Concurrent Algorithms and
Data Structures

Yuanhao Wei
MIT 6.506 Algorithm Engineering

Concurrent Data Structure ..«

9

pe"a\\or\ A
Shared Operatlon 2
Data
Op
Being applied

simultaneously

Examples Users

Transact'\O“ !

Database 4 Transaction 2

Tr
w

Other Applications: Operating Systems, Parallel Schedulers

System

Work Stealing — Concurrent Deque

4 N\
Queue 1 Queue 2 Queue P

O O O

20000 20000 ¢ X
p< ° ® ® ® ®
- ® ® ® ® -
- - e e ® b
- P4 ® e ® ®
- - ® e ® ®

X X X

Source: https://actor-framework.readthedocs.io/en/0.17.5/Scheduler.html

Example — Concurrent BST

root
Challenge:
| e « Ensuring data structure
P1: delete(4) \ remains in a consistent state
« Return values are correct
a e * All processes make progress

P2: lookup(1) \
ORO

P3: rangeQuery(1, 6)

Parallelism VS Concurrency

Data
Thread A Structure Thread B

Attempt access,
getting blocked Lock
—]

i Unlock
Lock

Unlock | |

Source: https://www.cprogramming.com/parallelism.html Source: https://jenkov.com/tutorials/java-concurrency/non-blocking-algorithms.html

Outline

* Asynchronous Shared Memory Model
» Correctness Conditions — Linearizability, Serializability

» Lock-based techniques
« Hand-over-hand locking
» Lock-free searches
« Optimistic locking

* Lock-free techniques
» Helping
 Harris linked list

Asynchronous Shared Memory

Processes

* Processes communicate through
shared variables

« Adversarial scheduler interleaves
steps by the processes

* Processes can be arbitrarily slow or
crash (never scheduled again)

Shared Variables

Read-Write Variable: Read(X), Write(X, value)

Processes Shared

ariables
/‘ Lock: Lock(L), Unlock(L)
/)
» G _, Compare-and-Swap (CAS) Variable:

a‘ Read(X), CAS(X, oldValue, newValue)

A \
' ' f Read(X) == oldValue
("

Write(X, newValue)
return true
else return false

Example: Concurrent Counter

Increment():
y =read(C) // Cis a shared variable, initially O
write(C, y+1)

Thread 1 Thread 2
Fori=11to 10: Fori=1to 10:
Increment|() Increment|()

When both threads complete, what are the possible values of C?

10

Correctness: Linearizability

A concurrent data structure is linearizable if we can assign linearization points to each
operation such that:

1. The linearization point of each operation lies between the invocation and response
of that operation
2. The operations appear to be applied sequentially, ordered by their linearization
points
Write(1) / Write(1)) 4
P1 @ @ P1
Read() Read() Read() Read()
P2 o0——o 0—o— P2 o—0—9080
Returns O Returns 1 Returns 1 Returns O
————— ———————

Time Time

Correctness:. Sequential Consistency

A concurrent data structure is sequentially consistent if we can order the operations

such that:

1. The operations appear to be applied sequentially, according to this order
2. This order is consistent with the program order of each process

Write(1) \/
~ Read() ™ Read()

P2 o——©0 00—

Returns 0 Returns 1

Time

P1

Write(1) x

Read() Read()
o—O0 O—

Returns 1 Returns O
—
Time

Linearizability vs Sequential Consistency

« Aka “strict serializability” vs “serializability” in database community

Write(X,2) — Read(Y)

P1 o—0
Returns O Sequential Consistency is not
composable but Linearizability is!
Write(Y,3) Read(X)
P2 eo—e o— o
Returns 0
———

Time

13

Outline

* Asynchronous Shared Memory Model
» Correctness Conditions — Linearizability, Sequential Consistency

* L ock-based Linked Lists

« Hand-over-hand locking
* Lock-free searches
« Optimistic locking

* L ock-free Linked Lists
» Helping
e Harris linked list

Set Abstract Data Type

1 public interface Set<T> {
2 boolean add(T x);

3 boolean remove(T Xx);

4 boolean contains(T x);
5

}

« We will cover several ways of implementing this using a concurrent linked list
« These techniques generalize to other pointer-based data structures like binary trees
(balanced and unbalanced), b-trees, radix trees, etc

15

Concurrent Linked List: Challenges

Consider a Linked List where: Asynchrony: no assumption about
relative speed of processes
* Process 1 wants to remove C

* Process 2 wants to add D

2. Process 2 adds node D

-
N~ _—
e o o = =

1. Process 1 pauses right before writing the pointer to £
3. Process 1 unpauses and accidently removes D as well as C. Incorrect!

17

Lock-based Solutions

 Corse-grained Locking:

[Head—> A F—

* Fine-grained Locking:

Head — A ——

o

Hand-over-hand Locking

O NOY OB LWN

L N T gy
S oo N - O W

public boolean add(T item) ({
int key = item.hashCode();

head.lock();
Node pred = head;

try {

Node curr = pred.next;
curr.lock();

try {

while (curr.key < key) {

}

pred.unlock()
pred = curr;

curr = curr.next;
curr.lock();

15
16
17
18
19
20
21
22
23
24
25
26
27
28

if (curr.key == key) {
return false;

}
Node newNode = new Node(item);
newNode.next = curr;
pred.next = newNode;
return true;

} finally {
curr.unlock();

}

} finally {
pred.unlock();

}
)

19

Hand-over-hand Locking

e Invariants: our

two locked nodes are always adjacent and

guaranteed to be reachable from the root

* At first glance, t
proceed in para

nis looks fairly scalable, many operations can
lel

* What's the prob

em?

