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Large Graphs are Everywhere

We can use graphs to represent

● Social networks
● Transportation routes
● Citation maps between published work
● Disease outbreaks

with billions of vertices and edges each. But graph algorithms do a poor job with

● Memory access locality
● Optimizing parallel allocation
● Distribution over multiple machines



Pregel

Idea: A framework that executes the same user-defined function Compute() 
for each vertex in a sequence of supersteps until the algorithm reaches 
completion. 

A superstep is a synchronous iteration that performs Compute()on all 
active vertices at the step. 

Pregel utilizes message passing to communicate updates in the state of the 
graph immediately.
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Superstep 0All vertices begin 
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At superstep S, 
vertices send 
messages to 
outgoing edges 
at superstep S+1
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Pregel: Maximum Value Example

At superstep S, 
vertices send 
messages to 
outgoing edges 
at superstep S+1

Vertices that do not change 
are voted to a halt
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A vertex can 
become active 
again if another 
vertex sends it a 
message at 
superstep S-1
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Pregel: Maximum Value Example

The process 
completes once 
all vertices are 
deactivated 
simultaneously



Pregel Framework: API Details

● Message passing between vertices
○ Messages sent to V at S are iterated through at S+1
○ Non-neighbors can send messages

● Topology Mutations
○ Edge removals, vertex removals, vertex addition, edge addition
○ Partial ordering and handlers to avoid data races

● Combine() to condense several messages into one
● Aggregator() for global coordination
● Support for flexible input/output graph formats



Pregel Architecture: A Distributed System

The input graph is broken into partitions, where each vertex is assigned a partition 
based on the hash value of its vertex ID



Program Execution

At the start, one worker machine is assigned master. A master must

● Divide and allocate partitions to the workers
● Instruct each worker to perform a superstep
● Instruct workers to save its state

At each superstep, each worker is in charge of

● Maintaining the state of its own partition
● Sending messages to remote peers
● Loop through its active vertices and call Compute()
● Signal to the master when complete



Fault Tolerance

Basic Checkpointing

● Failed worker at S’ : Master → X → Worker - - - - Master
● Recover supersteps since most recent checkpoint S

Confined Recovery

● Workers log their outgoing messages
● Recover from S to S’ only for the lost partitions
● Adds overhead --
● Saves compute resources ++ 



Applications to Real Problems



PageRank

Problem: Ranking webpages based on the quality of quantity of links to the page

Vertex: Potential page rank, all initialized the same

Outgoing messages: Inversely proportional to the number of outgoing edges



PageRank



Single-Source Shortest Paths (SSSP)

Problem: Finding the shortest distance between a source and all other vertices

Vertex: distance from source initialized to INF

Outgoing messages: Potential minimum distances + its own edge weight

Uses a Combiner() to reduce data sent



Single-Source Shortest Paths (SSSP)

*Much better than single-machine implementations



Maximal Bipartite Matching

Problem: Find a set of edges such that no two edges share an endpoint from a 
bipartite graph, using the maximum number of edges

Vertex: (<L/R>, <matched_vertex_ID>) 

Outgoing messages: boolean

Supersteps work in cycles of 4 phases



Maximal Bipartite Matching
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Maximal Bipartite Matching
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Phase 0 (Superstep 0)



Maximal Bipartite Matching
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Maximal Bipartite Matching
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Maximal Bipartite Matching
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Phase 3 (Superstep 3)



Maximal Bipartite Matching
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Phase 0 (Superstep 4)



Semi-Clustering

Problem: Finding groups of people who interact frequently with each other and 
less frequently with others

Vertex: list of at most Cmax semi-clusters sorted by score

Outgoing message: its semi-cluster c

Score: 
Ic = sum of weights of edges within c
Bc = sum of weights of edges outgoing c
Vc = number of vertices in c
fB = boundary edge score factor 
(parameter between 0-1)



Semi-Clustering



Experiments

Evaluated performance for SSSP on binary trees using clusters of 300 multicore 
machines



Experiments

Evaluated performance for SSSP on log-normal distribution of outdegrees to 
better represent real world graphs



Comparison to Existing Models

MapReduce

-- No graph API 

Bulk Synchronous Parallel (BSP)

++ Same synchronous superstep model

-- No graph-specific API

-- Not tested beyond dozens of machines



Comparison to Existing Models

Parallel Boost Graph Library (BGL)

++ Implements multiple algorithms on MPI

-- Uses ghost cells, can cause scaling issues

-- Poor fault tolerance

CGMgraph

++ Implements multiple algorithms on MPI

-- Not generic, user cannot implement their own algorithms



Conclusion

Strengths:

● Flexible and intuitive API explanation
● Simple applications to real problems

Weaknesses:

● Shallow evaluations
● Message passing catered towards sparse graphs only

Future Directions:

● Scaling to even larger graphs
● Topology-aware partitioning


