A Simple and Practical Linear-Work Parallel Algorithm for Connectivity

Julian Shun, Laxman Dhulipala, and Guy Blelloch

Connected Component Labeling

Given an undirected graph, label all vertices such that $L(u)=L(v)$ if and only if there is a path between u and v

Connected Component Labeling

- What are some simple algorithms?
- Depth-first search
- Linear work/span
- Versions of DFS that are parallel are not work-efficient
- Breadth-first search
- Linear work
- Parallelism limited by graph diameter
- Polylogarithmic span version not work-efficient
- Spanning forest
- Good parallelism
- Practical parallel implementations not linear work

Connected Component Labeling

- Parallel (polylogarithmic span) algorithms
- Shiloach and Vishkin, Awerbuck and Shiloach
- Combines (contracts) vertices in each iteration
- O(m log n) work, O(log n) span
- Reif, Phillips
- Uses randomization to simplify contraction algorithms
- O(m $\log n)$ work and $O(\log n)$ span w.h.p.
- O(log n) rounds but don't guarantee a constant fraction of edges removed
- O(m) work algorithms
- Gazit '91, Halperin/Zwick '96, Cole et al. '96, Poon/Ramachandran '97, Pettie/Ramachandran '02
- Quite complicated. No one has implemented these

Our Contributions

- Practical parallel connectivity algorithm with linear work and polylogarithmic span
- Experimental evaluation: competitive with existing parallel implementations (that are not linear-work and polylogarithmic span)

Previous Work: Random Mate

- Idea: Form a set of non-overlapping star subgraphs and contract them
- Each vertex flips a coin. For each Heads vertex, pick an arbitrary Tails neighbor (if there is one) and point to it

Previous Work : Random Mate

Repeat until each component has a single vertex

Expand vertices back in reverse order with label of neighbor

Previous Work : Random Mate

CC_Random_Mate(L, E)

$$
\text { if }(|E|=0) \text { Return L //base case }
$$ else

1. Flip coins for all vertices
2. For v where coin $(v)=H e a d s$, hook to arbitrary Tails neighbor w and set $\mathrm{L}(\mathrm{v})=\mathrm{L}(\mathrm{w})$
3. $E^{\prime}=\{(L(u), L(v)) \mid(u, v) \in E$ and $L(u) \neq L(v)\}$
4. $\mathrm{L}^{\prime}=$ CC_Random_Mate(L, E')
5. For v where $\operatorname{coin}(v)=$ Heads, set $\mathrm{L}^{\prime}(v)=\mathrm{L}^{\prime}(w)$ where w is the Tails neighbor that v hooked to in Step 2
6. Return L'

- Each iteration requires $\mathrm{O}(m+n)$ work and $\mathrm{O}(1)$ span
- Assumes we do not pack vertices and edges
- Each iteration eliminates at least $1 / 4$ of the vertices in expectation $\rightarrow \mathrm{O}(\log \mathrm{n})$ rounds w.h.p.

$$
W=O(m \log n) \text { w.h.p. } \quad S=O(\log n) \text { w.h.p. }
$$

Low diameter decomposition

Low diameter decomposition

- (β, d)-decomposition $(0<\beta<1$) partitions V into $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{k}}$ such that
- The shortest path between any two vertices in a partition is at most d
- The number of inter-partition edges is at most $\beta \mathrm{m}$
- Used in linear system solvers and metric embeddings

Low diameter decomposition

- $A(\beta, O(\log n / \beta))$-decomposition can be computed in $O(m)$ expected work and $O\left(\log ^{2} n / \beta\right)$ span w.h.p. [Miller et al. 2013]
- Start breadth-first searches from vertices with exponentiallydistributed (parameter β) start times
- Each BFS creates a partition containing the source and all vertices explored
- A BFS does not explore vertices already visited by another BFS
- All vertices will have started BFS or been explored by time $O(\log n / \beta)$
- BFS's are work-efficient and terminate in $O(\log n / \beta)$ iterations.
- Each iteration requires O(log n) span.
- Bounding number of inter-partition edges:
- An edge is inter-partition if the first two BFS's that reach it do so within a one time step of each other
- Probability that this happens is at most β due to properties of exponential distribution
- Linearity of expectations gives at most $\beta \mathrm{m}$ edges cut

