
Efficient Sorting, Duplicate Removal, Grouping, 
and Aggregation (2022)
By: Thanh Do, Goetz Graefe, Jeffrey Naughton

Presented by Ian Gatlin



What is this paper about?

Database query processing requires algorithms for duplicate removal, grouping, 
and aggregation.

In SQL you can chain operations together in a single query. Based on earlier 
operations, later operations may be faster based on groupings/sorts from the 
output of the previous operation.

This paper focuses on an algorithm that performs well on run-time efficiency in 
both cases.

2



Applications of these ideas

SQL duplicate removal are used in applications of all kinds:

- The example given in the paper is removing duplicate users from a website 
log. This can reduce billions of rows to millions of rows.

- In my UROP, different parts of the genome may have same effects on the 
upstream and downstream regulators

3



Duplicate Removal

- SELECT DISTINCT Color FROM Foods
- Returns unique values

4

Food Color

Strawberry Red

Spinach Green

Raspberry Red

Lettuce Green

Color

Red

Green



Grouping and Aggregation

5

- SELECT Color, Count(*) FROM Foods GROUP BY Color
- Creates group objects where data is sorted into contiguous chunks, and then 

applies aggregation function that calculates value based off group

Food Color

Strawberry Red

Spinach Green

Raspberry Red

Lettuce Green

Color Count

Red 2

Green 2



Existing Implementations

- In-stream aggregation - This is the most efficient implementation, but it 
requires sorted input

If the input is not sorted:

- Sort-based aggregation - uses an external memory merge sort. Relatively 
slower and uses more memory, but good if sorted order can help with 
subsequent operations

- Hash-based aggregation - uses in-memory hash table + hash partitioning to 
temporary storage. Aggregates with hash buckets, this is good when the hash 
table (the output of the aggregation), can fit into memory.

- Uses estimation in compile time to determine whether to use sort or hash 
based aggregation in this step 6



What is the problem with this?

- The estimations for input and output size isn’t reliable and is often inaccurate 
during query compilation

- Because of this, the wrong algorithm choice is often made, causing 
unpredictable performance and slower runtimes

- Having unpredictable performance allows developers to better account for 
performance delays, which can help make better user interfaces

7



Contribution of Paper 

- This paper aims to create a new in-sort aggregation algorithm to replace the 
sort-based and hash-based aggregation algorithms with a single algorithm. 

- The goal is to make it competitive with the hash based algorithm, while 
creating a sorted order that will help with previous runs. 

- Now, instead of having to rely on erroneous estimates, database engines can 
rely on a single algorithm 

8



Benefits

- Less production code means less maintenance and more readability and 
understandability

- Reduces unpredictable performance
- Easier to understand how to optimize queries
- Easier to analyze runtime and bottlenecks in specific queries



- We can’t change the input or output size of the data, but we can control how 
much temporary storage we use in the grouping and aggregation of data to 
achieve the output.

- This is what the paper focuses on optimizing

How can we optimize these operations?

10



Introducing the Implementation

- This paper introduces two new techniques. They give sorting the property of 
early aggregation by using in memory binary tree indexes, and using wide 
merging to reduce the amount of temporary storage needed.

- Reducing memory is the name of the game. 



- It allows for aggregation in sorting data structures by using a binary tree 
(rather than priority queues) that can eliminate duplicate values in the primary 
runs to temporary storage (during sorting) rather than after the merge. This 
uses less temporary memory.

Technique 1: Early Aggregation

12



- The second new technique, wide merging, improves the final merge step of 
external merge sort by having a larger fan-in.

- Rather than using a memory page for each input, wide merging uses a single 
page for all inputs. It absorbs inputs from others into a single page.

- Reduces the amount of memory necessary for merge.

Technique 2: Wide Merging

13



Performance - CPU Time

- CPU Time - Speed of queries



Performance - Spillage

- Spillage - amount of external temporary storage used. We want to reduce the 
blow-up factor of this if output is greater than the size of memory. Sometimes 
it's unavoidable



Conclusions

- This paper introduces a new that is competitive with the hash based 
algorithm, while creating a sorted order that will help with subsequent runs. 

- Database engines can rely on a single more reliable algorithm 
- Less production code means less maintenance and more readability, and 

understandability



Pros

- Very thorough paper with many theoretical and experimental justifications 
- Competitive with both previous approaches with sorting benefit

17

Cons
- More figures to explain how it works would be useful
- Some number dense paragraphs in paper are not as readable



Thank you! Questions

18


