Cache Oblivious Stencil Computations

Matteo Frigo and Volker Strumpen*
IBM Austin Research Laboratory 11501 Burnet Road, Austin, TX 78758
May 25, 2005
Presented by Vishaal Ram, 4/11/24

Stencil Computations

what is a stencil?

- a computation defined on an n dimensional grid along with a time parameter t
- each value on the grid at a time t is a function of the neighboring grid cells at time $t-1, t-2$, ..., t-k
- the input is a set of initial value a0 while the output T time steps later is aT

Space N

examples

- if a stencil is a p-point stencil, the value depends on its p neighbors in the previous timestep.
- the n dimensions plus the time dimension together span the ($\mathrm{n}+1$) dimension spacetime.

heat diffusion

- one notable example is heat diffusion which represents a 5-point 2D stencil on a discrete grid:
- the update function is known as the computational kernel

Let $h_{t}(x, y)$ be the heat at point (x, y) at time t.

Heat Equation

$$
\frac{\partial h}{\partial t}=\alpha\left(\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}\right), \alpha=\text { thermal diffusivity }
$$

Update Equation (on a discrete grid)

$$
\begin{aligned}
h_{t+1}(x, y) & =h_{t}(x, y) \\
& +c_{x}\left(h_{t}(x+1, y)-2 h_{t}(x, y)+h_{t}(x-1, y)\right) \\
& +c_{y}\left(h_{t}(x, y+1)-2 h_{t}(x, y)+h_{t}(x, y-1)\right)
\end{aligned}
$$

Stencil Computation Algorithms

standard implementation

- the naive algorithm involves applying the computational kernel to all points at time step t before timestep t+1
- If the number of points in at each time step exceeds the cache size Z, this computation incurs $O(p)$ cache misses where p is the number of points computed

Time T


```
\(a_{T}\)
```



```
for \(t \leftarrow 1\) to \(T\) do
for \(i \leftarrow 0\) to \(N-1\) do compute \(a_{t}[i]\) from \(a_{t-1}\) using the stencil
Space \(N\)
```


main result

- The paper presents a novel stencil computation algorithm that when traversing a large rectangular region of $(n+1)$ dimensional spacetime, incurs $O\left(p / Z^{n+1}\right)$ cache misses.
- this matches a lower bound proved by Hong and Kong [3] by a constant factor
- applies to arbitrary stencil and dimension
- this algorithm is also cache oblivious
- does not contain the cache size as a parameter

One-Dimensional Stencil Algorithm

walk1

- we define a procedure walk1 that traverses a rectangular region $0<=\mathrm{t}<\mathrm{T}$ and $0<=\mathrm{x}<\mathrm{N}$
- for simplicity, we restrict the computation to a 3 point stencil

```
- (t,x) depends on (t-1,x-1), (t-1,x),(t-1,
    x+1)
```

- instead of just considering rectangular regions, we instead consider a more general trapezoidal region with additional parameters x 0 and x 1 dot.
void walk1(int t_{0}, int t_{1}, int x_{0}, int \dot{x}_{0}, int x_{1}, int \dot{x}_{1}) \{

```
int }\Deltat=\mp@subsup{t}{1}{}-\mp@subsup{t}{0}{}
    if ( }\Deltat== 1) 
        /* base case */
        int x;
        for (x = x ; ; x < x ( ; ++x)
            kernel(to, x);
    } else if ( }\Deltat>1) 
        if (2* ( }\mp@subsup{x}{1}{}-\mp@subsup{x}{0}{}\mathrm{ ) + ( ( }\mp@subsup{\tilde{x}}{1}{}-\mp@subsup{\dot{x}}{0}{})*\Deltat>=4*\Deltat)
            /* space cut */
            int }\mp@subsup{x}{m}{}=(2*(\mp@subsup{x}{0}{}+\mp@subsup{x}{1}{})+(2+\mp@subsup{\dot{x}}{0}{}+\mp@subsup{\dot{x}}{1}{})*\Deltat)/4
            walk1(to, th, x},\mp@subsup{\dot{x}}{0}{},\mp@subsup{x}{m}{},-1)
                walk1(to, tr , xm, -1, x},\mp@subsup{x}{1}{},\mp@subsup{\dot{x}}{1}{})
        } else {
            /* time cut */
            int s=\Deltat / 2;
            walk1(t to, to + s, x , , \dot{x}
            walk1(t0 + s, t},\mp@subsup{x}{0}{}+\mp@subsup{\dot{x}}{0}{*}s,\mp@subsup{\dot{x}}{0}{\prime},\mp@subsup{x}{1}{}+\mp@subsup{\dot{x}}{1}{}*s,\mp@subsup{\dot{x}}{1}{\prime})
        }
```

