
Pregel: A System for 
Large-Scale Graph Processing

Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. 
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski 

Reviewed by Miranda Cai



Large Graphs are Everywhere

We can use graphs to represent

● Social networks
● Transportation routes
● Citation maps between published work
● Disease outbreaks

with billions of vertices and edges each. But graph algorithms do a poor job with

● Memory access locality
● Optimizing parallel allocation
● Distribution over multiple machines



Pregel

Idea: A framework that executes the same user-defined function Compute() 
for each vertex in a sequence of supersteps until the algorithm reaches 
completion. 

A superstep is a synchronous iteration that performs Compute()on all 
active vertices at the step. 

Pregel utilizes message passing to communicate updates in the state of the 
graph immediately.



3 6 2 1

Pregel: Maximum Value Example

Superstep 0All vertices begin 
as active



6

3 6 2 1 Superstep 0

Superstep 1

Pregel: Maximum Value Example

At superstep S, 
vertices send 
messages to 
outgoing edges 
at superstep S+1



6 6

3 6 2 1 Superstep 0

Superstep 1

Pregel: Maximum Value Example

At superstep S, 
vertices send 
messages to 
outgoing edges 
at superstep S+1

Vertices that do not change 
are voted to a halt



6 6 2 6

3 6 2 1 Superstep 0

Superstep 1

Pregel: Maximum Value Example



6 6 2 6

6 6 6 6

3 6 2 1 Superstep 0

Superstep 1

Superstep 2

Pregel: Maximum Value Example

A vertex can 
become active 
again if another 
vertex sends it a 
message at 
superstep S-1



6 6 2 6

6 6 6 6

3 6 2 1

6 6 6 6

Superstep 0

Superstep 1

Superstep 2

Superstep 3

Pregel: Maximum Value Example

The process 
completes once 
all vertices are 
deactivated 
simultaneously



Pregel Framework: API Details

● Message passing between vertices
○ Messages sent to V at S are iterated through at S+1
○ Non-neighbors can send messages

● Topology Mutations
○ Edge removals, vertex removals, vertex addition, edge addition
○ Partial ordering and handlers to avoid data races

● Combine() to condense several messages into one
● Aggregator() for global coordination
● Support for flexible input/output graph formats



Pregel Architecture: A Distributed System

The input graph is broken into partitions, where each vertex is assigned a partition 
based on the hash value of its vertex ID



Program Execution

At the start, one worker machine is assigned master. A master must

● Divide and allocate partitions to the workers
● Instruct each worker to perform a superstep
● Instruct workers to save its state

At each superstep, each worker is in charge of

● Maintaining the state of its own partition
● Sending messages to remote peers
● Loop through its active vertices and call Compute()
● Signal to the master when complete



Fault Tolerance

Basic Checkpointing

● Failed worker at S’ : Master → X → Worker - - - - Master
● Recover supersteps since most recent checkpoint S

Confined Recovery

● Workers log their outgoing messages
● Recover from S to S’ only for the lost partitions
● Adds overhead --
● Saves compute resources ++ 



Applications to Real Problems



PageRank

Problem: Ranking webpages based on the quality of quantity of links to the page

Vertex: Potential page rank, all initialized the same

Outgoing messages: Inversely proportional to the number of outgoing edges



PageRank



Single-Source Shortest Paths (SSSP)

Problem: Finding the shortest distance between a source and all other vertices

Vertex: distance from source initialized to INF

Outgoing messages: Potential minimum distances + its own edge weight

Uses a Combiner() to reduce data sent



Single-Source Shortest Paths (SSSP)

*Much better than single-machine implementations



Maximal Bipartite Matching

Problem: Find a set of edges such that no two edges share an endpoint from a 
bipartite graph, using the maximum number of edges

Vertex: (<L/R>, <matched_vertex_ID>) 

Outgoing messages: boolean

Supersteps work in cycles of 4 phases



Maximal Bipartite Matching

L R



Maximal Bipartite Matching

L R

Phase 0 (Superstep 0)



Maximal Bipartite Matching

L R

Phase 1 (Superstep 1)



Maximal Bipartite Matching

L R

Phase 2 (Superstep 2)



Maximal Bipartite Matching

L R

Phase 3 (Superstep 3)



Maximal Bipartite Matching

L R

Phase 0 (Superstep 4)



Semi-Clustering

Problem: Finding groups of people who interact frequently with each other and 
less frequently with others

Vertex: list of at most Cmax semi-clusters sorted by score

Outgoing message: its semi-cluster c

Score: 
Ic = sum of weights of edges within c
Bc = sum of weights of edges outgoing c
Vc = number of vertices in c
fB = boundary edge score factor 
(parameter between 0-1)



Semi-Clustering



Experiments

Evaluated performance for SSSP on binary trees using clusters of 300 multicore 
machines



Experiments

Evaluated performance for SSSP on log-normal distribution of outdegrees to 
better represent real world graphs



Comparison to Existing Models

MapReduce

-- No graph API 

Bulk Synchronous Parallel (BSP)

++ Same synchronous superstep model

-- No graph-specific API

-- Not tested beyond dozens of machines



Comparison to Existing Models

Parallel Boost Graph Library (BGL)

++ Implements multiple algorithms on MPI

-- Uses ghost cells, can cause scaling issues

-- Poor fault tolerance

CGMgraph

++ Implements multiple algorithms on MPI

-- Not generic, user cannot implement their own algorithms



Conclusion

Strengths:

● Flexible and intuitive API explanation
● Simple applications to real problems

Weaknesses:

● Shallow evaluations
● Message passing catered towards sparse graphs only

Future Directions:

● Scaling to even larger graphs
● Topology-aware partitioning


