
Engineering In-place
(Shared-memory) Sorting Algorithms
By Axtmann, Witt, Ferizovic, Sanders

Reviewed by Kasra Mazaheri

Definitions and Foundation

● Strictly In-place Sorting: constant additional memory

● In-place Sorting: logarithmic additional memory

● PEM Model: threads are assumed to have private cache with atomic
operations (e.g., fetch_and_add)

● Samplesort: k-way generalization of quicksort, where the input is divided
into k smaller subproblems based on k-1 pivots

● Super Scalar Samplesort (S4o): a variant of Samplesort based on
branchless decision trees

Related Work and State of the World

● Quicksort and its Variants: industry standard, in-place
○ Parallel Quicksort by Tsigas [74]
○ Branchless execution by Edelkamp [23] (BlockQuicksort)

● Samplesort: not in-place but with better parallelism and cache-efficiency

● Super Scalar Samplesort (S4o): avoids branch misprediction, much faster

● Radix Sort: in-place, parallel, limited data types
○ Parallel Radix Sort but with high-contention (SkaSort)
○ Parallel Radix Sort by Orestis [64]

● QuickMergesort (QMSort): strictly in-place, non-stable sorting by Edelkamp [24]

IPS4o Algorithm

1. For small arrays, use a base sorting algorithm.

2. Otherwise, k-way partition the array somehow reasonably .

3. Solve the subproblems recursively.

IPS4o Algorithm

Partitioning process:

1. Sampling: draw k splitters to partition the array and find bucket boundaries.

2. Classification: group elements into blocks based on their bucket using
local buffers for parallel processing.

3. Block Permutation: rearrange blocks into their correct order using atomic
operations for thread coordination.

4. Cleanup: handle wildcards, i.e., elements crossing bucket boundaries.

IPS4o Algorithm: Sampling
1. Sample αk - 1 elements and sort them. α is the oversampling factor.
2. Choose k-1 splitters equidistantly from the sorted sample and remove duplicates.
3. Build the decision tree (as done in S4o), potentially with equality buckets.

IPS4o Algorithm: Classification
1. The input is interpreted as blocks of size b, and is divided into t stripes for parallel

processing. Each thread then has an array of k buffer blocks of size b.
2. Using the search tree, each thread classifies each element into the buffer block

corresponding to its bucket.
3. If full, the buffer block is written to the stripe, then the element is placed in the buffer.

This way, blocks in the memory will belong to the same bucket.
4. Bucket sizes are maintained for threads, and aggregated in the end to compute

boundaries for buckets.

IPS4o Algorithm: Block Permutation

● Essentially, now swap blocks one-by-one to place them in the correct bucket.
● To allow parallelism, use atomic read and writes pointers for each bucket.
● The cost for these pointers are offsetted by using a large block size.

IPS4o Algorithm: Clean up

● Since the algorithm processes elements in blocks, it’s possible to have
misplaced elements in blocks that span multiple buckets.

● There might also be leftover elements in the classification buffers.
● Essentially, carefully move these elements one at a time.
●

IPS4o Task Scheduler

Components:

● Static load balancing: to evenly divide the resources amongst task.

● Dynamic rescheduling: to utilize idle threads.

Complexity Analysis

● Memory Requirement:
○ Theoretically, IPS4o can use as little as O(kb) additional memory per

thread (for k buffer blocks, as well as 2 swap blocks). This follows the
same logic as the strictly in-place quicksort [22].

○ Practically, IPS4o uses local stacks, resulting in O(k(b + t log (n/n0)))
additional memory per thread.

● Work Complexity: IPS4o has total work of O(n log n) with probability 1-4/n.

Tuning b, k, α

Results:

● Block size of b=2048
showed good performance
across most inputs and
machines.

● Bucket size of k=256
showed the best
performance.

● Oversampling size of
α=0.2 log n’ works best in
practice.

Results

Running Time across
Phases of the Algorithm

About the data:
● uint64 values
● Uniform Distribution

Notably:
● The permutation phase

takes considerably more
(about 11-20x) time for
parallel implementations,
due to memory bottlenecks.

● The overhead remains a
significant part of the
running time, especially for
smaller inputs.

Results

Sequential Algorithms

About the data:
● uint64 values
● Uniform Distribution

DualPivot, std::sort and QMSort
not displayed as they their running
times exceeded the plot.

Results

Parallel Algorithms

About the data:
● uint64 values
● Uniform Distribution

Results

Parallel Speed-up

About the data:
● 2^30 elements
● uint64 values
● Uniform Distribution

Notably:
● RADULS2 shows better

parallelism initially and
gradually slows down.

● IPS2Ra starts with better
parallelism and converges
to IPS4o.

Results

Even more plots…

Future Work

● Better special case handling
○ Small datasets
○ Almost sorted input
○ Datasets with highly duplicated keys

● Theoretical work to reduce span

● SIMD portability to improve sampling phase

Evaluation

● Strengths
○ Extensive benchmarking across various data types, input sizes, and distributions and against a wide

range of competitive sorting algorithms.

○ Superior performance of the IPS4o and IPS2Ra algorithms over existing parallel and sequential sorting
methods in most tested scenarios.

○ Detailed exploration of future work and potential improvements.

○ Comprehensive discussion on both theoretical aspects and practical enhancements, showcasing the
depth of the research.

● Weaknesses
○ The extensive length and highly detailed content can at time be overwhelming, potentially obscuring the

main contributions and findings.

○ Parts of the paper, especially those with intricate optimization strategies and detailed comparisons,
could be streamlined or moved to appendices to enhance readability.

