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1* Disclaimer: The methods described here are simplified/modified for easier understanding and are not highly accurate.



* https://icl.utk.edu/~hanzt/talks/SparseMatricesAndParallelProcessingOnGPUs.pdf

Recap on GPU Computing
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* https://medium.com/codex/understanding-the-architecture-of-a-gpu-d5d2d2e8978b

GPU Component
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* https://www.researchgate.net/figure/Schematic-of-NVIDIA-GPU-architecture-where-SM-refers-to-streaming-
multiprocessor_fig2_321958738

GPU Structure
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* https://icl.utk.edu/~hanzt/talks/SparseMatricesAndParallelProcessingOnGPUs.pdf

- One warp consists of 32 threads on Nvidia GPUs.
- You can think of the threads in a warp as being executed in 

single-instruction multiple-thread (SIMT) fashion.
- One thread block consists of a few warps, which users can 

configure."

Programming GPUs

5



* https://www.researchgate.net/figure/Memory-coalescing-fast-access-and-not-coalesced-slow-access-
representation_fig2_286446838

GPU Memory coalescing
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* http://homepages.math.uic.edu/~jan/mcs572f16/mcs572notes/lec35.html

GPU Memory coalescing
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Sparse matrix
- A matrix in which the majority of its elements are zero.
- Many real-world matrices exhibit sparsity.
- We need a compact representation that only stores the non-zero elements and their indices.

- The asymptotic time and space complexity for sparse matrix computations can be orders of 
magnitude worse otherwise (i.e., infeasible to compute and store).

* http://sparse.tamu.edu

roadNet-CA
(Road network of California)

Soc-Epinions1
(Who-trusts-whom network of Epinions.com)
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2M

2M

5.5M nonzero 
entries
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Compressed Sparse Row (CSR)

- Compressed Sparse Row (CSR) and Coordinate format (COO) are the most popular data 
representations for sparse matrices.

- The row pointers indicate where each row starts in the other two arrays
- Column indices of each row is usually sorted in ascending order.

0 1 2 3 4 5

0 a b c
1 d e

2 f g
3 h i j k l
4 m
5 n o p

a b c d e f g h i j k l m n o p

0 2 4 1 3 2 5 0 2 3 4 5 1 2 4 5Col_idx

Value

0 3 5 7 121316Row_ptr

Sparse Matrix

Corresponding CSR

a b c d e f g h i j k l m n o p

0 2 4 1 3 2 5 0 2 3 4 5 1 2 4 5Col_idx

Value

Corresponding COO

0 0 0 1 1 2 2 3 3 3 3 3 4 5 5 5Row_idx
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What is SpMV?
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Sparse Matrix-Vector Multiplication (SpMV) is computed by multiplying each row of the 
sparse matrix with the dense vector and summing the results to obtain the elements of 
the output vector. 11



SpMV is ubiquitous

Eiganvalue Systems

* https://mathworld.wolfram.com/Eigenvalue.html* https://delante.co/definitions/pagerank/

Graph algorithms Multigrid method

* https://en.wikipedia.org/wiki/Multigrid_method
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Optimizing SpMV on GPUs is challenging

- Load-balanced execution is challenging.

- Achieving coalesced access is nontrivial.

- The performance of SpMV is constrained by the size of sparse matrix

- Efficiently reusing the input and output vectors
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Optimizing SpMV on GPUs is challenging

- Load-balanced execution is challenging.

- Achieving coalesced access is nontrivial.

- The performance of SpMV is constrained by the size of sparse matrix

- Efficiently reusing the input and output vectors

Our focus in this talk

Beyond the scope of this talk

Done with non-standard sparse matrix 
representation.
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How to assign threads to work?

- One thread per row 

- One warp (=32 threads) per row

- One thread block (assuming 256 threads) per row
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One thread per row

…

Skewed sparse matrix

33 entries

… 1,025 entries

2 entries

Thread 0 Thread 1 Thread 2

Step 1

Step 2

…Step 3

Step 33

Step 34

Step 1,025

…

Idle

Idle

- No reduction cost
- Can result in significant load-imbalance
- Can lead to uncoalesced memory accesses
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One thread per row

…

Skewed sparse matrix

33 entries

… 1,025 entries

2 entries

Thread 0 Thread 1 Thread 2

Step 1

Step 2

…Step 3

Step 33

Step 34

Step 1,025

…

Idle

Idle

- No reduction cost
- Can result in significant load-imbalance
- Can lead to uncoalesced memory accesses

Uncoalesced mem access
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One warp per row

