
Cache Oblivious Stencil
Computations
Matteo Frigo and Volker Strumpen∗
IBM Austin Research Laboratory 11501 Burnet Road, Austin, TX 78758
May 25, 2005

Presented by Vishaal Ram, 4/11/24

Stencil Computations

what is a stencil?

● a computation defined on an n dimensional grid along with a time parameter t
● each value on the grid at a time t is a function of the neighboring grid cells at time t-1, t-2,

…, t-k
● the input is a set of initial value a0 while the output T time steps later is aT

examples

● if a stencil is a p-point
stencil, the value depends
on its p neighbors in the
previous timestep.

● the n dimensions plus the
time dimension together
span the (n+1) dimension
spacetime.

heat diffusion

● one notable example is heat diffusion which represents a 5-point 2D stencil on a discrete
grid:

● the update function is known as the computational kernel

Stencil Computation
Algorithms

standard implementation

● the naive algorithm involves applying the computational kernel to all points at time step
t before timestep t+1

● If the number of points in at each time step exceeds the cache size Z, this computation
incurs O(p) cache misses where p is the number of points computed

main result

● The paper presents a novel stencil computation
algorithm that when traversing a large rectangular
region of (n+1) dimensional spacetime, incurs O(𝑝/𝑍ⁿ⁺¹)
cache misses.
○ this matches a lower bound proved by Hong and

Kong [3] by a constant factor
○ applies to arbitrary stencil and dimension

● this algorithm is also cache oblivious
○ does not contain the cache size as a parameter

One-Dimensional
Stencil Algorithm

walk1

● we define a procedure walk1 that traverses a
rectangular region 0 <= t < T and 0 <= x < N

● for simplicity, we restrict the computation to a
3 point stencil
○ (t, x) depends on (t-1, x-1), (t-1, x), (t-1,

x+1)
● instead of just considering rectangular

regions, we instead consider a more general
trapezoidal region with additional parameters
x0 and x1 dot.

trapezoid

For integers we define trapezoid
to be the set of points that satisfy

The height is computed as
The width is the average lengths of the parallel
sides:
The center is the average of the four corners:

The volume |T| is the number of points in the
trapezoid.
Assume for now that the special case with slopes
 zero denotes the rectangular region.

walk1 steps

● the algorithm works by recursively
decomposing the region into smaller rectangles

● The base case is when the height is one
● Otherwise we perform one of two cuts dividing

the trapezoid in half, recursing on each one

Space Cut

● If the width is long enough, perform a diagonal cut from the center splitting the region
into another trapezoid and a parallelogram. Then recurse on the trapezoid first.

time cut

● otherwise perform a timecut dividing the region into two trapezoids by cutting
horizontally through the center. Then recurse on the bottom region first

summary

● we can guarantee that both cuts always produce valid and well defined regions.
● we can show that this procedure also works on cylindrical where (t+1, x) depends on (t,

(x-1) mod N), (t, x mod N), (t, (x+1) mod N).

cylindrical traversal

● traversal order for cylindrical traversal where N=T=10

Extension to Multiple
Dimensions and

Arbitrary Stencils

arbitrary stencils

● we first extend walk1 to a spacetime point (t+1, x) to depend on any (t, x+k) for any

● To do this, we simply modify our space cut so that we cut along the center with a line of
slope . This guarantees that two point in the first region depends on a
point in the second region. This cut can be applied whenever which
guarantees the two regions are well defined.

arbitrary dimension

● We extend the definition of the 2D
trapezoid to an arbitrary number of
dimensions

● If any of the dimensions permits a space
cut, we cut along that dimension and
recurse, otherwise we perform a time cut

● As the projection onto any dimension
matches our 2D case, this algorithm also
generates a valid stencil traversal.

Cache Analysis

Theorem

● We will prove that the walk algorithm incurs caches misses under
certain assumptions
○ the kernel operates in place meaning is stored in the

same memory locations as f .
○ the cache is ideal (optimal replacement policy) and fully associative
○ the trapezoid is “sufficiently large”

Lemma 1

Lemma 1

● Define the auxiliary function which represents the volume of the spacetime region with an
additional +/- s. The surface area is then V(1) - V(0)

● This value is upper bounded by the integral

Lemma 1

● After the substitution we
obtain

Main Theorem

● We recursively divide the trapezoid into smaller trapezoids until we reach a
sub-trapezoid S with O(Z) surface points. Due to the in-place memory assumption, we can
compute the points in S with cache misses (replaces happen in cache)

● For S, we know since otherwise, the corresponding dimension would be
cut. Therefore,

● From Lemma 1, from which it follows that the number of
cache misses from computing S is Summing over all S, we arrive at
the result.

Conclusion

● Future Work
○ Conduct an empirical analysis with real hardware to compare practical cache miss

rate
○ Consider cache complexity for multithreaded/parallel versions of walk

● Strengths
○ Algorithm is broadly applicable as its the first of its time to generalize to arbitrary

stencils and dimensions
○ Bound reaches theoretical limit

● Weaknesses
○ Needs more empirical testing along with real hardware
○ Makes significant assumptions on the structure of the stencil and types of cache

