6.506: Algorithm Engineering

Lecture 2
 Parallel Algorithms

Julian Shun

February 8, 2024
Lecture material taken from "Parallel Algorithms" by Guy Blelloch and Bruce Maggs and 6.172, developed by Charles Leiserson and Saman Amarasinghe

- Presentation sign-up sheet has been posted
- Problem set will be released on Canvas this week, due on Monday 3/4
- First paper review due Tuesday 10am

Q Why do semiconductor vendors provide chips with multiple processor cores?

A Because of Moore's Law and the end of the scaling of clock frequency.

Intel Haswell-E

Technology Scaling

Power Density

Source: Patrick Gelsinger, Intel Developer's Forum, Intel Corporation, 2004.
Projected power density, if clock frequency had continued its trend of scaling 25\%-30\% per year.

- Pthreads
- Cilk, OpenMP
- Message Passing Interface (MPI)
- CUDA, OpenCL
- Today: Shared-memory parallelism
- Cilk and OpenMP are extensions of C/C++ that support parallel for-loops, parallel recursive calls, etc.
- Do not need to worry about assigning tasks to processors as these languages have a runtime scheduler
- Cilk has a provably efficient runtime scheduler
$377|8 / 512| 1 \mid 915 \cdot 4$
$3 \longdiv { 5 / 8 1 5 1 2 1 1 9 4 } 1 7$
$3 \longdiv { 9 8 1 5 1 2 1 1 4 5 1 7 }$

$3112 \frac{5}{5} 48191517$

Source: "Parallel Algorithms" by Guy E. Blelloch and Bruce M. Maggs

Parallel random-access Machine (PRAM)

Local memory machine

Modular memory machine

- Algorithms for specific topologies can be complicated
- May not perform well on other networks
- Alternative: use a model that summarizes latency and bandwidth of network
- Postal model
- Bulk-Synchronous Parallel (BSP) model
- LogP model
- All processors can perform same local instructions as in the RAM model
- All processors operate in lock-step
- Implicit synchronization between steps
- Models for concurrent access
- Exclusive-read exclusive-write (EREW)
- Concurrent-read concurrent-write (CRCW)
- How to resolve concurrent writes: arbitrary value, value from lowest-ID processor, logical OR of values, sum of values
- Concurrent-read exclusive-write (CREW)
- Queue-read queue-write (QRQW)
- Allows concurrent access in time proportional to the maximal number of concurrent accesses
- Similar to PRAM but does not require lock-step or processor allocation

Computation graph

- Work = number of vertices in graph (number of operations)
- Span (Depth) = longest directed path in graph (dependence length)
- Parallelism = Work / Span
- A work-efficient parallel algorithm has work that asymptotically matches the best sequential algorithm for the problem

Goal: work-efficient and low (polylogarithmic) span parallel algorithms

- Spawning/forking tasks

- Model can support either binary forking or arbitrary forking

Binary forking

Arbitrary forking

- Cilk uses binary forking, as seen in 6.172
- Converting between the two changes work by at most a constant factor and span by at most a logarithmic factor
- Keep this in mind when reading textbooks/papers on parallel algorithms
- We will assume arbitrary forking unless specified
- State what operations are supported
- Concurrent reads/writes?
- Resolving concurrent writes
- For a computation with work W and span S, on P processors a greedy scheduler achieves

Running time $\leq \mathrm{W} / \mathrm{P}+\mathrm{S}$

- For a computation with work W and span S, on P processors Cilk's work-stealing scheduler achieves

Expected running time $\leq \mathrm{W} / \mathrm{P}+\mathrm{O}(\mathrm{S})$

- Work-efficiency is important since P and S are usually small

Parallel Sum

- Definition: Given a sequence $A=\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]$, return $x_{0}+x_{1}+\ldots+x_{n-2}+x_{n-1}$