…

Skewed sparse matrix

33 entries

… 1,025 entries

2 entries

Warp 0 Warp 1 Warp 2

Step 1

Step 2

…Step 3

Step 32

Step 33

Idle
Idle

- Result in reduction cost
- Can result in significant load-imbalance

…
Thread 0 ~ Thread 31 Thread 0 ~ Thread 31 Thread 0 ~ Thread 31

Idle

…
…
…

…

Idle

Idle
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One warp per row

…

Skewed sparse matrix

33 entries

… 1,025 entries

2 entries

Warp 0 Warp 1 Warp 2

Step 1

Step 2

…Step 3

Step 32

Step 33

Idle
Idle

- Result in reduction cost
- Can result in significant load-imbalance

…
Thread 0 ~ Thread 31 Thread 0 ~ Thread 31 Thread 0 ~ Thread 31

Idle

…
…
…

…

Idle

Idle

Reduction

Reduction

Reduction
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One thread block per row

…

Skewed sparse matrix

33 entries

… 1,025 entries

2 entries

TB 0 TB 1 TB 2

Step 1

Step 2

Step 4

Step 5

Idle
Idle

- Result in more reduction cost
- Can result in significant load-imbalance

…
Thread 0 ~ Thread 255 Thread 0 ~ Thread 255Thread 0 ~ Thread 255

…
…

…

Idle

IdleIdle

…
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One thread block per row

…

Skewed sparse matrix

33 entries

… 1,025 entries

2 entries

Step 1

Step 2

Step 4

Step 5

Idle
Idle

- Result in more reduction cost
- Can result in significant load-imbalance

…
Thread 0 ~ Thread 255 Thread 0 ~ Thread 255Thread 0 ~ Thread 255

…
…

…

Idle

IdleIdle

…

Reduction

Reduction

Reduction

TB 0 TB 1 TB 2
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Binning can partially resolve this problem

…

Skewed sparse matrix

33 entries

… 1,025 entries

2 entries

- A thread, warp, or thread block is assigned based on the number of entries in the row
- Still suffers from load-imbalance and reduction cost

Assign 1 warp

Assign 1 TB

Assign 1 thread

* Ashari, Arash, et al. "Fast sparse matrix-vector multiplication on GPUs for graph applications." SC'14: Proceedings of the 
International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2014.

Warp TB Thread 

Idle

…
Thread 0 ~ Thread 31 Thread 0 ~ Thread 255 Thread 0

Idle

…
…
…
…

Idle

Step 1

Step 2

Step 3

Step 4

Step 5

Idle

Reduction Reduction
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Load-balanced SpMV with coalesced memory access

* Steinberger, Markus, Rhaleb Zayer, and Hans-Peter Seidel. "Globally homogeneous, locally adaptive sparse matrix-vector 
multiplication on the GPU." Proceedings of the International Conference on Supercomputing. 2017.

- Load imbalanced execution
- Ensure that each thread processes the same number of nonzero entries of the 

sparse matrix (i.e., strict nonzero splitting).

- Achieving coalesced memory access of the sparse matrix
- First load the sparse matrix into shared memory

- Achieving coalesced memory access of the output
- Use a shared memory buffer for the output
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Strict Nonzero Splitting
- Assuming one thread block consists of two threads, each thread is tasked with 

processing four nonzero entries of the sparse matrix.
0 1 2 3 4 5

0 a b c
1 d e

2 f g
3 h i j k l
4 m
5 n o p

a b c d e f g h i j k l m n o p

0 2 4 1 3 2 5 0 2 3 4 5 1 2 4 5Col_idx

Value

0 3 5 7 121316Row_ptr

Sparse Matrix

Processed by TB 0

Corresponding CSR

Processed by TB 1
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Binary search
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Strict Nonzero Splitting
- Assuming one thread block consists of two threads, each thread is tasked with 

processing four nonzero entries of the sparse matrix.
0 1 2 3 4 5

0 a b c
1 d e

2 f g
3 h i j k l
4 m
5 n o p

Sparse Matrix

0 3TB_row_start

Corresponding CSR

a b c d e f g h i j k l m n o p

0 2 4 1 3 2 5 0 2 3 4 5 1 2 4 5Col_idx

Value

0 3 5 7 121316Row_ptr

Processed by TB 0

Corresponding CSR

Processed by TB 1

Binary search

Thread_row_start 0 1
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Strict Nonzero Splitting
- Assuming one thread block consists of two threads, each thread is tasked with 

processing four nonzero entries of the sparse matrix.
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0 a b c
1 d e

2 f g
3 h i j k l
4 m
5 n o p

Sparse Matrix

0 3TB_row_start

Corresponding CSR

a b c d e f g h i j k l m n o p

0 2 4 1 3 2 5 0 2 3 4 5 1 2 4 5Col_idx

Value

0 3 5 7 121316Row_ptr

Processed by TB 0

Corresponding CSR

Processed by TB 1

Binary search

Thread_row_start 0 1 3 4
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Strict Nonzero Splitting
- Assuming one thread block consists of two threads, each thread is tasked with 

processing four nonzero entries of the sparse matrix.
0 1 2 3 4 5

0 a b c
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Strict Nonzero Splitting
- Assuming one thread block consists of two threads, each thread is tasked with 
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Strict Nonzero Splitting
- Assuming one thread block consists of two threads, each thread is tasked with 