20

Principles for Efficient Locking

1. Don’t hold too many locks
2. Don’t hold a lock for too long
3. Only lock the locations you plan to write to

Deadlock prevention: acquire locks in a consistent order

21

Cache Coherency

Core 1 Core 2 Core 3 Core 4
Cache Cache Cache Cache
e AT SE foo=3 | N\ |
Tl ' ' broadcasts |
dmmmmm e updated —
4'_""": value '
........... 4
Main Memory
foo=3 Multicore chip

Source: https://www.sciencedirect.com/topics/engineering/cache-coherence

22

Path-copy runs into a similar issue

Immutability Enables Concurrency

Latest version

%@ #refs=1 \ #refs=1

Ry {

23

Lock-free contains()

. IEv?(nflock-based data structures at least want their read-only operations to be
ock-free

* A sequential contains() algorithm basically works in the concurrent setting

public boolean contains(T item) ({
int key = item.hashCode();
Node curr = head;
while (curr.key < key)
curr = curr.next;
return curr.key == key

}

NO O BN

24

Lock-free contains(): Linearizability

* There are times during the contains() where curr is not reachable from the
root

» Therefore, we cannot linearize the contains() when it returns
* What's the correct linearization point?

public boolean contains(T item)
int key = item.hashCode();
Node curr = head;
while (curr.key < key)
curr = curr.next;
return curr.key == key

}

~NOY O BN

25

Speeding-up Updates: Optimistic Locking

Traverse optimistically without locks until you reach a node you wish to update
Lock neighborhood of node

Validate neighborhood

Perform updates

a &~ 0D~

Release Locks

Validation is necessary to make sure the nodes you locked are still reachable.
A “removed” bit is added to check reachability.

Appeared as early as the 1980s, re-invented many times since then.
Go-to technique for almost all pointer-based data structures.

26

Speeding-up Updates: Optimistic Locking

O NOY OB WN =

public boolean add(T item) {
int key = item.hashCode();
while (true) {
Node pred = head;
Node curr = pred.next;
while (curr.key <= key) {
pred = curr; curr = curr.next;

}
pred.lock(); curr.lock();

try {

if (validate(pred, curr)) {
if (curr.key == key) {
return false;

} else {
Node node = new Node(item);
node.next = curr;

pred.next = node;
return true;

}

}
} finally {

pred.unlock(); curr.unlock();
}
}
}

v

private boolean validate(Node pred, Node curr) {

}

return !pred.marked && !curr.marked && pred.next

== curr;

27

Updated Lock-free contains()

public boolean contains(T item) {
int key = item.hashCode();
Node curr = head;
while (curr.key < key)
curr = curr.next;
return curr.key == key && !curr.marked;

}

N OY O B GW N

28

Outline

* Asynchronous Shared Memory Model J J
» Correctness Conditions — Linearizability, Sequential Consistency

+ Lock-based Linked Lists /
« Hand-over-hand locking
* Lock-free contains
« Optimistic locking
* Lock-free Linked Lists
» Helping
 Harris linked list

Progress Guarantee: Lock-freedom

Definition: some operation eventually completes regardless of
how processes are scheduled

 Must hold for an adversarial scheduler

* Disallows a process from waiting for another process to take
a step

30

HiStOry Of LOCk-freedOm Lock-free programming is hard!

1965 * Dijkstra introduces mutual exclusion
1980 » Scalable lock-based binary search trees developed
Lots of work on lock-freedom

2010 * First scalable lock-free binary search tree

31

Shared Variables

Read-Write Variable: Read(X), Write(X, value)

Processes Shared

ariables
/‘ Lock: Lock(L), Unlock(L)
/)
» G _, Compare-and-Swap (CAS) Variable:

e‘ Read(X), CAS(X, oldValue, newValue)

A \
' ' f Read(X) == oldValue
("

Write(X, newValue)
return true
else return false

32

Lock-freedom: Key Ideas

 Most shared writes should be done with CAS

« Update operations should become visible with a single CAS

« E.g. instead of updating the fields of a node one by one, create a new
copy of the node and install it atomically

» Helping: updates operations might temporarily leave data
structure in an inconsistent state, if you see this, help complete

their operation.

33

Lock-free Linked List

 Lock-free contains() the same as before

* If we only need to support lock-free add(), then a sequential
implementation with some writes replaced with CAS would be
sufficient

* The tricky part is supporting delete()s

34

Source: https://concurrencyfreaks.blogspot.com/2014/03/harriss-linked-list.html

Lock-free Linked List .. —wsw s .

» Key idea: deletes “freeze” the node being deleted before
physically removing it

H 10 | 3 > 30 - - T

 This “freeze” prevents any other process from making
modifications to it

* |If other processes come across a frozen node, they have to
help remove it to prevent it from blocking their progress

35

Outline

* Asynchronous Shared Memory Model / J
» Correctness Conditions — Linearizability, Sequential Consistency

.+ Lock-based Linked Lists J

« Hand-over-hand locking
* Lock-free contains

 Optimistic locking These techniques can be applied
| ock-free Linked Lists J to a wide range of data structures
* Helping

* Harris linked list

Topic | didn't get to cover

» Concurrent Memory Management

* Weak Memory Models

* Proving Correctness

» Consensus Hierarchy

* More complex concurrent data structures

* Lots of open problems in this area

37

