6.506: Algorithm Engineering

LECTURE 2 PARALLEL ALGORITHMS

Julian Shun

February 8, 2024

Lecture material taken from "Parallel Algorithms" by Guy Blelloch and Bruce Maggs and 6.172, developed by Charles Leiserson and Saman Amarasinghe © 2018-2024 MIT Algorithm Engineering Instructors

Announcement

- Presentation sign-up sheet has been posted
- Problem set will be released on Canvas this week, due on Monday 3/4
- First paper review due Tuesday 10am

Multicore Processors

Q Why do semiconductor vendors provide chips with multiple processor cores?

A Because of Moore's Law and the end of the scaling of clock frequency.

Intel Haswell-E

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe) © 2018–2024 MIT Algorithm Engineering Instructors

Technology Scaling

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe) © 2018-2024 MIT Algorithm Engineering Instructors

Power Density

Source: Patrick Gelsinger, Intel Developer's Forum, Intel Corporation, 2004.

Projected power density, if clock frequency had continued its trend of scaling 25%-30% per year.

Slide adapted from 6.172 (Charles Leiserson and Saman Amarasinghe) © 2018-2024 MIT Algorithm Engineering Instructors

Technology Scaling

Parallel Languages

- Pthreads
- Cilk, OpenMP
- Message Passing Interface (MPI)
- CUDA, OpenCL
- Today: Shared-memory parallelism
 - Cilk and OpenMP are extensions of C/C++ that support parallel for-loops, parallel recursive calls, etc.
 - Do not need to worry about assigning tasks to processors as these languages have a runtime scheduler
 - Cilk has a provably efficient runtime scheduler

PARALLELISM MODELS

Basic multiprocessor models

Source: "Parallel Algorithms" by Guy E. Blelloch and Bruce M. Maggs © 2018–2024 MIT Algorithm Engineering Instructors

Network topology

Source: "Parallel Algorithms" by Guy E. Blelloch and Bruce M. Maggs © 2018–2024 MIT Algorithm Engineering Instructors

Network topology

- Algorithms for specific topologies can be complicated
 - May not perform well on other networks
- Alternative: use a model that summarizes latency and bandwidth of network
 - Postal model
 - Bulk-Synchronous Parallel (BSP) model
 - LogP model

PRAM Model

- All processors can perform same local instructions as in the RAM model
- All processors operate in lock-step
- Implicit synchronization between steps
- Models for concurrent access
 - Exclusive-read exclusive-write (EREW)
 - Concurrent-read concurrent-write (CRCW)
 - How to resolve concurrent writes: arbitrary value, value from lowest-ID processor, logical OR of values, sum of values
 - Concurrent-read exclusive-write (CREW)
 - Queue-read queue-write (QRQW)
 - Allows concurrent access in time proportional to the maximal number of concurrent accesses

Work-Span model

 Similar to PRAM but does not require lock-step or processor allocation

Computation graph

- Work = number of vertices in graph (number of operations)
- Span (Depth) = longest directed path in graph (dependence length)
- Parallelism = Work / Span
 - A work-efficient parallel algorithm has work that asymptotically matches the best sequential algorithm for the problem

Goal: work-efficient and low (polylogarithmic) span parallel algorithms

Work-Span model

- Spawning/forking tasks
 - Model can support either binary forking or arbitrary forking

Binary forking

- Cilk uses binary forking, as seen in 6.172
- Converting between the two changes work by at most a constant factor and span by at most a logarithmic factor
 - Keep this in mind when reading textbooks/papers on parallel algorithms
- We will assume arbitrary forking unless specified

Work-Span model

- State what operations are supported
 - Concurrent reads/writes?
 - Resolving concurrent writes

Scheduling

• For a computation with work W and span S, on P processors a greedy scheduler achieves

Running time $\leq W/P + S$

 For a computation with work W and span S, on P processors Cilk's work-stealing scheduler achieves

Expected running time $\leq W/P + O(S)$

 Work-efficiency is important since P and S are usually small

PARALLEL SUM

Parallel Sum

• Definition: Given a sequence $A = [x_0, x_1, \dots, x_{n-1}]$, return $x_0 + x_1 + \dots + x_{n-2} + x_{n-1}$

```
What is the span?

S(n) = S(n/2)+O(1)

S(1) = O(1)

\rightarrow S(n) = O(\log n)
```

What is the work? W(n) = W(n/2)+O(n) W(1) = O(1) $\rightarrow W(n) = O(n)$

PREFIX SUM

© 2018–2024 MIT Algorithm Engineering Instructors

¥

Prefix Sum

Definition: Given a sequence A=[x₀, x₁,..., x_{n-1}], return a sequence where each location stores the sum of everything before it in A, [0, x₀, x₀+x₁,..., x₀+x₁+...+x_{n-2}], as well as the total sum x₀+x₁+...+x_{n-2}+x_{n-1}

- Can be generalized to any associative binary operator (e.g., \times , min, max)

Sequential Prefix Sum

```
Input: array A of length n
Output: array A' and total sum
cumulativeSum = 0;
for i=0 to n-1:
 A'[i] = cumulativeSum;
  cumulativeSum += A[i];
return A' and cumulativeSum
```

- What is the work of this algorithm?
 - O(n)
- Can we execute iterations in parallel?
 - Loop carried dependence: value of cumulativeSum depends on previous iterations

Parallel Prefix Sum

Parallel Prefix Sum

Input: array A of length n (assume n is a power of 2) Output: array A' and total sum

What is the span?