processing four nonzero entries of the sparse matrix.
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Strict Nonzero Splitting
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Strict Nonzero Splitting
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Strict Nonzero Splitting
- Assuming one thread block consists of two threads, each thread is tasked with 

processing four nonzero entries of the sparse matrix.
0 1 2 3 4 5

0 a b c
1 d e

2 f g
3 h i j k l
4 m
5 n o p

Sparse Matrix

0 3TB_row_start

Corresponding CSR

a b c d e f g h i j k l m n o p

0 2 4 1 3 2 5 0 2 3 4 5 1 2 4 5Col_idx

Value

0 3 5 7 121316Row_ptr

Corresponding CSR

Thread_row_start 0 1 3 4

Row_end 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1

36



Strict Nonzero Splitting
- Assuming one thread block consists of two threads, each thread is tasked with 

processing four nonzero entries of the sparse matrix.
0 1 2 3 4 5

0 a b c
1 d e

2 f g
3 h i j k l
4 m
5 n o p

Sparse Matrix

0 3TB_row_start

a b c d e f g h i j k l m n o p

0 2 4 1 3 2 5 0 2 3 4 5 1 2 4 5Col_idx

Value

0 3 5 7 121316Row_ptr

Thread_row_start 1 1 3 4

Row_end 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1
Write the accumulated result to the output, 

and increment Thread_row_start by 1 
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Uncoalesced Access to the Sparse Matrix

0 1 2 3 4 5

0 a b c
1 d e

2 f g
3 h i j k l
4 m
5 n o p

Sparse Matrix

Uncoalesced mem access

a b c d e f g h i j k l m n o p

0 2 4 1 3 2 5 0 2 3 4 5 1 2 4 5Col_idx

Value

0 3 5 7 121316Row_ptr

Row_end 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1

- Assuming one warp consists of four threads, each thread is tasked with processing 
four nonzero entries of the sparse matrix.

0 3TB_row_start

Thread_row_start 0 1 3 4
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Uncoalesced Access to the Sparse Matrix

0 1 2 3 4 5

0 a b c
1 d e

2 f g
3 h i j k l
4 m
5 n o p

Sparse Matrix

Uncoalesced mem access

a b c d e f g h i j k l m n o p

0 2 4 1 3 2 5 0 2 3 4 5 1 2 4 5Col_idx

Value

0 3 5 7 121316Row_ptr

Row_end 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1

Sm_col_idx

Sm_value

Shared memory

- Assuming one warp consists of four threads, each thread is tasked with processing 
four nonzero entries of the sparse matrix.
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Uncoalesced Access to the Sparse Matrix

0 1 2 3 4 5

0 a b c
1 d e

2 f g
3 h i j k l
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5 n o p

Sparse Matrix

a b c d e f g h i j k l m n o p
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0 3 5 7 121316Row_ptr

Row_end 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1

0 2 4 1

a b c d

Sm_col_idx

Sm_value

Shared memory

Coalesced mem access

- Assuming one warp consists of four threads, each thread is tasked with processing 
four nonzero entries of the sparse matrix.
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Uncoalesced Access to the Sparse Matrix

0 1 2 3 4 5

0 a b c
1 d e

2 f g
3 h i j k l
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5 n o p

Sparse Matrix

a b c d e f g h i j k l m n o p

0 2 4 1 3 2 5 0 2 3 4 5 1 2 4 5Col_idx
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0 3 5 7 121316Row_ptr

Row_end 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1

0 2 4 1 3 2 5 0

a b c d e f g h
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Shared memory

Coalesced mem access

- Assuming one warp consists of four threads, each thread is tasked with processing 
four nonzero entries of the sparse matrix.

41



What is SpGEMM?
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In sparse matrix-matrix multiplication (SpGEMM), all three matrices are sparse
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SpGEMM is ubiquitous

Multigrid method

* https://en.wikipedia.org/wiki/Multigrid_method* https://www.datanami.com/2018/12/10/
graphit-promises-big-speedup-in-graph-processing/

Graph processing

* https://doc.cgal.org/latest/Polygon_mesh_processing/index.html

Mesh operation
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Three approaches for SpGEMM

* Zhang, Guowei, et al. "Gamma: Leveraging Gustavson’s algorithm to accelerate sparse matrix multiplication." Proceedings of the 
26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.

- Inner-product SpGEMM

- Outer-product SpGEMM

- Gustavson’s SpGEMM
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Inner-product SpGEMM
- Compute the output matrix one element at a time.

- Requiring the intersection between a row of A, and a column of B.
- Offers good output reuse, but poor input reuse.
- Asymptotically very inefficient

- For each row of A, an intersection operation is necessary for every nonzero column of B.
- But, most intersections will result in an empty set.

* Zhang, Guowei, et al. "Gamma: Leveraging Gustavson’s algorithm to accelerate sparse matrix multiplication." Proceedings of the 
26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.45



Outer-product SpGEMM
- Compute the output one partial matrix at a time by traversing each column of A and each row of B.