What is the span?
$S(n)=S(n / 2)+O(1)$
$S(1)=O(1)$
$\rightarrow \mathrm{S}(\mathrm{n})=\mathrm{O}(\log \mathrm{n})$

What is the work?
$W(n)=W(n / 2)+O(n)$
$W(1)=O(1)$
$\rightarrow \mathrm{W}(\mathrm{n})=\mathrm{O}(\mathrm{n})$

Prefix sum

- Definition: Given a sequence $A=\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]$, return a sequence where each location stores the sum of everything before it in A,
$\left[0, x_{0}, x_{0}+x_{1}, \ldots, x_{0}+x_{1}+\ldots+x_{n-2}\right]$, as well as the total sum $x_{0}+x_{1}+\ldots+x_{n-2}+x_{n-1}$
- Example:

2	4	3	1	3
0 2 6 9 10				

Total sum $=13$

- Can be generalized to any associative binary operator (e.g., \times, min, max)

Input: array A of length n
 Output: array A' and total sum

cumulativeSum $=0$;
for $\mathrm{i}=0$ to $\mathrm{n}-1$:
$\mathrm{A}^{\prime}[\mathrm{i}]=$ cumulativeSum;
cumulativeSum $+=\mathrm{A}[i]$;
return A' and cumulativeSum

- What is the work of this algorithm?
- O(n)
- Can we execute iterations in parallel?
- Loop carried dependence: value of cumulativeSum depends on previous iterations

Parallel Prefix Sum

Total sum $=$
for even values of $\mathrm{i}: \mathrm{A}^{\prime}[\mathrm{i}]=\mathrm{B}^{\prime}[\mathrm{i} / 2]$
for odd values of i : $\mathrm{A}^{\prime}[i]=\mathrm{B}^{\prime}[(\mathrm{i}-1) / 2]+\mathrm{A}[\mathrm{i}-1]$

$$
x_{0}+\ldots+x_{7}
$$

Input: array A of length n (assume n is a power of 2)
Output: array A' and total sum
PrefixSum(A, n):
if $\mathrm{n}==1$: return ([0], A[0]) for $\mathrm{i}=0$ to $\mathrm{n} / 2-1$ in parallel:

$$
\mathrm{B}[\mathrm{i}]=\mathrm{A}[2 \mathrm{i}]+\mathrm{A}[2 \mathrm{i}+1]
$$

(B^{\prime}, sum $)=\operatorname{PrefixSum}(B, n / 2)$ for $\mathrm{i}=0$ to $\mathrm{n}-1$ in parallel:

What is the span?
$S(n)=S(n / 2)+O(1)$
$S(1)=O(1)$
$\rightarrow \mathrm{S}(\mathrm{n})=\mathrm{O}(\log \mathrm{n})$
What is the work?
$W(n)=W(n / 2)+O(n)$
$W(1)=O(1)$
$\rightarrow \mathrm{W}(\mathrm{n})=\mathrm{O}(\mathrm{n})$
if $(i \bmod 2)==0: \quad A^{\prime}[i]=B^{\prime}[i / 2]$
else: $\quad A^{\prime}[i]=B^{\prime}[(i-1) / 2]+A[i-1]$
return (A^{\prime}, sum)

- Definition: Given a sequence $A=\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]$ and a Boolean array of flags $B\left[b_{0}, b_{1}, \ldots, b_{n-1}\right]$, output an array A' containing just the elements $\mathrm{A}[\mathrm{i}]$ where $\mathrm{B}[\mathrm{i}]=$ true (maintaining relative order)
- Example:

- Can you implement filter using prefix sum?

$$
\mathrm{A}=\begin{array}{|l|l|l|l|l|}
\hline 2 & 4 & 3 & 1 & 3 \\
\hline
\end{array} \quad \mathrm{~B}=\begin{array}{|l|l|l|l|l|}
\hline \mathrm{T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} \\
\hline
\end{array}
$$