 \(\}\)

trapezoid

For integers $t_{0}, t_{1}, x_{0}, \dot{x_{0}}, x_{1}, \dot{x_{1}}$ we define trapezoid $\mathcal{T}\left(t_{0}, t_{1}, x_{0}, \dot{x}_{0}, x_{1}, \dot{x_{1}}\right)$
to be the set of points that satisfy $t_{0} \leq t<t_{1}, x 0+\dot{x_{0}}\left(t-t_{0}\right) \leq x<x_{1}+\dot{x_{1}}\left(t-t_{0}\right)$.

The height is computed as $\Delta T=t_{1}-t_{0}$
The width is the average lengths of the parallel sides: $w=\left(x_{1}-x_{0}\right)+\left(\dot{x_{1}}-\dot{x_{0}}\right) \Delta T / 2$ The center is the average of the four corners:

$$
x=\left(x_{0}+x_{1}\right) / 2+\left(\dot{x}_{0}+\dot{x}_{1}\right) \Delta t / 4
$$

The volume $|\mathrm{T}|$ is the number of points in the trapezoid.
Assume for now that the special case with slopes zero denotes the rectangular region.

Figure 2: Illustration of the trapezoid $\mathcal{T}\left(t_{0}, t_{1}, x_{0}, \dot{x}_{0}, x_{1}, \dot{x}_{1}\right)$ for $\dot{x}_{0}=1$ and $\dot{x}_{1}=-1$. The trapezoid includes all points in the shaded region, except for those on the top and right edges.

walk1 steps

- the algorithm works by recursively decomposing the region into smaller rectangles
- The base case is when the height is one
- Otherwise we perform one of two cuts dividing the trapezoid in half, recursing on each one

Base case: If the height is 1 , then the trapezoid consists of the line of spacetime points $\left(t_{0}, x\right)$ with $x_{0} \leq x<x_{1}$. The procedure visits all these points, calling the application-specific procedure kernel. The traversal order is not important because these points do not depend on each other.

Space Cut

- If the width is long enough, perform a diagonal cut from the center splitting the region into another trapezoid and a parallelogram. Then recurse on the trapezoid first.

Space cut: If the width is at least twice the height, then we cut the trapezoid along the line with slope -1 through the center of the trapezoid, cf. Fig. 3. The recursion first traverses trapezoid $\mathcal{T}_{1}=\mathcal{T}\left(t_{0}, t_{1}, x_{0}, \dot{x}_{0}, x_{m},-1\right)$, and then trapezoid $\mathcal{T}_{2}=\mathcal{T}\left(t_{0}, t_{1}, x_{m},-1, x_{1}, \dot{x}_{1}\right)$. This traversal order is valid because no point in \mathcal{T}_{1} depends upon any point in \mathcal{T}_{2}.
From Fig. 3, we obtain

$$
x_{m}=\frac{1}{2}\left(x_{0}+x_{1}\right)+\frac{1}{4}\left(\dot{x}_{0}+\dot{x}_{1}\right) \Delta t+\frac{1}{2} \Delta t
$$

Figure 3: Illustration of a space cut. When the space dimension is "large enough" (see text), procedure walk1 cuts the trapezoid along the line of slope -1 through its center.

time cut

- otherwise perform a timecut dividing the region into two trapezoids by cutting horizontally through the center. Then recurse on the bottom region first

Time cut: Otherwise, we cut the trapezoid along the horizontal line through the center, cf. Fig. 4. The recursion first traverses trapezoid $\mathcal{T}_{1}=\mathcal{T}\left(t_{0}, t_{0}+\right.$ $\left.s, x_{0}, \dot{x}_{0}, x_{1}, \dot{x}_{1}\right)$, and then trapezoid $\mathcal{T}_{2}=\mathcal{T}\left(t_{0}+\right.$ $\left.s, t_{1}, x_{0}+\dot{x}_{0} s, \dot{x}_{0}, x_{1}+\dot{x}_{1} s, \dot{x}_{1}\right)$, where $s=\Delta t / 2$. The order of these traversals is valid because no point in \mathcal{T}_{1} depends on any point in \mathcal{T}_{2}.

```
} else {
    /* time cut */
    int s=\Deltat/ 2;
    walk1 (to, to + s, x},\mp@subsup{x}{0}{},\mp@subsup{\dot{x}}{0}{},\mp@subsup{x}{1}{},\mp@subsup{\dot{x}}{1}{\prime})
    walk1(t (t + s, t, x, x + \dot{\mp@subsup{x}{0}{}}*s,\mp@subsup{\dot{x}}{0}{},\mp@subsup{x}{1}{}+\mp@subsup{\dot{x}}{1}{*}s,\mp@subsup{\dot{x}}{1}{});
}
```