- Sums the outer products of corresponding columns and rows.
- Offers good input reuse, but poor output reuse.

- Unordered access across different rows and columns of the output matrix.
- The output is primarily required to be in GPU global memory due to poor locality.
- Global memory access for each partial product.

* Zhang, Guowei, et al. "Gamma: Leveraging Gustavson’s algorithm to accelerate sparse matrix multiplication." Proceedings of the 
26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.46



Gustavson’s SpGEMM
- Computes the output matrix one row at a time by summing the rows of B scaled by the 

corresponding columns in each row of A.
- Requires combining partial output rows instead of partial output matrices, as in outer-product 

SpGEMM.
- Modest reuse of input and output
- Allows for consistency in the format for both inputs and outputs, meaning all formats are CSR.

- Inner- or outer-product requires one input to be transposed (i.e., transposed CSR).

* Zhang, Guowei, et al. "Gamma: Leveraging Gustavson’s algorithm to accelerate sparse matrix multiplication." Proceedings of the 
26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.47



Three approaches for SpGEMM

* Zhang, Guowei, et al. "Gamma: Leveraging Gustavson’s algorithm to accelerate sparse matrix multiplication." Proceedings of the 
26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.

- Inner-product SpGEMM

- Outer-product SpGEMM

- Gustavson’s SpGEMM
Adopted in all state-of-the-art GPU implementations
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Optimizing SpGEMM on GPUs is challenging

- Load balancing.
- All matrices are irregular.
- Achieving load-balanced execution in SpGEMM is significantly more challenging 

compared to SpMV. 

- Concurrent access of the output.
- The sparse output matrix needs to be constructed in parallel.
- The output size is unknown a priori.

- Accumulating partial products.
- Accumulating partial products in global memory significantly hurts performance.

- Causes uncoalesced atomic memory accesses.

* Parger, Mathias, et al. "Speck: Accelerating gpu sparse matrix-matrix multiplication through lightweight analysis." 
Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. 2020.
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Optimizing SpGEMM on GPUs is challenging

- Load balancing.
- All matrices are irregular.
- Achieving load-balanced execution in SpGEMM is significantly more challenging 

compared to SpMV. 

- Concurrent access of the output.
- The sparse output matrix needs to be constructed in parallel.
- The output size is unknown a priori.

- Accumulating partial products.
- Accumulating partial products in global memory significantly hurts performance.

- Causes uncoalesced atomic memory accesses.

* Parger, Mathias, et al. "Speck: Accelerating gpu sparse matrix-matrix multiplication through lightweight analysis." 
Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. 2020.
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Methods for Memory Pre-allocation for the Output Matrix*

- Progressive method

- Upper-bound method

- Probabilistic method

- Two-phase method (Precise method)

* Liu, Weifeng, and Brian Vinter. "An efficient GPU general sparse matrix-matrix multiplication for irregular data." 2014 IEEE 
28th International Parallel and Distributed Processing Symposium. IEEE, 2014.
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Progressive Method
- First allocates memory of a proper size, starts sparse matrix computation and 

reallocates the buffer if larger space is required. 

x

…
…

Temporary
(size = 2)

+
Temporary
(size = 4)

Temporary
(size = 8)

Resize Resize

Trim

Move

…
…

Output Matrix
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Progressive Method
- First allocates memory of a proper size, starts sparse matrix computation and 

reallocates the buffer if larger space is required. 

- Concurrent memory management over hundreds of thousands of threads is  
challenging.

- Reallocation of device memory on the fly during computations is difficult.

- Memory space is wasted up to k times (k is an expansion factor).
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Upper-bound Method
- Computes an upper bound of the number of the nonzero entries in the output 

matrix and allocates corresponding memory space. 

x

…
… + Temporary

(size = 8 = 4+4)

Move

…
…

Output Matrix

Trim
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Upper-bound Method
- Computes an upper bound of the number of the nonzero entries in the output 

matrix and allocates corresponding memory space.

-  Can significantly waste memory space
- The size of GPU memory is relatively small (e.g., 80GB for an A100 GPU)

- Memory bandwidth can be wasted
- GPU transaction granularity is 32/64 bytes
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Probabilistic Method
- Estimates an imprecise size of the output based on random sampling and 

probability analysis on the input matrices.

x

…
… +

Sampling

4 partial products contribute 2 locations
→ 8 partial products may contribute 4 locations 

Allocate 4 entries

Temporary
(size = 4)

Temporary
(size = 8)

Trim

…
…

Output Matrix

Estimation fails, resize

Move
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Probabilistic Method
- Estimates an imprecise size of the output based on random sampling and 

probability analysis on the input matrices.

- Precisely estimating the upper bound of the output size is very challenging.
- Interactions between A and B are complicated: estimating which intermediate 

results contribute to the same entry of the output is difficult.