/ /Assume $B^{\prime}[n]=$ total sum parallel-for $\mathrm{i}=0$ to $\mathrm{n}-1$:
if($\left.B^{\prime}[i]!=B^{\prime}[i+1]\right)$:

$$
\mathrm{A}^{\prime}\left[\mathrm{B}^{\prime}[\mathrm{i}]\right]=\mathrm{A}[\mathrm{i}] ;
$$

$$
\mathrm{B}^{\prime}=\left(\begin{array}{ccc}
(0) & 1 & 1 \\
\text { Total sum }=3
\end{array}\right.
$$

Allocate array of size 3 \square

$$
\mathrm{A}^{\prime}=\begin{array}{|l|l|l|}
\hline 2 & 3 & 1 \\
\hline
\end{array}
$$

3171815/2/199544
$3 \longdiv { 7 / 8 / 5 / 2 | 1 9 1 5 \cdot 4 }$
$3 \longdiv { 5 / 8 1 5 1 2 1 1 9 4 } 1 7$
397181512114517
311 81512491577
$3112 \frac{1}{5} 48191517$

Breadth-FIRST SEARCH

- Can process each frontier in parallel
- Parallelize over both the vertices and their outgoing edges parallel_for(int $\mathbf{i}=0 ; \mathbf{i}<\mathbf{n} ; \mathbf{i}++$) parent $[\mathrm{i}]=-1$;

$\mathbf{2}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$
Prefix sum				

frontier[0] = source, frontierSize = 1, parent[source] = source;
while(frontierSize >0) \{
parallel_for(int $\mathbf{i}=0 ; \mathbf{i}<$ frontierSize; $\mathbf{i}++$)

| 0 | 2 | 6 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | degrees[i] = Offsets[frontier[i]+1] - Offsets[frontier[i]]; perform prefix sum on degrees array parallel_for(int $\mathbf{i}=0 ; \mathbf{i}<$ frontierSize; $\mathbf{i}++$) \{

$v=$ frontier[i], index $=$ degrees[i], d = Offsets[v+1]-Offsets[v];
for(int $\mathbf{j}=0 ; \mathbf{j}<\mathbf{d} ; \mathbf{j}++$) \{ //can be paral/e/
ngh = Edges[Offsets[v]+j];
if(parent[ngh] ==-1 \&\& compare-and-swap(\&parent[ngh], -1, v)) \{
frontierNext[index+j] = ngh;
\} else \{ frontierNext[index +j$]=-1$; \}

 the size of frontier 5 (ll done using prefix

- Number of iterations $<=$ diameter Δ of graph
- Each iteration takes O(log m) span for prefix sum and filter (assuming inner loop is parallelized)

Span $=O(\Delta \log m)$

- Sum of frontier sizes $=n$
- Each edge traversed once -> m total visits
- Work of prefix sum on each iteration is proportional to frontier size $->\Theta(n)$ total
- Work of filter on each iteration is proportional to number of edges traversed $->\Theta(\mathrm{m})$ total

$$
\text { Work }=\Theta(n+m)
$$

- Random graph with $\mathrm{n}=10^{7}$ and $\mathrm{m}=10^{8}$
- 10 edges per vertex
- 40-core machine with 2-way hyperthreading

- $31.8 x$ speedup on 40 cores with hyperthreading
- Sequential BFS is 54% faster than parallel BFS on 1 thread

37781512119554
$377 / 8 / 512 \mid 1915{ }^{2} 4$
$3 \longdiv { 5 \longdiv { 5 1 5 / 2 | 1 1 9 \sqrt { 4 } 7 } }$

311 81512491577
$3112 \frac{1}{5} 48191517$

Pointer Jumping

- Have every node in linked list or rooted tree point to the end (root)