Figure 4: Illustration of a time cut: procedure walk1 cuts the trapezoid along the horizontal line through its center.

summary

- we can guarantee that both cuts always produce valid and well defined regions.
- we can show that this procedure also works on cylindrical where ($t+1, x$) depends on (t, $(x-1) \bmod N),(t, x \bmod N),(t,(x+1) \bmod N)$.

cylindrical traversal

- traversal order for cylindrical traversal where $\mathrm{N}=\mathrm{T}=10$

$t \backslash x$	0	1	2	3	4	5	6	7	8	9
9	79	88	89	90	94	95	97	98	99	78
8	76	77	85	86	87	92	93	96	74	75
7	71	72	73	82	83	84	91	68	69	70
6	62	63	66	67	80	81	54	55	58	59
5	57	60	61	64	65	50	51	52	53	56
4	45	47	48	49	28	29	38	39	40	44
3	42	43	46	24	25	26	27	35	36	37
2	34	41	18	19	20	21	22	23	32	33
1	31	4	5	8	9	12	13	16	17	30
0	0	1	2	3	6	7	10	11	14	15

Figure 5: Cache-oblivious traversal of 1-dimensional spacetime for $N=T=10$.

Extension to Multiple Dimensions and Arbitrary Stencils

arbitrary stencils

- we first extend walk1 to a spacetime point $(t+1, x)$ to depend on any $(t, x+k)$ for any $|x-k| \leq \sigma^{2}$
- To do this, we simply modify our space cut so that we cut along the center with a line of slope $d x / d t=-\sigma$. This guarantees that two point in the first region depends on a point in the second region. This cut can be applied whenever $w \geq 2 \sigma \Delta t$, which guarantees the two regions are well defined.

arbitrary dimension

- We extend the definition of the 2D trapezoid to an arbitrary number of dimensions
- If any of the dimensions permits a space cut, we cut along that dimension and recurse, otherwise we perform a time cut
- As the projection onto any dimension matches our 2D case, this algorithm also generates a valid stencil traversal.