S(n) = S(n/2) + O(1)PrefixSum(A, n): S(1) = O(1)if n = 1: return ([0], A[0]) \rightarrow S(n) = O(log n) for i=0 to n/2-1 in parallel: What is the work? B[i] = A[2i] + A[2i+1]W(n) = W(n/2) + O(n)(B', sum) = PrefixSum(B, n/2) W(1) = O(1) \rightarrow W(n) = O(n) for i=0 to n-1 in parallel: if (i mod 2) = = 0: A'[i] = B'[i/2]else: A'[i] = B'[(i-1)/2] + A[i-1]return (A', sum)

FILTER

Filter

- Definition: Given a sequence A=[x₀, x₁,..., x_{n-1}] and a Boolean array of flags B[b₀, b₁,..., b_{n-1}], output an array A' containing just the elements A[i] where B[i] = true (maintaining relative order)
- Example:

• Can you implement filter using prefix sum?

Filter Implementation

PARALLEL BREADTH-FIRST SEARCH

*

Parallel BFS Algorithm

- Can process each frontier in parallel
 - Parallelize over both the vertices and their outgoing edges

Parallel BFS Code

BFS Work-Span Analysis

- Number of iterations \leq diameter Δ of graph
- Each iteration takes O(log m) span for prefix sum and filter (assuming inner loop is parallelized)

Span = $O(\Delta \log m)$

- Sum of frontier sizes = n
- Each edge traversed once -> m total visits
- Work of prefix sum on each iteration is proportional to frontier size $-> \Theta(n)$ total
- Work of filter on each iteration is proportional to number of edges traversed $-> \Theta(m)$ total

Work =
$$\Theta(n+m)$$

Performance of Parallel BFS

- Random graph with $n=10^7$ and $m=10^8$
 - 10 edges per vertex
- 40-core machine with 2-way hyperthreading

POINTER JUMPING AND LIST RANKING

Pointer Jumping

 Have every node in linked list or rooted tree point to the end (root)

(a) The input tree P = [4, 1, 6, 4, 1, 6, 3].

for j=0 to ceil(log n)-1:
 parallel-for i=0 to n-1:
 temp[i] = P[P[i]];
 parallel-for i=0 to n-1:
 P[i] = temp[i];

© 2018–2024 MIT Algorithm Engineering Instructors

(b) (c) The final tree P = [1, 1, 1, 1, 1, 1, 1]. iteration

What is the work and span?

$$W = O(n \log n)$$
$$S = O(\log n)$$

List Ranking

Have every node in linked list determine its distance to the end

```
parallel-for i=0 to n-1:
if P[i] == i then rank[i] = 0
else rank[i] = 1
```

```
for j=0 to ceil(log n)-1:

temp, temp2;

parallel-for i=0 to n-1:

temp[i] = rank[P[i]];

temp2[i] = P[P[i]];

parallel-for i=0 to n-1:

rank[i] = rank[i] + temp[i];

P[i] = temp2[i];
```


Work-Span Analysis

```
parallel-for i=0 to n-1:
  if P[i] == i then rank[i] = 0
  else rank[i] = 1
for j=0 to ceil(log n)-1:
  temp, temp2;
  parallel-for i=0 to n-1:
       temp = rank[P[i]];
       temp2 = P[P[i]];
  parallel-for i=0 to n-1:
       rank[i] = rank[i] + temp;
       P[i] = temp2;
```

What is the work and span?

 $W = O(n \log n)$ $S = O(\log n)$

Sequential algorithm only requires O(n) work

Work-Efficient List Ranking

ListRanking(list P)

- 1. If list has two or fewer nodes, then return //base case
- 2. Every node flips a fair coin
- 3. For each vertex u (except the last vertex), if u flipped Tails and P[u] flipped Heads then u will be paired with P[u]
 - A. rank[u] = rank[u]+rank[P[u]]
 - B. P[u] = P[P[u]]
- 4. Recursively call ListRanking on smaller list
- 5. Insert contracted nodes v back into list with rank[v] = rank[v] + rank[P[v]]

Work-Efficient List Ranking

© 2018–2024 MIT Algorithm Engineering Instructors

Work-Span Analysis

- Number of pairs per round is (n-1)/4 in expectation
 - For all nodes u except for the last node, probability of u flipping Tails and P[u] flipping Heads is 1/4
 - Linearity of expectations gives (n-1)/4 pairs overall
- Each round takes linear work and O(1) span
- Expected work: $W(n) \le W(7n/8) + O(n)$
- Expected span: $S(n) \leq S(7n/8) + O(1)$

 $\begin{array}{l} W = O(n) \\ S = O(log n) \end{array}$

 Can show span with high probability with Chernoff bound