- Extra memory has to be allocated while the estimation fails.
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Two-phase method
- In the symbolic phase, count the number of nonzero entries of each row of the 

output
- In the numeric phase, compute the column indices and values of the entries of the 

output

x

…
… +

…
…

Output Matrix

Count the number of entries 
of the row in the output

w/o actual computations

5

…
…Generate

Histogram

x

…
… + 5

…
…

…
…

Output Matrix
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Two-phase method
- In the symbolic phase, count the number of nonzero entries of each row of the 

output
- In the numeric phase, compute the column indices and values of the entries of the 

output

- The significant overhead arises from having the same pattern of computations 
twice.

- Memory-space efficiency is achieved, ensuring that memory space is not wasted.

- All state-of-the-art SpGEMM implementations on GPUs utilize this method.
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Progressive Method

- Progressive method

- Upper-bound method

- Probabilistic method

- Two-phase method (Precise method)
Adopted in all state-of-the-art GPU implementations

* Liu, Weifeng, and Brian Vinter. "An efficient GPU general sparse matrix-matrix multiplication for irregular data." 2014 IEEE 
28th International Parallel and Distributed Processing Symposium. IEEE, 2014.
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Progressive Method

- Progressive method

- Upper-bound method

- Probabilistic method

- Two-phase method (Precise method)
Adopted in all state-of-the-art GPU implementations

This may outperform the two-phase method on GPUs if we have enough GPU memory

* Liu, Weifeng, and Brian Vinter. "An efficient GPU general sparse matrix-matrix multiplication for irregular data." 2014 IEEE 
28th International Parallel and Distributed Processing Symposium. IEEE, 2014.
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Optimizing SpGEMM on GPUs is challenging

- Load balancing.
- All matrices are irregular.
- Achieving load-balanced execution in SpGEMM is significantly more challenging 

compared to SpMV. 

- Parallel assembly for the output.
- The sparse output matrix needs to be constructed in parallel.
- The output size is unknown a priori.

- Accumulating partial products.
- Accumulating partial products in global memory significantly hurts performance.

- Causes uncoalesced atomic memory accesses.
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Accumulation using Hashmaps
- For brevity, each thread block processes each row of the output matrix.
- Each thread block has two (hierarchical) hash tables in shared memory and global memory.
- Utilize a small hash table initially. If the small hash table is unable to contain all entries, transfer all data 

from the small hash table and rely solely on the large hash table.

SM 0

Small Hash Table

Threads

Shared
memory

Large Hash Table
Global

memory

SM 1

Small Hash Table

…
Occupied by Thread Block 0
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Accumulation using Hashmaps
- For brevity, each thread block processes each row of the output matrix.
- Each thread block has two (hierarchical) hash tables in shared memory and global memory.
- Utilize a small hash table initially. If the small hash table is unable to contain all entries, transfer all data 

from the small hash table and rely solely on the large hash table.

SM 0

Small Hash Table

Threads

Shared
memory

Large Hash Table
Global

memory

SM 1

Small Hash Table

…
Occupied by Thread Block 1
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Accumulation using Hashmaps
- For brevity, each thread block processes each row of the output matrix.
- Each thread block has two (hierarchical) hash tables in shared memory and global memory.
- Utilize a small hash table initially. If the small hash table is unable to contain all entries, transfer all data 

from the small hash table and rely solely on the large hash table.

SM 0

Small Hash Table

Threads

Shared
memory

Large Hash Table
Global

memory

SM 1

Small Hash Table

…
Occupied by Thread Block 2
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Accumulation using Hashmaps
- During the Symbolic phase, the number of nonzero entries in each row of the output remains unknown.

- Hash table size = the number of partial products (representing the upper bound).
- Store only the nonzero column indices in hash tables.

- In the Numeric phase, we gain knowledge about the number of nonzero entries in each output row.
- Hash table size = 1.5 ✕ the number of nonzero entries.
- Gathering nonzero entries of the hash table is achieved through parallel prefix-sum operations.
- Following the gathering process, sorting becomes necessary to arrange nonzero entries of an output 

row in ascending order of column indices.
- Store both the nonzero column indices and their corresponding values in hash tables.

- Need more space for hash tables

- Linear probing is used
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Accumulation using Hashmaps

x

- In Symbolic phase,
- Hash table size = the number of partial products = 5+5 = 10
- Only maintain column indices
- Assume hash function h = (h+1)%10 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8 9

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Hash Table

Col_idx
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Accumulation using Hashmaps

x

- In Symbolic phase,
- Hash table size = the number of partial products = 5+5 = 10
- Only maintain column indices
- Assume hash function h = (h+1)%10 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8 9

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 7 ⊥ ⊥

Hash Table

Col_idx
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Accumulation using Hashmaps

x

- In Symbolic phase,
- Hash table size = the number of partial products = 5+5 = 10
- Only maintain column indices
- Assume hash function h = (h+1)%10 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8 9