Low diameter decomposition example

Our Connectivity Algorithm

- Compute a $(\beta, O(\log n / \beta))$-decomposition
- Contract each partition into a single vertex
- Recurse

Our Connectivity Algorithm

- Compute a $(\beta, O(\log n / \beta))$-decomposition
- Contract each partition into a single vertex
- Recurse

Analysis for $\beta=1 / 2$

- Assume contraction can be done in linear work and in O(log n) span
- $m / 2$ edges remain after each round in expectation
- Work $=\mathrm{O}(\mathrm{m})+\mathrm{O}(\mathrm{m} / 2)+\ldots=\mathrm{O}(\mathrm{m})$ in expectation
- $O(\log n)$ levels of recursion suffice w.h.p.
- Span $=O(\log n) * O\left(\log ^{2} n / \beta\right)=O\left(\log ^{3} n\right)$ w.h.p.

Contraction

- Contraction can be done in $O(\log n)$ span with bookkeeping and parallel prefix sums
- Intra-partition edges are filtered out in $\mathrm{O}(\mathrm{m})$ work and $\mathrm{O}(\log \mathrm{n})$ span
- Prefix sums: relabel vertices to smaller range
- Duplicate edges removed using parallel hashing in $O(m)$ work and $O(\log n)$ span
- Not needed theoretically

Improving span

- Each round of BFS can be implemented in O(log* n) span w.h.p. using approximate prefix sum and compaction [Gil-Matias-Vishkin '91, Goodrich-Matias-Vishkin '94]
- Improves span of low diameter decomposition to O(log n log* n)
- Recurse for $O(\log \log n)$ rounds
- Left with $O(m / \log n)$ edges
- Switch to O(m log n) work, O(log n) span algorithm
- Result: Linear work algorithm with

O(log $n \log \log n \log * n)$ span w.h.p.

Low diameter decomposition variants

- Resolving conflicts among BFS's
- Decomp-min: breaks ties deterministically
- Miller et al. showed this produces $(\beta, O(\log n / \beta))$ decomposition
- Uses write-with-min (via compare-and-swap)
- Requires two phases
- Decomp-arb: breaks ties arbitrarily
- We prove $(2 \beta, O(\log n / \beta))$-decomposition
- Uses compare-and-swap
- Requires just a single phase
- Decomp-arb-hybrid: uses direction-optimizing BFS
- This is the fastest one and used in the following experimental results

Experiments

- 40-core (with 2-way hyper-threading) Intel Nehalem machine
- Implemented in Cilk Plus
- 3 different implementations, but only showing best one
- Real-world and artificial graphs

Compare to existing implementations

- Existing implementations
- Sequential spanning forest
- Parallel spanning forest (Problem Based Benchmark Suite)
- Parallel spanning forest (Patwary et al.)
- Parallel BFS (Ligra)
- Parallel BFS + Label propagation (Slota et al.)
- None provably linear work and polylog span

$3 D$ grid graph $\left(\mathrm{n}=10^{8}, \mathrm{~m}=3 \times 10^{8}\right)$

Threads

- Competitive with other implementations

com-Orkut graph $\left(\mathrm{n} \approx 3 \times 10^{6}, \mathrm{~m} \approx 10^{8}\right)$

- Fastest implementation uses single BFS

Line graph $\left(\mathrm{n}=5 \times 10^{8}, \mathrm{~m}=5 \times 10^{8}\right)$

- Algorithms based on single BFS do poorly

Our algorithm is competitive

- No "worst-case" inputs
- Performance always close to the fastest implementation for any graph
- Only at most 70\% slower than spanning forest algorithms, and usually much less
- Can be faster or slower than BFS, depending on graph diameter
- Up to $13 x$ speedup on 40 cores relative to sequential
- 18-39x self-relative speedup

Conclusion

- Simple and practical linear-work, polylog-span connectivity algorithm
- Can be easily modified to compute spanning forest
- As far as we know, first to be both practical and have linear work and polylog span
- Implementations competitive with existing parallel implementations
- Future direction: Can similar ideas give us a practical linear-work parallel algorithm for minimum spanning forest?

Extra Slides

3D grid graph

com-Orkut graph

Line graph

Running time vs β

rMat graph

- Running time is similar across wide range of β