(a) The input tree $P=[4,1,6,4,1,6,3]$.
for $\mathrm{j}=0$ to ceil($(\log \mathrm{n})-1$: parallel-for $\mathrm{i}=0$ to $\mathrm{n}-1$: temp $[\mathrm{i}]=\mathrm{P}[\mathrm{P}[\mathrm{i}]]$; parallel-for $\mathrm{i}=0$ to $\mathrm{n}-1$: $\mathrm{P}[\mathrm{i}]=\operatorname{temp}[\mathrm{i}]$;

(b) (c) The final tree $P=[1,1,1,1,1,1,1]$. iteration

What is the work and span?
$W=O(n \log n)$
$S=O(\log n)$

- Have every node in linked list determine its distance to the end

$$
\begin{aligned}
& \text { parallel-for } \mathrm{i}=0 \text { to } \mathrm{n}-1 \text { : } \\
& \text { if } P[i]==i \text { then } \operatorname{rank}[i]=0 \\
& \text { else } \operatorname{rank}[i]=1 \\
& \text { for } j=0 \text { to ceil(}(\log n)-1 \text { : } \\
& \text { temp, temp2; } \\
& \text { parallel-for } \mathrm{i}=0 \text { to } \mathrm{n}-1 \text { : } \\
& \text { temp }[i]=\operatorname{rank}[P[i]] ; \\
& \text { temp2[i] = P[P[i]]; } \\
& \text { parallel-for } \mathrm{i}=0 \text { to } \mathrm{n}-1 \text { : } \\
& \operatorname{rank}[i]=\operatorname{rank}[i]+\operatorname{temp}[i] ; \\
& \mathrm{P}[\mathrm{i}]=\text { temp2[i]; }
\end{aligned}
$$

Work-Span Analysis

```
parallel-for \(\mathrm{i}=0\) to \(\mathrm{n}-1\) :
    if \(\mathrm{P}[\mathrm{i}]==\mathrm{i}\) then \(\operatorname{rank}[\mathrm{i}]=0\)
    else \(\operatorname{rank}[i]=1\)
for \(\mathrm{j}=0\) to ceil( \(\log \mathrm{n})-1\) :
    temp, temp2;
    parallel-for \(\mathrm{i}=0\) to \(\mathrm{n}-1\) :
        temp \(=\operatorname{rank}[P[i]] ;\)
        temp2 \(=\mathrm{P}[\mathrm{P}[\mathrm{i}]]\);
    parallel-for \(\mathrm{i}=0\) to \(\mathrm{n}-1\) :
    \(\operatorname{rank}[\mathrm{i}]=\operatorname{rank}[\mathrm{i}]+\) temp;
    \(\mathrm{P}[\mathrm{i}]=\) temp2;
```

What is the work and span?

$$
\begin{gathered}
W=O(n \log n) \\
S=O(\log n)
\end{gathered}
$$

Sequential algorithm only requires O(n) work

ListRanking(list P)

1. If list has two or fewer nodes, then return / /base case
2. Every node flips a fair coin
3. For each vertex u (except the last vertex), if u flipped Tails and $P[u]$ flipped Heads then u will be paired with $P[u]$ A. $\operatorname{rank}[u]=\operatorname{rank}[u]+\operatorname{rank}[P[u]]$
B. $P[u]=P[P[u]]$
4. Recursively call ListRanking on smaller list
5. Insert contracted nodes v back into list with rank[v] = $\operatorname{rank}[v]+\operatorname{rank}[P[v]]$

Work-Efficient List Ranking

- Number of pairs per round is (n-1)/4 in expectation
- For all nodes u except for the last node, probability of u flipping Tails and $\mathrm{P}[\mathrm{u}]$ flipping Heads is $1 / 4$
- Linearity of expectations gives $(\mathrm{n}-1) / 4$ pairs overall
- Each round takes linear work and $O(1)$ span
- Expected work: $W(n) \leq W(7 n / 8)+O(n)$
- Expected span: $S(n) \leq S(7 n / 8)+O(1)$

$$
\begin{gathered}
W=O(n) \\
S=O(\log n)
\end{gathered}
$$

- Can show span with high probability with Chernoff bound