A n-dimensional trapezoid $\mathcal{T}\left(t_{0}, t_{1}, x_{0}^{(i)}, \dot{x}_{0}^{(i)}, x_{1}^{(i)}, \dot{x}_{1}^{(i)}\right)$, where $0 \leq i<n$, is the set of integer tuples $\left(t, x^{(0)}, x^{(1)}, \ldots, x^{(n-1)}\right)$ such that $t_{0} \leq t<t_{1}$ and $x_{0}^{(i)}+\dot{x}_{0}^{(i)}\left(t-t_{0}\right) \leq x^{(i)}<x_{1}^{(i)}+\dot{x}_{1}^{(i)}\left(t-t_{0}\right)$ for all $0 \leq i<n$. Informally, for each dimension i, the projection of the multi-dimensional trapezoid onto the $\left(t, x^{(i)}\right)$ plane looks like the 1-dimensional trapezoid in Fig. 2.

```
typedef struct { int x
void walk(int to, int t}\mp@subsup{t}{1}{},\textrm{C
    int \Deltat= tr - to;
    if ( }\Deltat== 1) 
    basecase (t }\mp@subsup{0}{0}{\prime},\textrm{c})\mathrm{ ;
    } else if ( }\Deltat>1) 
    C *p;
    1* for all dimensions, try to cut space */
    for (p = c; p < c + n; ++p) {
        int }\mp@subsup{x}{0}{}=\textrm{p}>>\mp@subsup{x}{0}{},\mp@subsup{x}{1}{}=\textrm{p}>>\mp@subsup{x}{1}{},\mp@subsup{\dot{x}}{0}{}=\textrm{p}->\mp@subsup{\dot{x}}{0}{},\mp@subsup{\dot{x}}{1}{}=\textrm{p}->\mp@subsup{\dot{x}}{1}{}
        if (2* (x (x - x ) + (\mp@subsup{\dot{x}}{1}{}-\mp@subsup{\dot{x}}{0}{})*\Deltat>=4*\sigma*\Deltat){
            /* cut space dimension *p */
            C save = *p; /* save configuration *p */
            int }\mp@subsup{x}{m}{}=(2*(\mp@subsup{x}{0}{}+\mp@subsup{x}{1}{})+(2*\sigma+\mp@subsup{\dot{x}}{0}{}+\mp@subsup{\dot{x}}{1}{})*\Deltat)/4
            *p = (C){ x }\mp@subsup{x}{0}{},\mp@subsup{\dot{x}}{0}{},\mp@subsup{x}{m}{},-\sigma}; walk(to, th, c)
            *p = (C){ { xm, -\sigma, x , , \dot{x}
            *p = save; /* restore configuration *p */
            return;
        }
    }
    {
            * because no space cut is possible, cut time */
            int s=\Deltat / 2;
            C newc[n];
            int i;
            walk}(\mp@subsup{t}{0}{},\mp@subsup{t}{0}{}+s,c)
            for (i = 0; i < n; ++i) {
            newc[i] = (C){ c[i]. (x + c[i]. . 
            c[i].\mp@subsup{x}{1}{}+c[i].\mp@subsup{\dot{x}}{1}{*}s,c[i].\mp@subsup{\dot{x}}{1}{}};
            }
            walk (to + s, tr , newc);
        }
    }

\section*{Cache Analysis}

\section*{Theorem}
- We will prove that the walk algorithm incurs \(O\left(\operatorname{Vol}(\mathcal{T}) / Z^{1 / n}\right)\) caches misses under certain assumptions
- the kernel operates in place meaning \(\left(t, x^{(0)}, x^{(1)}, \ldots, x^{(n-1)}\right)\) is stored in the same memory locations as \(\left(t-k, x^{(0)}, x^{(1)}, \ldots, x^{(n-1)}\right)\)
- the cache is ideal (optimal replacement policy) and fully associative
- the trapezoid is "sufficiently large"

\section*{Lemma 1}

Lemma 1 Let \(\mathcal{T}\) be the \(n\)-dimensional trapezoid \(\mathcal{T}\left(t_{0}, t_{1}, x_{0}^{(i)}, \dot{x}_{0}^{(i)}, x_{1}^{(i)}, \dot{x}_{1}^{(i)}\right)\), where \(0 \leq i<n\). Let \(\mathcal{T}\) be well-defined, \(w_{i}\) be the width of the trapezoid in dimension \(i\), and let \(m=\min \left(\Delta t, w_{0}, w_{1}, \ldots, w_{n-1}\right) / 2\). Then, there are \(O((1+n) \operatorname{Vol}(\mathcal{T}) / m)\) points on the surface of the trapezoid.

Proof: The volume of the trapezoid is the sum for all time slices of the number of points in the (rectangular) slice:
\[
\operatorname{Vol}(\mathcal{T})=\sum_{-\Delta t / 2 \leq t<\Delta t / 2} \prod_{0 \leq i<n}\left(w_{i}+\vartheta_{i} t\right)
\]
where \(\vartheta_{i}=\dot{x}_{1}^{(i)}-\dot{x}_{0}^{(i)}\). Define the auxiliary function

\section*{Lemma 1}
- Define the auxiliary function which represents the volume of the spacetime region with an additional \(+/-s\). The surface area is then \(\mathrm{V}(1)-\mathrm{V}(0)\)
\[
