A Simple and Practical Linear-Work Parallel Algorithm for Connectivity

Julian Shun, Laxman Dhulipala, and Guy Blelloch

Connected Component Labeling

Given an undirected graph, label all vertices such that L(u) = L(v) if and only if there is a path between u and v

Connected Component Labeling

- What are some simple algorithms?
 - Depth-first search
 - Linear work/span
 - Versions of DFS that are parallel are not work-efficient
 - Breadth-first search
 - Linear work
 - Parallelism limited by graph diameter
 - Polylogarithmic span version not work-efficient
 - Spanning forest
 - Good parallelism
 - Practical parallel implementations not linear work

Connected Component Labeling

- Parallel (polylogarithmic span) algorithms
 - Shiloach and Vishkin, Awerbuck and Shiloach
 - Combines (contracts) vertices in each iteration
 - O(m log n) work, O(log n) span
 - Reif, Phillips
 - Uses randomization to simplify contraction algorithms
 - O(m log n) work and O(log n) span w.h.p.
 - O(log n) rounds but don't guarantee a constant fraction of edges removed
 - O(m) work algorithms
 - Gazit '91, Halperin/Zwick '96, Cole et al. '96, Poon/Ramachandran '97, Pettie/Ramachandran '02
 - Quite complicated. No one has implemented these

Our Contributions

- <u>Practical</u> parallel connectivity algorithm with linear work and polylogarithmic span
- Experimental evaluation: <u>competitive</u> with existing parallel implementations (that are not linear-work and polylogarithmic span)

Previous Work: Random Mate

- Idea: Form a set of non-overlapping star subgraphs and contract them
- Each vertex flips a coin. For each Heads vertex, pick an arbitrary Tails neighbor (if there is one) and point to it

Previous Work: Random Mate

Repeat until each component has a single vertex

Expand vertices back in reverse order with label of neighbor

Previous Work: Random Mate

```
CC_Random_Mate(L, E)
if(|E| = 0) Return L //base case
else
```

- 1. Flip coins for all vertices
- 2. For v where coin(v)=Heads, hook to arbitrary Tails neighbor w and set L(v) = L(w)
- 3. $E' = \{ (L(u),L(v)) \mid (u,v) \in E \text{ and } L(u) \neq L(v) \}$
- 4. L' = CC_Random_Mate(L, E')
- 5. For v where coin(v)=Heads, set L'(v) = L'(w) where w is the Tails neighbor that v hooked to in Step 2
- 6. Return L'
- Each iteration requires O(m+n) work and O(1) span
 - Assumes we do not pack vertices and edges
- Each iteration eliminates at least 1/4 of the vertices in expectation → O(log n) rounds w.h.p.

$$W = O(m \log n) w.h.p.$$

Low diameter decomposition

Low diameter decomposition

- (β,d) -decomposition $(0 < \beta < 1)$ partitions V into $V_1,...,V_k$ such that
 - The shortest path between any two vertices in a partition is at most d
 - The number of inter-partition edges is at most β m
- Used in linear system solvers and metric embeddings

Low diameter decomposition

- A (β, O(log n / β))-decomposition can be computed in O(m) expected work and O(log² n / β) span w.h.p. [Miller et al. 2013]
 - Start breadth-first searches from vertices with exponentially-distributed (parameter β) start times
 - Each BFS creates a partition containing the source and all vertices explored
 - A BFS does not explore vertices already visited by another BFS
 - All vertices will have started BFS or been explored by time O(log n / β)
 - BFS's are work-efficient and terminate in $O(\log n / \beta)$ iterations.
 - Each iteration requires O(log n) span.
 - Bounding number of inter-partition edges:
 - An edge is inter-partition if the first two BFS's that reach it do so within a one time step of each other
 - Probability that this happens is at most β due to properties of exponential distribution
 - Linearity of expectations gives at most βm edges cut

Low diameter decomposition example

Our Connectivity Algorithm

- Compute a $(\beta, O(\log n / \beta))$ -decomposition
- Contract each partition into a single vertex
- Recurse

Our Connectivity Algorithm

- Compute a (β, O(log n / β))-decomposition
- Contract each partition into a single vertex
- Recurse

Analysis for $\beta = 1/2$

- Assume contraction can be done in linear work and in O(log n) span
- m/2 edges remain after each round in expectation
 - Work = O(m) + O(m/2) + ... = O(m) in expectation
- O(log n) levels of recursion suffice w.h.p.
 - Span = $O(\log n) * O(\log^2 n / \beta) = O(\log^3 n)$ w.h.p.

Contraction

- Contraction can be done in O(log n) span with bookkeeping and parallel prefix sums
 - Intra-partition edges are filtered out in O(m) work and O(log n) span
 - Prefix sums: relabel vertices to smaller range
 - Duplicate edges removed using parallel hashing in O(m) work and O(log n) span
 - Not needed theoretically

Improving span

- Each round of BFS can be implemented in O(log* n) span w.h.p. using approximate prefix sum and compaction [Gil-Matias-Vishkin '91, Goodrich-Matias-Vishkin '94]
 - Improves span of low diameter decomposition to O(log n log* n)
- Recurse for O(log log n) rounds
 - Left with O(m/log n) edges
 - Switch to O(m log n) work, O(log n) span algorithm
- Result: Linear work algorithm with O(log n log log n log* n) span w.h.p.

Low diameter decomposition variants

- Resolving conflicts among BFS's
 - Decomp-min: breaks ties deterministically
 - Miller et al. showed this produces $(\beta, O(\log n/\beta))$ -decomposition
 - Uses write-with-min (via compare-and-swap)
 - Requires two phases
 - Decomp-arb: breaks ties arbitrarily
 - We prove $(2\beta, O(\log n/\beta))$ -decomposition
 - Uses compare-and-swap
 - Requires just a single phase
 - Decomp-arb-hybrid: uses direction-optimizing BFS
 - This is the fastest one and used in the following experimental results

Experiments

- 40-core (with 2-way hyper-threading) Intel Nehalem machine
- Implemented in Cilk Plus
- 3 different implementations, but only showing best one
- Real-world and artificial graphs

Compare to existing implementations

- Existing implementations
 - Sequential spanning forest
 - Parallel spanning forest (Problem Based Benchmark Suite)
 - Parallel spanning forest (Patwary et al.)
 - Parallel BFS (Ligra)
 - Parallel BFS + Label propagation (Slota et al.)
- None provably linear work and polylog span

3D grid graph (n = 10^8 , m = $3x10^8$)

Competitive with other implementations

com-Orkut graph (n $\approx 3x10^6$, m $\approx 10^8$)

Fastest implementation uses single BFS

Line graph (n = $5x10^8$, m = $5x10^8$)

Algorithms based on single BFS do poorly

Our algorithm is competitive

- No "worst-case" inputs
- Performance always close to the fastest implementation for any graph
 - Only at most 70% slower than spanning forest algorithms, and usually much less
 - Can be faster or slower than BFS, depending on graph diameter
- Up to 13x speedup on 40 cores relative to sequential
- 18—39x self-relative speedup

Conclusion

- Simple and practical linear-work, polylog-span connectivity algorithm
 - Can be easily modified to compute spanning forest
- As far as we know, first to be both practical and have linear work and polylog span
- Implementations competitive with existing parallel implementations
- Future direction: Can similar ideas give us a practical linear-work parallel algorithm for minimum spanning forest?

Extra Slides

3D grid graph

com-Orkut graph

Line graph

Running time vs \(\beta \)

Running time is similar across wide range of β