
PowerGraph: Distributed Graph-Parallel 
Computation on Natural Graphs
Gonzalez et al.



Background

Large-scale graph computation: targeted advertising, NLP, etc

Datasets and models have grown beyond the limits of single machine 
computation

Graph-parallel abstraction: 

- vertex-programs run in parallel
- interact with each other through edges



Pregel

Synchronous message-based abstraction

At each step, the vertex-program:

- receives messages from the previous step
- does some computation
- sends messages to neighbors 

Advance to next step after all vertices are done



GraphLab

Asynchronous shared-memory abstraction

Each vertex-program can:

- read data from its own vertex, edges, and neighbors
- schedule neighbors to run 



Real-word Graphs

Social media and web networks are “scale-free”, degree distribution follows 
power law (# vertices with degree d is proportional to 1/d�)



Real-word Graphs

Scale-free graphs present challenges for existing graph-parallel abstractions:

- Work depends on degree, can vary widely across vertices
- Hard to partition
- Does not parallelize within vertex-programs



Generic Vertex-Program Model

GraphLab and Pregel have a similar overall structure

GAS model for graph computation:

- Gather: collect information about adjacent vertices and edges
- Apply: update value of central vertex
- Scatter: update the data on adjacent edges



Generic Vertex-Program Model

Formally:



PowerGraph

gather in parallel

sum is commutative and 
associative

scatter in parallel



Delta Caching

Vertex-program runs in response to a change in a few neighbors. Normally, we 
run gather on all neighbors, most of which are unchanged

Scatter can optionally return Δa, which is added to av

Clear av otherwise, recompute gather on the next execution of v



Delta Caching

If we can define an inverse of the accumulation function (e.g. subtraction):

We’ll see an example using Δa later



PowerGraph Engine

To initialize, user activates a specific vertex or all vertices

Engine maintains a set of active vertices

- Execute active vertex-programs
- After scatter phase, vertex becomes inactive
- Vertex can activate itself or neighboring vertices

Order of execution is up to engine



Distributed Graph Placement: Edge Cut

Place a graph on p machines: construct a p-way edge-cut

Overhead from every cut edge, and have to synchronize vertex and edge data 
across the cut

Intuitively: evenly assign vertices to machines, allow edges to span machines



Distributed Graph Placement: Vertex Cut

Evenly assign edges to machines, allow vertices to span machines

Only have to synchronize vertex data, so we want to minimize the number of 
machines each vertex spans



Distributed Graph Placement: Vertex Cut

Formally:

�≥1 is a constant imbalance factor



Randomized Vertex Cut

On p machines, randomly assigning edges to machines has expected 
replication:



Vertex Cut

Let A(x) be the set of machines that vertex x is assigned to. Greedy heuristic for 
edge (u, v):

1. If A(u) and A(v) intersect, assign to a machine in the intersection
2. If A(u) and A(v) nonempty but do not intersect, assign to a machine from 

the vertex with the most unassigned edges
3. If one of the vertices is assigned, pick a machine from the assigned vertex
4. If neither vertex is assigned, pick the least loaded machine



Vertex Cut

Greedy heuristic requires coordination between machines. Two approaches:

- Coordinated: maintain values of A(x) in distributed table, which is 
periodically updated

- Oblivious: each machine maintains its own estimate of A(x)





Example: PageRank

Rank websites

- More important websites have 
more links from other websites

- The links from more important 
websites have more weight



PageRank

The accumulation is addition, so we 
can use Δa

If node value changes enough, 
recalculate ranking for neighbors



PowerGraph vs GraphLab and Pregel



Synchronous Execution (similar to Pregel)

Super-step consists of three minor-steps:

- gather on all active vertices
- apply on all active vertices
- scatter on all active vertices

Changes to vertex and edge data are committed after each minor-step

Newly-activated vertices are executed in the next super-step



Asynchronous Execution (similar to GraphLab)

Engine runs active vertices as resources become available

Changes made to vertex and edge data committed immediately

Pros:

- More effective usage of resources
- Algorithm can converge faster

Cons:

- Non-determinism



Asynchronous Execution (similar to GraphLab)

How to address non-determinism?

- serializability: every parallel execution has a corresponding sequential 
execution

- Prevent adjacent vertex-programs from running concurrently

PowerGraph has Async+S



Synchronous Experiments with PowerGraph



Asynchronous Experiments with PowerGraph



Fault Tolerance

Similar to Pregel and GraphLab, save snapshots of the graph

- Synchronous engine: snapshot between super-steps
- Asynchronous engine: suspend execution to construct snapshot

Overhead is small relative to total runtime



Related Work
Vertex cuts:

- CATALYUREK, U., AND AYKANAT, C. Decomposing irregularly sparse matrices for parallel matrix-vector 
multiplication

- DEVINE, K. D., BOMAN, E. G., HEAPHY, R. T., BISSELING, R. H., AND CATALYUREK, U. V. Parallel hypergraph 
partitioning for scientific computing

Graph-parallel abstractions:

- GREGOR, D., AND LUMSDAINE, A. The parallel BGL: A generic library for distributed graph computations
- CHENG, R., HONG, J., KYROLA, A., MIAO, Y., WENG, X., WU, M., YANG, F., ZHOU, L., ZHAO, F., AND CHEN, E. 

Kineograph: taking the pulse of a fast-changing and connected world
- PUJOL, J. M., ERRAMILLI, V., SIGANOS, G., YANG, X., LAOUTARIS, N., CHHABRA, P., AND RODRIGUEZ, P. The 

littleengine(s) that could: scaling online social networks
- KYROLA, A., BLELLOCH, G., AND GUESTRIN, C. GraphChi: Large-scale graph computation on just a PC.


