Pregel: A System for Large-Scale Graph Processing

Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski

Reviewed by Miranda Cai

Large Graphs are Everywhere

We can use graphs to represent

- Social networks
- Transportation routes
- Citation maps between published work
- Disease outbreaks

with **billions** of vertices and edges each. But graph algorithms do a poor job with

- Memory access locality
- Optimizing parallel allocation
- Distribution over multiple machines

Pregel

Idea: A framework that executes the same user-defined function Compute() for each vertex in a sequence of *supersteps* until the algorithm reaches completion.

A superstep is a synchronous iteration that performs Compute () on all active vertices at the step.

Pregel utilizes **message passing** to communicate updates in the state of the graph immediately.

At superstep *S*, vertices send messages to outgoing edges at superstep *S*+1

At superstep *S*, vertices send messages to outgoing edges at superstep *S*+1

Vertices that do not change are *voted to a halt*

A vertex can become active again if another vertex sends it a message at superstep *S-1*

The process completes once all vertices are deactivated simultaneously

Pregel Framework: API Details

- Message passing between vertices
 - Messages sent to V at S are iterated through at S+1
 - Non-neighbors can send messages
- Topology Mutations
 - Edge removals, vertex removals, vertex addition, edge addition
 - Partial ordering and handlers to avoid data races
- Combine () to condense several messages into one
- Aggregator() for global coordination
- Support for flexible input/output graph formats

Pregel Architecture: A Distributed System

The input graph is broken into partitions, where each vertex is assigned a partition based on the hash value of its vertex ID

Program Execution

At the start, one worker machine is assigned master. A master must

- Divide and allocate partitions to the workers
- Instruct each worker to perform a superstep
- Instruct workers to save its state

At each superstep, each worker is in charge of

- Maintaining the state of its own partition
- Sending messages to remote peers
- Loop through its active vertices and call Compute()
- Signal to the master when complete

Fault Tolerance

Basic Checkpointing

- Failed worker at S': Master \rightarrow X \rightarrow Worker - Master
- Recover supersteps since most recent checkpoint S

Confined Recovery

- Workers log their outgoing messages
- Recover from S to S' only for the lost partitions
- Adds overhead --
- Saves compute resources ++

Applications to Real Problems

PageRank

Problem: Ranking webpages based on the quality of quantity of links to the page

Vertex: Potential page rank, all initialized the same

Outgoing messages: Inversely proportional to the number of outgoing edges

PageRank

```
class PageRankVertex
    : public Vertex<double, void, double> {
public:
  virtual void Compute(MessageIterator* msgs) {
    if (superstep() >= 1) {
      double sum = 0;
      for (; !msgs->Done(); msgs->Next())
        sum += msgs->Value();
      *MutableValue() =
          0.15 / NumVertices() + 0.85 * sum;
    }
    if (superstep() < 30) {</pre>
      const int64 n = GetOutEdgeIterator().size();
      SendMessageToAllNeighbors(GetValue() / n);
    } else {
      VoteToHalt();
   }
  }
};
```

Single-Source Shortest Paths (SSSP)

Problem: Finding the shortest distance between a source and all other vertices

Vertex: distance from source initialized to INF

Outgoing messages: Potential minimum distances + its own edge weight

Uses a Combiner() to reduce data sent

Single-Source Shortest Paths (SSSP)

```
class ShortestPathVertex
    : public Vertex<int, int, int> {
 void Compute(MessageIterator* msgs) {
    int mindist = IsSource(vertex_id()) ? 0 : INF;
    for (; !msgs->Done(); msgs->Next())
      mindist = min(mindist, msgs->Value());
    if (mindist < GetValue()) {
      *MutableValue() = mindist:
      OutEdgeIterator iter = GetOutEdgeIterator();
      for (; !iter.Done(); iter.Next())
        SendMessageTo(iter.Target(),
                      mindist + iter.GetValue()):
    }
    VoteToHalt();
};
```

```
class MinIntCombiner : public Combiner<int> {
  virtual void Combine(MessageIterator* msgs) {
    int mindist = INF;
    for (; !msgs->Done(); msgs->Next())
      mindist = min(mindist, msgs->Value());
    Output("combined_source", mindist);
  }
};
```

*Much better than single-machine implementations

Problem: Find a set of edges such that no two edges share an endpoint from a bipartite graph, using the maximum number of edges

Vertex: (<L/R>, <matched_vertex_ID>)

Outgoing messages: boolean

Supersteps work in cycles of 4 phases

Phase 0 (Superstep 0)

Phase 1 (Superstep 1)

Phase 2 (Superstep 2)

Phase 3 (Superstep 3)

Phase 0 (Superstep 4)

Semi-Clustering

Problem: Finding groups of people who interact frequently with each other and less frequently with others

Vertex: list of at most C_{max} semi-clusters sorted by score

Outgoing message: its semi-cluster *c*

Score:
$$S_c = \frac{I_c - f_B B_c}{V_c (V_c - 1)/2}$$

 I_c = sum of weights of edges within *c* B_c = sum of weights of edges outgoing c V_c = number of vertices in *c* f_B = boundary edge score factor (parameter between 0-1)

Semi-Clustering

- Vertex V iterates over the semi-clusters $c_1,...,c_k$ sent to it on the previous superstep. If a semi-cluster c does not already contain V, and $V_c < M_{\max}$, then V is added to c to form c'.
- The semi-clusters $c_1, ..., c_k, c'_1, ..., c'_k$ are sorted by their scores, and the best ones are sent to V's neighbors.
- Vertex V updates its list of semi-clusters with the semiclusters from $c_1, ..., c_k, c'_1, ..., c'_k$ that contain V.

Experiments

Evaluated performance for SSSP on binary trees using clusters of 300 multicore machines

Experiments

Evaluated performance for SSSP on log-normal distribution of outdegrees to better represent real world graphs

Comparison to Existing Models

MapReduce

- -- No graph API
- **Bulk Synchronous Parallel (BSP)**
 - ++ Same synchronous superstep model
 - -- No graph-specific API
 - -- Not tested beyond dozens of machines

Comparison to Existing Models

Parallel Boost Graph Library (BGL)

++ Implements multiple algorithms on MPI

- -- Uses *ghost cells*, can cause scaling issues
- -- Poor fault tolerance

CGMgraph

- ++ Implements multiple algorithms on MPI
- -- Not generic, user cannot implement their own algorithms

Conclusion

Strengths:

- Flexible and intuitive API explanation
- Simple applications to real problems

Weaknesses:

- Shallow evaluations
- Message passing catered towards sparse graphs only

Future Directions:

- Scaling to even larger graphs
- Topology-aware partitioning