V(s)=\sum_{-(\Delta t / 2)-s \leq t<(\Delta t / 2)+s} \prod_{0 \leq i<n}\left(w_{i}+2 s+\vartheta_{i} t\right)
\]
- This value is upper bounded by the integral
\[
V(s)=\int_{-(\Delta t / 2)-s}^{(\Delta t / 2)+s} \prod_{0 \leq i<n}\left(w_{i}+2 s+\vartheta_{i} t\right) d t
\]

\section*{Lemma 1}
- After the substitution \(t=(m+s) r\), we obtain
\[
V(s)=\int_{-g(s)}^{g(s)}(m+s) f(s, r) d r
\]
where \(g(s)=((\Delta t / 2)+s) /(m+s)\) and
\[
f(s, r)=\prod_{0 \leq i<n}\left(w_{i}+\left(2+\vartheta_{i} r\right) s+\vartheta_{i} r m\right)
\]

The derivative \(V^{\prime}(0)\) is
\[
\begin{align*}
V^{\prime}(0)= & g^{\prime}(0) \cdot m \cdot(f(0, g(0))+f(0,-g(0))) \\
& +\int_{-g(0)}^{g(0)}\left(f(0, r)+\left.m \cdot \frac{d f(s, r)}{d s}\right|_{s=0}\right) d r . \tag{2}
\end{align*}
\]

Observe that
\[
\begin{equation*}
\left.m \cdot \frac{d f(s, r)}{d s}\right|_{s=0}=f(0, r) \cdot \sum_{0 \leq j<n} \frac{2 m+\vartheta_{j} r m}{w_{j}+\vartheta_{j} r m} \leq n f(0, r), \tag{3}
\end{equation*}
\]
where the inequality holds because \(\left(2 m+\vartheta_{j} r m\right) /\left(w_{j}+\right.\) \(\left.\vartheta_{j} r m\right) \leq 1\), which holds because we have \(2 m \leq w_{j}\) by definition of \(m\), and because we have \(w_{j}+\vartheta_{j} r m \geq 0\) since the trapezoid is well-defined.

Further observe that, because \(m \leq \Delta t / 2\) holds by definition of \(m\), we have that \(g^{\prime}(s)=(m-\Delta t / 2) /(m+\) \(s)^{2} \leq 0\). Because the trapezoid is well-defined, we have \(f(s, r) \geq 0\) and \(m \geq 0\). Therefore, we obtain
\[
\begin{equation*}
g^{\prime}(0) \cdot m \cdot(f(0, g(0))+f(0,-g(0))) \leq 0 . \tag{4}
\end{equation*}
\]

By substituting Eqs. (3) and (4) into Eq. (2), we obtain the result \(V^{\prime}(0) \leq(1+n) V(0) / m\), and the lemma follows.
Q.E.D.

\section*{Main Theorem}

Theorem 2 Let \(\mathcal{T}\) be the well-defined \(n\)-dimensional trapezoid \(\mathcal{T}\left(t_{0}, t_{1}, x_{0}^{(i)}, \dot{x}_{0}^{(i)}, x_{1}^{(i)}, \dot{x}_{1}^{(i)}\right)\). Let procedure walk traverse \(\mathcal{T}\) and execute a kernel in-place on a machine with an ideal cache of size \(Z\). Assume that \(\Delta t=\Omega\left(Z^{1 / n}\right)\) and that \(w_{i}=\Omega\left(Z^{1 / n}\right)\) for all \(i\), where \(w_{i}\) is the width of the trapezoid in dimension \(i\). Then, procedure walk incurs at most \(O\left(\operatorname{Vol}(\mathcal{T}) / Z^{1 / n}\right)\) cache misses.
- We recursively divide the trapezoid into smaller trapezoids until we reach a sub-trapezoid \(S\) with \(O(Z)\) surface points. Due to the in-place memory assumption, we can compute the points in \(S\) with \(O(\partial \operatorname{Vol}(\mathcal{S}))\) ə misses (replaces happen in cache)
- For S, we know \(\Delta t=\Theta\left(w_{i}\right)\) since otherwise, the corresponding dimension would be cut. Therefore, \(\Delta t=\Omega\left((\partial \operatorname{Vol}(\mathcal{S}))^{1 / n}\right)=\Omega\left(Z^{1 / n}\right)\).
- From Lemma 1, \(\partial \operatorname{Vol}(\mathcal{S})=O(\operatorname{Vol}(\mathcal{S}) / \Delta t)\) from which it follows that the number of cache misses from computing \(S\) is \(O\left(\operatorname{Vol}(\mathcal{S}) / Z^{1 / n}\right)\). Summing over all S , we arrive at the result.

\section*{Conclusion}
- Future Work
- Conduct an empirical analysis with real hardware to compare practical cache miss rate
- Consider cache complexity for multithreaded/parallel versions of walk
- Strengths
- Algorithm is broadly applicable as its the first of its time to generalize to arbitrary stencils and dimensions
- Bound reaches theoretical limit
- Weaknesses
- Needs more empirical testing along with real hardware
- Makes significant assumptions on the structure of the stencil and types of cache```

