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Stencil Computations



what is a stencil?

● a computation defined on an n dimensional grid along with a time parameter t
● each value on the grid at a time t is a function of the neighboring grid cells at time t-1, t-2, 

…, t-k
● the input is a set of initial value a0 while the output T time steps later is aT



examples

● if a stencil is a p-point 
stencil, the value depends 
on its p neighbors in the 
previous timestep. 

● the n dimensions plus the 
time dimension together 
span the (n+1) dimension 
spacetime. 



heat diffusion

● one notable example is heat diffusion which represents a 5-point 2D stencil on a discrete 
grid:

● the update function is known as the computational kernel



Stencil Computation 
Algorithms



standard implementation

● the naive algorithm involves applying the computational kernel to all points at time step 
t before timestep t+1

● If the number of points in at each time step exceeds the cache size Z, this computation 
incurs O(p) cache misses where p is the number of points computed



main result

● The paper presents a novel stencil computation 
algorithm that when traversing a large rectangular 
region of (n+1) dimensional spacetime, incurs O(𝑝/𝑍ⁿ⁺¹) 
cache misses. 
○ this matches a lower bound proved by Hong and 

Kong [3] by a constant factor
○ applies to arbitrary stencil and dimension

● this algorithm is also cache oblivious
○ does not contain the cache size as a parameter



One-Dimensional 
Stencil Algorithm



walk1

● we define a procedure walk1 that traverses a 
rectangular region 0 <= t < T and 0 <= x < N

● for simplicity, we restrict the computation to a 
3 point stencil
○ (t, x) depends on (t-1, x-1), (t-1, x), (t-1, 

x+1)
● instead of just considering rectangular 

regions, we instead consider a more general 
trapezoidal region with additional parameters 
x0 and x1 dot.



trapezoid

For integers                               we define trapezoid
to be the set of points that satisfy

The height is computed as   
The width is the average lengths of the parallel 
sides: 
The center is the average of the four corners:

The volume |T| is the number of points in the 
trapezoid.
Assume for now that the special case with slopes
 zero denotes the rectangular region.



walk1 steps

● the algorithm works by recursively 
decomposing the region into smaller rectangles

● The base case is when the height is one
● Otherwise we perform one of two cuts dividing 

the trapezoid in half, recursing on each one



Space Cut

● If the width is long enough, perform a diagonal cut from the center splitting the region 
into another trapezoid and a parallelogram. Then recurse on the trapezoid first.





time cut

● otherwise perform a timecut dividing the region into two trapezoids by cutting 
horizontally through the center. Then recurse on the bottom region first





summary

● we can guarantee that both cuts always produce valid and well defined regions. 
● we can show that this procedure also works on cylindrical where (t+1, x) depends on (t, 

(x-1) mod N), (t, x mod N), (t, (x+1) mod N). 



cylindrical traversal

● traversal order for cylindrical traversal where N=T=10



Extension to Multiple 
Dimensions and 

Arbitrary Stencils



arbitrary stencils

● we first extend walk1 to a spacetime point (t+1, x) to depend on any (t, x+k) for any  

● To do this, we simply modify our space cut so that we cut along the center with a line of 
slope                                . This guarantees that two point in the first region depends on a 
point in the second region. This cut can be applied whenever                           which 
guarantees the two regions are well defined. 



arbitrary dimension

● We extend the definition of the 2D 
trapezoid to an arbitrary number of 
dimensions

● If any of the dimensions permits a space 
cut, we cut along that dimension and 
recurse, otherwise we perform a time cut

● As the projection onto any dimension 
matches our 2D case, this algorithm also 
generates a valid stencil traversal. 





Cache Analysis



Theorem

● We will prove that the walk algorithm incurs                                     caches misses under 
certain assumptions
○ the kernel operates in place meaning                                               is stored in the 

same memory locations as f           .
○ the cache is ideal (optimal replacement policy) and fully associative
○ the trapezoid is “sufficiently large” 



Lemma 1



Lemma 1

● Define the auxiliary function which represents the volume of the spacetime region with an 
additional +/- s. The surface area is then V(1) - V(0)

● This value is upper bounded by the integral 



Lemma 1

● After the substitution      we 
obtain
 



Main Theorem
 

● We recursively divide the trapezoid into smaller trapezoids until we reach a 
sub-trapezoid S with O(Z) surface points. Due to the in-place memory assumption, we can 
compute the points in S with    cache misses (replaces happen in cache)

● For S, we know                           since otherwise, the corresponding dimension would be 
cut. Therefore,         

● From Lemma 1, from which it follows that the number of 
cache misses from computing S is    Summing over all S, we arrive at 
the result.         



Conclusion

● Future Work
○ Conduct an empirical analysis with real hardware to compare practical cache miss 

rate
○ Consider cache complexity for multithreaded/parallel versions of walk

● Strengths
○ Algorithm is broadly applicable as its the first of its time to generalize to arbitrary 

stencils and dimensions
○ Bound reaches theoretical limit

● Weaknesses
○ Needs more empirical testing along with real hardware
○ Makes significant assumptions on the structure of the stencil and types of cache