⊥ ⊥ 12 ⊥ ⊥ ⊥ ⊥ 7 ⊥ ⊥

Hash Table

Col_idx
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Accumulation using Hashmaps

x

- In Symbolic phase,
- Hash table size = the number of partial products = 5+5 = 10
- Only maintain column indices
- Assume hash function h = (h+1)%10 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8 9

⊥ ⊥ 12 ⊥ ⊥ ⊥ 16 7 ⊥ ⊥

Hash Table

Col_idx
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Accumulation using Hashmaps

x

- In Symbolic phase,
- Hash table size = the number of partial products = 5+5 = 10
- Only maintain column indices
- Assume hash function h = (h+1)%10 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8 9

⊥ ⊥ 12 ⊥ ⊥ 25 16 7 ⊥ ⊥

Hash Table

Col_idx
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Accumulation using Hashmaps

x

- In Symbolic phase,
- Hash table size = the number of partial products = 5+5 = 10
- Only maintain column indices
- Assume hash function h = (h+1)%10 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8 9

⊥ ⊥ 12 ⊥ ⊥ 25 16 7 27 ⊥

Hash Table

Col_idx
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Accumulation using Hashmaps

x

- In Symbolic phase,
- Hash table size = the number of partial products = 5+5 = 10
- Only maintain column indices
- Assume hash function h = (h+1)%10 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8 9

⊥ ⊥ 12 ⊥ ⊥ 25 16 7 27 ⊥

Hash Table

Col_idx

Same Entry
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Accumulation using Hashmaps

x

- In Symbolic phase,
- Hash table size = the number of partial products = 5+5 = 10
- Only maintain column indices
- Assume hash function h = (h+1)%10 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8 9

⊥ ⊥ 12 ⊥ ⊥ 25 16 7 27 ⊥

Hash Table

Col_idx

Same Entry
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Accumulation using Hashmaps

x

- In Symbolic phase,
- Hash table size = the number of partial products = 5+5 = 10
- Only maintain column indices
- Assume hash function h = (h+1)%10 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8 9

⊥ ⊥ 12 ⊥ ⊥ 25 16 7 27 ⊥

Hash Table

Col_idx

Same Entry
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Accumulation using Hashmaps

x

- In Symbolic phase,
- Hash table size = the number of partial products = 5+5 = 10
- Only maintain column indices
- Assume hash function h = (h+1)%10 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8 9

⊥ ⊥ 12 ⊥ ⊥ 25 16 7 27 ⊥

Hash Table

Col_idx

Same Entry
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Accumulation using Hashmaps

x

- In Symbolic phase,
- Hash table size = the number of partial products = 5+5 = 10
- Only maintain column indices
- Assume hash function h = (h+1)%10 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8 9

⊥ ⊥ 12 ⊥ ⊥ 25 16 7 27 28

Hash Table

Col_idx
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Accumulation using Hashmaps

x

- In Numeric phase,
- Hash table size = 1.5 ✕ the number of nonzero entries = 1.5 ✕ 6 = 9. 
- Maintain both column indices and corresponding values.
- Assume hash function h = (h+1)%9 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0 0 0 0 0 0 0 0 0

Hash Table

Col_idx

Value
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Accumulation using Hashmaps

x

- In Numeric phase,
- Hash table size = 1.5 ✕ the number of nonzero entries = 1.5 ✕ 6 = 9. 
- Maintain both column indices and corresponding values.
- Assume hash function h = (h+1)%9 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 7 ⊥

0 0 0 0 0 0 0 ax 0

Hash Table

Col_idx

Value
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Accumulation using Hashmaps

x

- In Numeric phase,
- Hash table size = 1.5 ✕ the number of nonzero entries = 1.5 ✕ 6 = 9. 
- Maintain both column indices and corresponding values.
- Assume hash function h = (h+1)%9 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8

⊥ ⊥ ⊥ 12 ⊥ ⊥ ⊥ 7 ⊥

0 0 0 bx 0 0 0 ax 0

Hash Table

Col_idx

Value
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Accumulation using Hashmaps

x

- In Numeric phase,
- Hash table size = 1.5 ✕ the number of nonzero entries = 1.5 ✕ 6 = 9. 
- Maintain both column indices and corresponding values.
- Assume hash function h = (h+1)%9 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8

⊥ ⊥ ⊥ 12 ⊥ ⊥ ⊥ 7 16

0 0 0 bx 0 0 0 ax cx

Hash Table

Col_idx

Value
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Accumulation using Hashmaps

x

- In Numeric phase,
- Hash table size = 1.5 ✕ the number of nonzero entries = 1.5 ✕ 6 = 9. 
- Maintain both column indices and corresponding values.
- Assume hash function h = (h+1)%9 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8

25 ⊥ ⊥ 12 ⊥ ⊥ ⊥ 7 16

dx 0 0 bx 0 0 0 ax cx

Hash Table

Col_idx

Value
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Accumulation using Hashmaps

x

- In Numeric phase,
- Hash table size = 1.5 ✕ the number of nonzero entries = 1.5 ✕ 6 = 9. 
- Maintain both column indices and corresponding values.
- Assume hash function h = (h+1)%9 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8

