(x)|) followed
by last |bin(x)-1| bits
from bin(x)

length is |γ
(|bin(x)|)|+|bin(x)|-1

optimal when P(x) =
1/(2x(log2(x)^2)

k-gamma, SIMD
delta codes

Golomb

unary encoding of
quotient then minimal
binary of remainder

optimal when

P(x) = p(1-p)^(x-1)

gaps between integers
drawn at random
follows geometric
distribution

Rice

special case of
Golomb with b=2^k

remainder written in k
bits, so length is
floor((x-1)/2^k)+k+1

Exponential Golomb

Unary encoding of bucket identifier followed by binary encoding of bucket offset

Zeta

Exponential Golomb with these buckets:

optimal for power law distribution with small exponent, i.e.

P(x) = 1/(ζ(α)x^α) where ζ is Riemann zeta function

Fibonacci

every positive integer has unique
representation as sum of some
non-adjacent Fibonacci numbers

1 for if i-th Fibonacci number
used in sum, 0 otherwise, final
control 1 bit

optimal when P(x) is
approximately 1/(2x^1.44)

can generate lexicographic
codewords from the lengths

Variable-Byte

Codes previously described are bit-aligned, but byte or word-aligned codes can
have better decoding speed

MSB signals continuation of byte sequence, rest of the bits used for data

Optimal when P(x) approximately x^(-8/7) for byte-aligned

Example:

Branch Prediction

Varint-GB groups control bits together to reduce the probability of a branch
misprediction for higher throughput

Assume largest represented integer fits in 4 bytes, then we have only four different
byte-lengths, which only requires two bits

So groups of four such integers requires only one control byte

SIMD Parallelism

Varint-G8IU: one control byte for variable number of integers in 8-byte segment, for
groups of between two and eight compressed integers

Masked-VByte: decoding by first gathering MSBs of consecutive bytes with SIMD
instruction, and permuting data bytes accordingly

Stream-VByte: separate encoding of control data bits into separate streams,
allows decoding multiple control bits separately and reduces data dependencies

SC-Dense

Variable-Byte has 2^7 as
separator between stoppers
and continuers, we can
generalize this to adapt to
distribution in question.

Summary

For our inverted indexes
with sorted inverted lists,
compression on gaps of
the sequence works well

Tuned parametric codes
can be good, but tuning
not always possible

Some different relative
strengths at smaller and
larger values

List Compressors

Overview

Information-theoretic lower bound gives minimum bits to represent list of n strictly
increasing integers drawn at random from a universe

In practice, compressors often take advantage of inverted lists having clusters of
close integers, which are more compressible, to use less than the bound

These can arise because of indexed documents often being clustered by sharing
the same set of terms

Binary Packing

Partition sequence into blocks of fixed or variable length and encode them
separately

- if sequence has clusters of close integers, values are likely to be of similar
magnitude

Compute bit width of max element in block and represent integers in block with
that number of bits, gaps between integers can be computed to lower width

- variable sized blocks usually preferable

Many variants of this approach, including word-aligned version

Simple

split sequence into
fixed-memory units, and
pack as many integers
as we can fit into a unit

selector code gives
information on how
elements are packed in
segment

typically provides good
decoding speed and
good compression

PForDelta

Space inefficiency of block-based strategies like simple when there is just one
large value in the block

"patched" frame of reference chooses a range that fits most of the integers, and
encodes exceptions separately with different algorithm

Elias-Fano

For n sorted integers in range [1, U]

Split them into l=floor(log2(U/n)) low bits and ceil(log2(U))-l high bits

Low bits are encoded separately with nl size bitvector directly

High bits are encoded separately with 2n bits: for high bit h_i, we set the bit in
position h_i+i, so unary encoding of how many integers have h_i equal to value

Elias-Fano – Example

Elias-Fano – Random Accesses

How to decode an individual integer S[i] in O(1) time:

- need data structure to get i-th bit set to b in H (high bits bitvector) in O(1), it
turns out this only requires o(n) bits, small compared to encoding size

- call the query above Select_b(i), then high bits is Select_1(i)-i, since we unary
encoded how many integers share same high part, so there is 1 for each
integer and 0 for each distinct high part

- read low bits directly from L (low bits bitvector)
- concatenate high and low bits

Elias-Fano – Successor Queries

How to find smallest integer at least x, for some integer x:

- let h_x be high bits of x
- i = Select_0(h_x)-h_x+1 (for h_x>0, use i=0 otherwise) says that there are i

integers in S with high bits less than h_x
- j = Select_0(h_x+1)-h_x is start position for elements with larger high bits
- then only the range from i to j needs to be searched
- runs in O(1+log(U/n)) time
- this successor query is also called NextGEQ

Elias Fano – Partitioning

High and low bit split can be chosen arbitrarily, for a non-parametric split

Roaring partitions U <= 2^32 into chunks of 2^16 values each, and encodes chunks
depending on if they are sparse, dense, or very dense

- sorted array for sparse, bitmap for dense, runs for very dense

SIicing also continues encoding recursively for the sparse chunks

Main idea in these is to find dense regions for bitmap encodings but treat the
sparse regions differently

Interpolative

Binary Interpolative Code (BIC)

Recursively split list in half and encode middle element with minimal bits

Fully make use of runs of consecutive integers

Interpolative – Example

Directly-Addressable Codes

Reduce problem of random access to ranking over a bitmap

Hybrid Approaches

Hybrid approaches can use different compressors for blocks of a list

Example: collect access statistics for blocks

- represent rarely accessed blocks with a more space-efficient compressor
- represent frequently accessed blocks with a more time-efficient compressor

Some algorithms for optimal partitioning into blocks for these hybrid approaches

Entropy Coding

Usually not as competitive for efficiency and simplicity of implementation

Huffman, Arithmetic, and Asymmetric Numeral Systems (ANS)

Index Compressors

Clustered

Inverted lists grouped into clusters of lists sharing as many integers as possible

For each cluster, we have a reference list, where for integers in reference list and
list in cluster, they can be represented as position occupied in reference list

Any compressor can be used for the intersections between the reference list and
cluster lists but PEF (partitioned Elias-Fano) was used by authors

Time/space tradeoffs from varying size of the reference lists

ANS Based

Alphabet size of ANS method may be too large for representing our integers even
if we only work with gaps

VByte+ANS: this can be adapted by preprocessing with Variable-Byte to reduce
input list, and then applying ANS on the sequence of bytes

Dictionary Based

Store most frequent 2^b patterns in dictionary, and use it to encode subsequences
of gaps, as there are often very repetitive patterns across the whole inverted index

Experiments

Experimental Setup

Mainly focused on comparing
some selected representations
over being completely
exhaustive, some further
comparisons in their
benchmark repository

Compression Effectiveness

Sequential Decoding

Boolean AND Queries

Boolean OR Queries

Space/Time Tradeoffs

Future Work

Simpler compression formats that can be decoded faster using low-latency
instructions and minimal branches

Making full use of superscalar execution and SIMD instructions

Dynamic compressed representations for integer sequences that can support
additions and deletions, a specific case of more general dictionary problem

Implementations with good practical performance

Techniques for
Inverted Index Compression

Giulio Ermanno Pibiri, ISTI-CNR
Rossano Venturini, University of Pisa

