
Concurrent Algorithms and
Data Structures

Yuanhao Wei
MIT 6.506 Algorithm Engineering

1

2

Shared
Data

Users

Being applied
simultaneously

Operation 2

Operation 1

Operation 3

Concurrent Data Structure

Examples

Database
System

Users

Transaction 2

Transaction 1

Transaction 3

Other Applications: Operating Systems, Parallel Schedulers

Work Stealing – Concurrent Deque

Source: https://actor-framework.readthedocs.io/en/0.17.5/Scheduler.html

5

8

4 9

1 5

root

P2: lookup(1)

P1: delete(4)

P3: rangeQuery(1, 6)

Challenge:
• Ensuring data structure

remains in a consistent state
• Return values are correct
• All processes make progress

Example – Concurrent BST

Parallelism vs Concurrency

Source: https://jenkov.com/tutorials/java-concurrency/non-blocking-algorithms.htmlSource: https://www.cprogramming.com/parallelism.html

Outline

• Asynchronous Shared Memory Model
• Correctness Conditions – Linearizability, Serializability
• Lock-based techniques

• Hand-over-hand locking
• Lock-free searches
• Optimistic locking

• Lock-free techniques
• Helping
• Harris linked list

Asynchronous Shared Memory

8

• Processes communicate through
shared variables

• Adversarial scheduler interleaves
steps by the processes

• Processes can be arbitrarily slow or
crash (never scheduled again)

Shared Variables
Read-Write Variable: Read(X), Write(X, value)

Compare-and-Swap (CAS) Variable:
 Read(X), CAS(X, oldValue, newValue)

if Read(X) == oldValue
 Write(X, newValue)
 return true
else return false

9

Lock: Lock(L), Unlock(L)

Example: Concurrent Counter
Increment():
 y = read(C) // C is a shared variable, initially 0
 write(C, y+1)

10

Thread 1
For i = 1 to 10:
 Increment()

Thread 2
For i = 1 to 10:
 Increment()

When both threads complete, what are the possible values of C?

Correctness: Linearizability
A concurrent data structure is linearizable if we can assign linearization points to each
operation such that:
1. The linearization point of each operation lies between the invocation and response

of that operation
2. The operations appear to be applied sequentially, ordered by their linearization

points

Write(1)

Time

P1

P2
Read() Read()

Returns 0 Returns 1

Write(1)

Time

P1

P2
Read() Read()

Returns 1 Returns 0

Correctness: Sequential Consistency
A concurrent data structure is sequentially consistent if we can order the operations
such that:
1. The operations appear to be applied sequentially, according to this order
2. This order is consistent with the program order of each process

Write(1)

Time

P1

P2
Read() Read()

Returns 0 Returns 1

Write(1)

Time

P1

P2
Read() Read()

Returns 1 Returns 0

Linearizability vs Sequential Consistency
• Aka “strict serializability” vs “serializability” in database community

13

Write(X,2)

Time

P1

P2
Write(Y,3) Read(X)

Returns 0

Returns 0

Read(Y)

Sequential Consistency is not
composable but Linearizability is!

Outline

• Asynchronous Shared Memory Model
• Correctness Conditions – Linearizability, Sequential Consistency
• Lock-based Linked Lists

• Hand-over-hand locking
• Lock-free searches
• Optimistic locking

• Lock-free Linked Lists
• Helping
• Harris linked list

Set Abstract Data Type

15

• We will cover several ways of implementing this using a concurrent linked list
• These techniques generalize to other pointer-based data structures like binary trees

(balanced and unbalanced), b-trees, radix trees, etc

Concurrent Linked List: Challenges

Consider a Linked List where:
• Process 1 wants to remove C
• Process 2 wants to add D

17

A B C E

Asynchrony: no assumption about
relative speed of processes

1. Process 1 pauses right before writing the pointer to E

2. Process 2 adds node D

D

3. Process 1 unpauses and accidently removes D as well as C. Incorrect!

Lock-based Solutions

18

A B C EHead

• Corse-grained Locking:

A B C EHead

• Fine-grained Locking: D

Hand-over-hand Locking

19

Hand-over-hand Locking

• Invariants: our two locked nodes are always adjacent and
guaranteed to be reachable from the root

• At first glance, this looks fairly scalable, many operations can
proceed in parallel

• What’s the problem?