25 27 ⊥ 12 ⊥ ⊥ ⊥ 7 16

dx ex 0 bx 0 0 0 ax cx

Hash Table

Col_idx

Value
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Accumulation using Hashmaps

x

- In Numeric phase,
- Hash table size = 1.5 ✕ the number of nonzero entries = 1.5 ✕ 6 = 9. 
- Maintain both column indices and corresponding values.
- Assume hash function h = (h+1)%9 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8

25 27 ⊥ 12 ⊥ ⊥ ⊥ 7 16

dx ex 0 bx 0 0 0 ax
+fy cx

Hash Table

Col_idx

Value

Same Entry
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Accumulation using Hashmaps

x

- In Numeric phase,
- Hash table size = 1.5 ✕ the number of nonzero entries = 1.5 ✕ 6 = 9. 
- Maintain both column indices and corresponding values.
- Assume hash function h = (h+1)%9 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8

25 27 ⊥ 12 ⊥ ⊥ ⊥ 7 16

dx ex 0 bx
+gy 0 0 0 ax

+fy cx

Hash Table

Col_idx

Value

Same Entry
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Accumulation using Hashmaps

x

- In Numeric phase,
- Hash table size = 1.5 ✕ the number of nonzero entries = 1.5 ✕ 6 = 9. 
- Maintain both column indices and corresponding values.
- Assume hash function h = (h+1)%9 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8

25 27 ⊥ 12 ⊥ ⊥ ⊥ 7 16

dx ex 0 bx
+gy 0 0 0 ax

+fy
cx

+hy

Hash Table

Col_idx

Value

Same Entry
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Accumulation using Hashmaps

x

- In Numeric phase,
- Hash table size = 1.5 ✕ the number of nonzero entries = 1.5 ✕ 6 = 9. 
- Maintain both column indices and corresponding values.
- Assume hash function h = (h+1)%9 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8

25 27 ⊥ 12 ⊥ ⊥ ⊥ 7 16
dx
+iy ex 0 bx

+gy 0 0 0 ax
+fy

cx
+hy

Hash Table

Col_idx

Value

Same Entry
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Accumulation using Hashmaps

x

- In Numeric phase,
- Hash table size = 1.5 ✕ the number of nonzero entries = 1.5 ✕ 6 = 9. 
- Maintain both column indices and corresponding values.
- Assume hash function h = (h+1)%9 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8

25 27 28 12 ⊥ ⊥ ⊥ 7 16
dx
+iy ex jy bx

+gy 0 0 0 ax
+fy

cx
+hy

Hash Table

Col_idx

Value
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Accumulation using Hashmaps

x

- In Numeric phase,
- Hash table size = 1.5 ✕ the number of nonzero entries = 1.5 ✕ 6 = 9. 
- Maintain both column indices and corresponding values.
- Assume hash function h = (h+1)%9 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8

25 27 28 12 ⊥ ⊥ ⊥ 7 16
dx
+iy ex jy bx

+gy 0 0 0 ax
+fy

cx
+hy

Hash Table

Col_idx

Value
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Accumulation using Hashmaps

x

- In Numeric phase,
- Hash table size = 1.5 ✕ the number of nonzero entries = 1.5 ✕ 6 = 9. 
- Maintain both column indices and corresponding values.
- Assume hash function h = (h+1)%9 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8

25 27 28 12 ⊥ ⊥ ⊥ 7 16
dx
+iy ex jy bx

+gy 0 0 0 ax
+fy

cx
+hy

Hash Table

Col_idx

Value

25 27 28 12 7 16
dx
+iy ex jy bx

+gy
ax
+fy

cx
+hy

Col_idx

Value

Gather using prefix-sum
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Accumulation using Hashmaps

x

- In Numeric phase,
- Hash table size = 1.5 ✕ the number of nonzero entries = 1.5 ✕ 6 = 9. 
- Maintain both column indices and corresponding values.
- Assume hash function h = (h+1)%9 in case of collisions.

3 x y
2 4 2

4

a b c d e

f g h i j

7
12

16
25

27
28

Nonzero row/column indices

0 1 2 3 4 5 6 7 8

25 27 28 12 ⊥ ⊥ ⊥ 7 16
dx
+iy ex jy bx

+gy 0 0 0 ax
+fy

cx
+hy

Hash Table

Col_idx

Value

25 27 28 12 7 16
dx
+iy ex jy bx

+gy
ax
+fy

cx
+hy

Col_idx

Value

Gather using prefix-sum

7 12 16 25 27 28

ax
+fy

bx
+gy

cx
+hy

dx
+iy ex jy

Col_idx

Value
Sort

Partial CSR output 91



Many real-world sparse matrices are structured

* http://sparse.tamu.edu

mip1 shipsec1

- In many real-world sparse matrices, the nonzero entries are typically densely populated.
- Leveraging clustered entries is crucial for achieving high performance.
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Accumulation using Densemaps
- Hashmaps incur overheads.

