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The Problem
● Incremental Graph Connectivity (IGC) or the Union-Find Problem: 

A problem where the goal is to determine if two vertices in a graph are 
connected, with the graph dynamically growing as edges are added.

● Challenge: Traditional sequential solutions don't scale for large, 
rapidly-changing graphs typical in many real-world applications, 
necessitating a parallel solution.

● Real-World Applications: Parallel Union-Find algorithms are crucial 
in social network analysis for identifying communities, in network 
connectivity for understanding the robustness of the internet infrastructure, 
and in clustering algorithms for data analysis 
across diverse datasets.



Related Work and State of the World
● Sequential Union-Find: The sequential case has been thoroughly been studied, with

Tarjan’s algorithm [5] having been shown optimal (O(𝛼(m,n)) per find).
○ These algorithms cannot exploit parallelism however.

● Memory-Constrained Union-Find: Demetrescu et al. present a multipass 
memory-constrained union-find.

● Fully Dynamic Parallel IGC: McColletal [11] solve the fully dynamic IGC, but with no 
theoretical bounds.

● Distributed-Memory Parallel Union-Find: Manne and Patwary [12]

● Other Batched Parallel Union-Find: Shiloach and Vishkin [17]



Definitions and Preliminaries

● The Minibatch Streaming Model: Input is streamed in mini batches of 
varying size, with each minibatch only containing union operations or finds. 
Mini batches are received sequentially, but each minibatch can itself be 
solved in parallel.

● CRCW PEM Model: Threads are assumed to have the concurrent-read 
concurrent-write model of shared memory. The algorithm can work in 
EREW with an extra logarithmic factor, because of parallel integer sort.

● n: The total number of vertices.
● m: The total number of edges.
● q: The total number of queries.
● b: The number of queries within a minibatch.



Contributions

1. Simple Parallel Algorithm

a. Bulk-Union
b. Bulk-Same-Set

2. Work-Efficient Parallel Algorithm

3. Implementation and Evaluation



The Simple Parallel Union-Find

The basic idea is Union-Find with size comparison.

1. Bulk-Same-Set: In parallel answer all queries by comparing the result of 
finds.
○ The parallel depth: O(log n)
○ The total work: O(q log n)

2. Bulk-Union: A bit more complicated.



Bulk-Union:

1. Relabel queries to component supernodes, i.e., the identifier.
2. Remove self-loops with supernodes.
3. Add the new edges between supernodes to create some connected 

components (CC). 
4. For each CC, unite the supernodes using Parallel-Join.



Bulk-Union: Work and Depth Analysis

1. Relabeling: O(b log n) work and O(log n) depth.
2. Filtering self-loops: O(b) work and O(log b) depth.
3. Create the supernode connected components (CC):

O(b) work and O(log max(b,n)) depth using Gazit’s algorithm [16].
4. Parallel-Join each component: O(b) work and O(log n) depth.



The Simple Parallel Union-Find

The basic idea is Union-Find with size comparison.

1. Bulk-Same-Set: In parallel answer all queries by comparing the result of 
finds.
○ The parallel depth: O(log n)
○ The total work: O(q log n)

2. Bulk-Union: A bit more complicated.
○ The parallel depth: O(log max(n, b))
○ The parallel work: O(b log n)



The Work-Efficient Parallel Union-Find

The basic idea is Union-Find with size comparison, with path compression.

1. Bulk-Same-Set: A bit complicated.

2. Bulk-Union: Same as the simple union-find algorithm.



Bulk-Find:

The general idea as an example.

A: An example union-find tree with sample queries circled.
B: bolded edges are paths, together with their stopping points that result from the traversal in Phase I. 
C: the traversal graph R∪ recorded as a result of Phase I.
D: the union-find tree after Phase II, which updates all traversed nodes to point to their roots



Bulk-Find:

Phase I: 
● Find the roots of all queries, coalescing flows as they meet, through what’s 

effectively a parallel BFS.
● Record the traversed paths to distribute query responses in Phase II.