20

Principles for Efficient Locking

1. Don’t hold too many locks
2. Don’t hold a lock for too long
3. Only lock the locations you plan to write to

Deadlock prevention: acquire locks in a consistent order

21

Cache Coherency

22

Source: https://www.sciencedirect.com/topics/engineering/cache-coherence

Path-copy runs into a similar issue

23

Lock-free contains()
• Even lock-based data structures at least want their read-only operations to be

lock-free
• A sequential contains() algorithm basically works in the concurrent setting

24

Lock-free contains(): Linearizability
• There are times during the contains() where curr is not reachable from the

root
• Therefore, we cannot linearize the contains() when it returns
• What’s the correct linearization point?

25

Speeding-up Updates: Optimistic Locking

1. Traverse optimistically without locks until you reach a node you wish to update
2. Lock neighborhood of node
3. Validate neighborhood
4. Perform updates
5. Release Locks

Validation is necessary to make sure the nodes you locked are still reachable.
A “removed” bit is added to check reachability.

Appeared as early as the 1980s, re-invented many times since then.
Go-to technique for almost all pointer-based data structures.

26

Speeding-up Updates: Optimistic Locking

27

Updated Lock-free contains()

28

Outline

• Asynchronous Shared Memory Model
• Correctness Conditions – Linearizability, Sequential Consistency
• Lock-based Linked Lists

• Hand-over-hand locking
• Lock-free contains
• Optimistic locking

• Lock-free Linked Lists
• Helping
• Harris linked list

Progress Guarantee: Lock-freedom

Definition: some operation eventually completes regardless of
how processes are scheduled

• Must hold for an adversarial scheduler
• Disallows a process from waiting for another process to take

a step

30

History of Lock-freedom

• Dijkstra introduces mutual exclusion
• Scalable lock-based binary search trees developed
Lots of work on lock-freedom

• First scalable lock-free binary search tree

31

1965

1980

2010

….

Lock-free programming is hard!

….

Shared Variables
Read-Write Variable: Read(X), Write(X, value)

Compare-and-Swap (CAS) Variable:
 Read(X), CAS(X, oldValue, newValue)

if Read(X) == oldValue
 Write(X, newValue)
 return true
else return false

32

Lock: Lock(L), Unlock(L)

Lock-freedom: Key Ideas

• Most shared writes should be done with CAS

• Update operations should become visible with a single CAS
• E.g. instead of updating the fields of a node one by one, create a new

copy of the node and install it atomically

• Helping: updates operations might temporarily leave data
structure in an inconsistent state, if you see this, help complete
their operation.

33

Lock-free Linked List

• Lock-free contains() the same as before

• If we only need to support lock-free add(), then a sequential
implementation with some writes replaced with CAS would be
sufficient

• The tricky part is supporting delete()s

34

Lock-free Linked List

• Key idea: deletes “freeze” the node being deleted before
physically removing it

• This “freeze” prevents any other process from making
modifications to it

• If other processes come across a frozen node, they have to
help remove it to prevent it from blocking their progress

35

Source: https://concurrencyfreaks.blogspot.com/2014/03/harriss-linked-list.html

Outline

• Asynchronous Shared Memory Model
• Correctness Conditions – Linearizability, Sequential Consistency
• Lock-based Linked Lists

• Hand-over-hand locking
• Lock-free contains
• Optimistic locking

• Lock-free Linked Lists
• Helping
• Harris linked list

These techniques can be applied
to a wide range of data structures

Topic I didn’t get to cover

• Concurrent Memory Management
• Weak Memory Models
• Proving Correctness
• Consensus Hierarchy
• More complex concurrent data structures

• Lots of open problems in this area

37