- Keeping track of nonzero column indices.
- Additional costs arise in the event of collision.
- Random access of the hash table, particularly problematic for hash tables in global memory.   

- When the nonzero entries of a row in the output are densely populated, a viable alternative is to use a 
dense array in shared memory.
- This approach eliminates the need for storing column indices and handling hash function collisions.
- It results in redundant memory space consumption.
- The use of a dense array is advantageous only when the entries within a row are densely populated.

- If the range from minimum to maximum column index in the resulting row does not fit in scratchpad 
memory, the dense accumulator needs multiple iterations on different column ranges, successively 
progressing through the output row.
- Need to store the positions of the last element that could be processed in the current iteration for 

each row.
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Accumulation using Densemaps
- Assume the shared memory size is 16

x3 x y
2 4 2

4

a b c d

e f g

7
12

16
25

37
49

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dense array

Array idx (implicit)

Value
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Accumulation using Densemaps
- Assume the shared memory size is 16

x3 x y
2 4 2

4

a b c d

e f g

7
12

16
25

37
49
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+ey 0 0 0 0 bx 0 0 0 fy 0 0 0 0 0 0

Dense array

Array idx (implicit)

Value
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Accumulation using Densemaps
- Assume the shared memory size is 16

x3 x y
2 4 2

4

a b c d

e f g

7
12

16
25

37
49

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ax
+ey 0 0 0 0 bx 0 0 0 fy 0 0 0 0 0 0

Dense array

Array idx (implicit)

Value

7 12 16

ax
+ey bx fy

Col_idx

Value

Gather using prefix-sum

Partial CSR output
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Accumulation using Densemaps
- Assume the shared memory size is 16

x3 x y
2 4 2

4

a b c d

e f g

7
12

16
25

37
49

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

cx 0 0 0 0 0 0 0 0 0 0 0 dx 0 0 0

Dense array

Array idx (implicit)

Value

97



Accumulation using Densemaps
- Assume the shared memory size is 16

x3 x y
2 4 2

4

a b c d

e f g

7
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16
25

37
49

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

cx 0 0 0 0 0 0 0 0 0 0 0 dx 0 0 0

Dense array

Array idx (implicit)

Value

Gather using prefix-sum

25 37

cx dx
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Partial CSR output
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Accumulation using Densemaps
- Assume the shared memory size is 16

x3 x y
2 4 2

4

a b c d

e f g

7
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49
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Dense array

Array idx (implicit)

Value
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Accumulation using Densemaps
- Assume the shared memory size is 16

x3 x y
2 4 2

4

a b c d

e f g
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49
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Dense array

Array idx (implicit)

Value

25 37
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Col_idx

Value

Partial CSR output
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ax
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49

gy

Gather using prefix-sum
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Optimizing SpGEMM on GPUs is challenging

- Load balancing.
- All matrices are irregular.
- Achieving load-balanced execution in SpGEMM is significantly more challenging 

compared to SpMV. 

- Parallel assembly for the output.
- The sparse output matrix needs to be constructed in parallel.
- The output size is unknown a priori.

- Accumulating partial products.
- Accumulating partial products in global memory significantly hurts performance.

- Causes uncoalesced atomic memory accesses.
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Load balancing
- Considering load-balanced execution across A and B (C = A X B) seems to be crucial.

- Assigning a predefined number of thread to each nonzero entry of A is insufficient.

x …
1 entry

10k entries

A B
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Load balancing
- Obtain the number of partial products for each row of the output
- Apply binning similar to SpMV’s binning

- Small bin contains rows of the output with < 4 partial products
- Each thread processes each row in the small bin

- Medium bin contains rows of the output with < 128 partial products
- Each warp processes each row in the medium bin

- Large bin contains rows of the output with ≥ 128 partial products
- Each thread block processes each row in the large bin

x
37

…

Generate

Histogram

3

500

Small bin

Medium bin

Large bin

3

37

500
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Load balancing 
- Apply ‘strict nonzero splitting’ for each row of the input.
- Virtually concatenate rows of B corresponding to nonzero column indices of a row of A.

- Threads process each entry in the concatenated structure in a cyclic fashion. 

xx y
a b c d

e f g
z

h i j k

A B

Concatenate

a b c d e f g h i j k

x x x x y y y z z z z
x

Output row
(compressed)

…

Thread 0 Thread 1

…
Thread 2

2

20

50
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Load balancing 
- Using binary search on the auxiliary arrays 'scatter_row_ptr' and 'scatter_col_idx' facilitates 'strict 

nonzero splitting’ without actual concatenation.
- Actually, 'scatter_col_idx' is a partial 'col_idx' of the original CSR for A.

xx y
a b c d

e f g
z

h i j k

A B

2

20

50

0 4 7 11
2 20 50

Scatter_row_ptr
Scatter_col_idx

Binary search is utilized to access the CSR structure of B

A portion of the CSR structure of A
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Questions?
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