Phase II:
● Distribute responses through a backwards BFS from all reached roots.
● Compress the traversed paths as the backwards BFS is run.



Bulk-Find:

The algorithm in greater 
detail, albeit unreadable:



Bulk-Find:

Phase I: 
● Find the roots of all queries, coalescing flows as they meet, through what’s 

effectively a parallel BFS.
● Record the traversed paths to distribute query responses in Phase II.

Phase II:
● Distribute responses through a backwards BFS from all reached roots.
● Compress the traversed paths as the backwards BFS is run.

Technical Note: Phase I records the traversed edges as a list of edges, while the 
backwards BFS in Phase II requires adjacency lists to perform optimally. The 
authors therefore design a data structure using hashing and Parallel Integer Sort 
to perform this conversion efficiently.



The Work-Efficient Parallel Union-Find

Work Analysis:

The authors use the following powerful lemma to prove the work-efficiency of 
the Parallel Union-Find algorithm:

Lemma (11): For a sequence of queries S with which Bulk-Find(U, S) is invoked, 
there is a sequence S' that is a permutation of S such that applying U.find to S' 
serially in that order yields the same union-find forest as Bulk-Find's and incurs 
the same traversal cost of O(|R∪|), where R∪ is as defined in the Bulk-Find 
algorithm.



A Practical Implementation
The authors used the Simple Parallel Union-Find algorithm as the base algorithm,
with the following modifications:

1. Path Compression: Parallel-Find operations independently find the root of their trees, 
and then after finding the root, they make a second iteration on the path to compress 
it.

2. Parallel Connected Components: The Bulk-Union operation uses a parallel CC 
algorithm that while work-efficient, assumes random-access to a node’s neighbors 
which in practice can be costly. The authors therefore use an algorithm by Blelloch 
et al. [12] with worse theoretical bounds that works directly with a list of edges.



Experimental Setup
The authors used the Simple Parallel Union-Find algorithm as the base algorithm,
with the following modifications:

1. Environment: An Amazon EC2 instance with 20 cores and 2-way hyperthreading.

2. Parallel Scheduling: Intel Cilk’s work-stealing scheduler built in Clang 3.4.

3. Datasets: A collection of synthetic graphs, including power-law-type graphs and 
more “regular” ones. These are similar to the graphs used by McColl et al.
They also use graphs with varying rates of growing connectivity.

4. Baseline: The Sequential Union-Find algorithm, since most other work do not solve 
the same problem, notably with McColl et al.’s work solving the fully dynamic IGC 
problem.



Experimental Setup
On varying rates of growing connectivity:



Results
Sequential Benchmarking:

When run sequentially, the 
Practical Parallel Union-Find is 
within 2.2-4.3x of the optimal 
work-efficient algorithm’s 
performance, exhibiting a 
reasonably good performance.



Results
Parallel Benchmarking:

When run parallely, the Practical Parallel Union-Find exhibits 8-11x speedups for a batch 
size of 10M.



Results
Parallel Benchmarking:

Average throughput (edges 
per seconds) for varying 
number of threads in 
random graphs are plotted 
on the right:

20c denotes 20 threads 
with 2-way hyperthreading.



Future Work

● A hybrid IGC solver that can dynamically choose between a DFS and 
Union-Find based approach, to optimize performance based on batch size.

○ Not really practical since for all practical purposes, the inverse 
Ackerman's function is constant.

● Extending the results of work-efficient Union-Find to fully dynamic IGC, 
where edges deletions are allowed as well as edge additions.



Evaluation

● Strengths
○ Introduces a novel, work-efficient parallel algorithm for Union-Find with significant 

theoretical and practical contributions.

○ Demonstrates scalability and practicality through comprehensive benchmarks and 
experimental results.*

○ Opens new avenues for research in parallel algorithms for dynamic graph problems.

● Weaknesses
○ Lacks direct comparison with distributed systems, which could provide insights into its 

relative performance.

○ Does not fully address the challenges of graph dynamics that include edge deletions.


