
Fast Stencil Computations 
using Fast Fourier Transforms

Zafar Ahmad, Rezaul Chowdhury, Rathish Das, 
Pramod Ganapathi, Aaron Gregory, Yimin Zhu 



Stencil Computations

● Stencil: pattern to compute value of a cell at a timestep based on values of 
nearby cells in previous timesteps

● Stencil Computation: applying a stencil to a grid for a number of timesteps

Used for modeling the evolution of physical systems (e.g. fluid dynamics, 
meteorology, cellular automata)



Problem Specification

Input data: array a0[...] of size N, linear stencil S such that at+1 = Sat 

Boundary conditions can be periodic or aperiodic

Goal: compute aT = STa0 (i.e. the state after T timesteps)



Related Work

Direct Solvers
● Looping Algorithms: iteratively compute each timestep
● Tiled Looping: make better use of cache locality
● Divide and Conquer: cache-oblivious (e.g. trapezoidal decomposition)

Krylov Subspace Methods
● Compute successively better approximations
● Tradeoff between runtime and accuracy



Limitations of Existing Work

Direct Solvers
● Nonoptimal computational complexity (all O(NT) work)
● No support for implicit stencils

Krylov Subspace Methods
● Manual analysis for convergence
● Specialized for particular problems
● Inexact solutions



Key Contribution

o(NT)-work direct solver based on DFT preconditioning on a Krylov method

● Supports homogeneous linear stencils on vector-valued fields
● Does not support nonlinear or inhomogeneous stencils

○ Can break homogeneity either spatially or temporally



Periodic Boundary Conditions

● 1-D case: at[i] = at[i+n]
● Generally, indices can be computed modulo the size in given dimension
● All values can be computed by direct application of the stencil



Circulant Periodic Stencils

● Linear stencil is a linear mapping, so can write as NxN matrix S
● Periodicity means cyclic permutation preserves relative ordering
● Stencil only affected by relative ordering, so applying cyclic permutation and 

then stencil results in the same as vice versa → S is circulant
● Only need to store 1st column of S

Circulant S



Properties of Circulant Stencil

● Convolution Theorem states can diagonalize 
● Repeated exponentiation of diagonalizable matrix 
● Let x be the initial data a0 applied with the Fourier transform, then



1-D Explicit Stencil Algorithm

1. FFT - compute FFT of stencil and input data

2. Repeated Squaring - log-time exponentiation of diagonal matrix

3. Elementwise Product - apply transformed stencil to input

4. Inverse FFT - transform result back to spatial domain



Work and Span

1. FFT O(N log N) work, O(log N log log N) span
2. Repeated Squaring O(N log T) work, O(log N + log T) span
3. Elementwise Product O(N) work, O(log N) span
4. Inverse FFT O(N log N) work, O(log N log log N) span

Overall: O(N log(NT)) work, O(log N log log N + log T) span



Generalizations

● Multi-Dimensional Stencils
○ Index into stencil and grid data with d-dimensional vector instead of integer

● Implicit Stencils
○ Stencils that depend on field data from timestep being computed
○ Compute pseudoinverse after diagonalizing implicit part of stencil to make explicit

● Vector-Valued Fields
○ Stencil for each pair of indices between input and output vectors
○ Obtain equivalent stencils for longer timesteps by sequential squaring of matrix of stencils



Aperiodic Boundaries

Examples: Dirichlet and Von Neumann



Correcting Boundary Region of Influence

● Recursive trapezoidal 
decomposition

● Striped regions computed with 
periodic algorithm

● Dark regions solved with 
sequential divide and conquer

● Base case uses standard 
looping algorithm



Work and Span

Work of Recursive Boundary
● Recurrence: W(T) = 2W(T/2) + O(bT log bT)

○ Base case: O(b)
● Solving gives W(T) = O(bT log(bT) log(T))

Span of Recursive Boundary
● S(T) = max{2S(T/2), O(1) log(T) log log(T)} + O(log b)
● Solving gives S(T) = O(T log b)

Overall O(bT log(bT) log(T) + N log(N)) work
O(T log(b) + log(N) log log(N)) span

*Where b is size of boundary



Experimental Setup

● Run on 68-core KNL and 48-core SKX nodes
● Baseline SoTA tiled looping code generator (PLuTo)
● Benchmark problems in 1, 2, and 3 dimensions with both periodic and 

aperiodic boundaries
○ N = 1.6M, 8Kx8K, and 800x800x800 for 1, 2, 3 dims. respectively



Periodic Stencil Algorithms

● Theoretical speedup over looping algorithms is O(T / log T)
● In practice, do observe near linear speedup as N is held constant
● Due to memory bounded FFT, do not expect to scale well 



Aperiodic Stencil Algorithms

● Their algorithm was at least 8.5, 2.3, and 1.3 times faster on KNL than PLuTo 
generated code for 1, 2, and 3 dimensions respectively

● Corresponding figures were 5.2, 1.7, and 1.3 times faster on SKX
● Theoretical bounds predict a speedup of O(N^(1/d) / (log(TN^(1-1/d)) log T)) 

over PLuTo code, so for fixed N, increases in T will lead to worse speedups



Numerical Accuracy

● Compared max relative error to naive looping code
● No significant loss of accuracy



Future Work

● Extension to nonlinear stencils
● Low-span algorithms for aperiodic stencils
● Approximate algorithms for inhomogeneous stencils



Evaluation

Strengths
● Very significant speedup for periodic boundaries
● Novel approach improving both theoretical bounds and practical performance

Weaknesses
● Aperiodic unable to take full advantage of their periodic approach, needing to 

compute essentially iteratively for larger T
● Low scalability beyond 32 threads 


