
A Functional Approach to External 
Graph Algorithms
J. Abello, A. L. Buchsbaum, and J. R. Westbrook

Presenter: Nguyen Le



Motivation

● Current algorithms do not completely address the I/O implications of graph traversal
● This paper producing algorithms that are purely functional

○ Functions applied to input data and producing output data
○ Information, once written, remains unchanged

● Allows standard checkpointing techniques
● Amenable to general purpose programming language transformations - reduce running 

time
● New divide-and-conquer approach
● Divise external algorithms for graph problems



I/O Model of Complexity

N = number of items in the instance, 

M = number of items that can fit in main memory, 

B = number of items per disk block.

Typical computer server: M ≈ 10^9 and B ≈ 10^3; 1 < B < M/2, and M < N.

Assume that B = O(N/ log(i) N) for some fixed integer i > 0



Definitions for graph

V = number of vertices

E = number of edges

N = V + E = number of items in the instance

sort(N) = Θ((N/B)logM/B(N/B)), 

scan(N) = ⌈N/B⌉

Goal: replace N by N/B and log2 by logM/B



Problems

● Connected components
○ Maximal set of vertices such that each pair of vertices is connected by a path

● Minimum spanning forests
○ Spanning forest that minimizes the sum of the weights of the edges

● Bottleneck minimum spanning forests
○ Spanning forest that minimizes the weight of the maximum edge

● Maximal matching
○ Maximal set of edges such that no two edges share a common vertex

● Maximal independent set
○ Maximal set of vertices such that no two vertices are adjacent



Previous approaches

● PRAM Simulation
○ Simulate a CRCW PRAM algorithm using one processor and an external disk
○ Not practical - No algorithm based on the simulation has been implemented
○ Typically used to prove the existence of an external memory algorithm of a given I/O 

complexity
● Buffering Data Structures

○ Buffer trees, which support sequences of insert, delete, and deletemin operations on N 
elements

○ Hard to apply external graph algorithms
○ Data structure is not functional



Functional Graph Transformations

● Functional if S, T1, and T2 can be implemented without side effects on their arguments
● Selection, relabeling, contraction, and (vertex and edge) deletion can be implemented 

functionally



Selection



Relabeling



Contraction



Vertex/ Edge Deletion



CC, MM, MSF
Framework



BMSF (Bottleneck MSF)

● If the lower-weighted half of the edges span the graph, they contain a BMSF - 
discard lower half

● Otherwise,  any BMSF contains an edge from the upper half - discard upper 
half

● Open problem whether BMSFs can be computed externally more efficiently 
than MSFs



Randomized Algorithms

 Boruvka Step - O(sort(E)) I/Os

● Identify (and contract) the minimum weight edge incident on each vertex
● Sort by first and second components of each edge. Scan to select minimum 

weight edge

● Halves number of vertices
● Preserves the MSF of the contracted graph



Randomized Algorithms



Semi-external Problems

● V ≤ M but E > M. Example: monitoring long-term traffic, telephone calls
● Maintain in memory information about the V simplifies the problems
● MSF - O(E log V)- using dynamic tree to maintain the internal forest
● BMSFs - check internally if an edge subset spans a graph



Results



Open problems

● Parallel disks
● Devise incremental and dynamic algorithms for external graph problems
● Determine whether or not testing a graph for connectedness

○ Easier testing -> Improved BMSFs


