
GraphChi: Large-Scale Graph
Computation on Just a PC

By: Aapo Kyrola, Guy Blelloch, and Carlos Guestrin

Reviewed By: Jonathan Li

Previous Graph Systems and Frameworks

Were designed for large clusters of computers or at least a large number of cores.

What happens when you want to run algorithms on large graphs with billions of
edges on a normal PC?

There simply isn’t enough memory on the computer to store the entire graph.

Solution: Store the graph on disk instead.

Problem: May be I/O-inefficient if many random reads or writes required

Contributions in this Paper

1. Parallel Sliding Windows (PSW) method

a. Loading subgraph from disk

b. Updates vertex and edge values

c. Writes updates back to disk

2. The GraphChi system design

PSW (Subgraphs Structure)

Vertices are divided into P intervals,
each interval has a shard associated
with it.

A shard consists of all edges that have
destination in the interval.

Edges are sorted by source vertex.

Intervals are chosen to balance the size
of shards.

Number of intervals is chosen to ensure
any shard can be loaded into memory.

PSW (Loading Subgraphs)

PSW runs by iterating through all intervals.

For interval p, Shard(p) is loaded fully into memory. Then, we iterate through all
other shards and load in edges with source in the interval.

PSW (Parallel Updates)

Critical edges (edges with both endpoints in the interval) are updated sequentially.

Non-critical edges are updated in parallel.

PSW (Update to Disk)

After finishing updates to all vertices
and edges, modified blocks are written
back to disk.

Next iteration of PSW will use new
values for vertices and edges.

PSW (Mutable Graph)

Each shard can be split into P parts, where
the pth part contains all edges with source
in the pth interval.

Each of these parts has an edge buffer,
and additional edges are first added to the
edge buffer.

Edges are loaded in when the interval is
loaded.

Otherwise, we check at end of iteration
whether the buffer or shard has exceeded a
predetermined limit.

I/O-cost of PSW

The I/O-cost of PSW for each execution interval is bounded by

For each execution interval, there are P non-sequential disk seeks across P-1
intervals, which means there are O(P2) disk seeks per iteration.

Each edges is read twice (or once if critical) and if updated, is also written twice.

System Design and Implementation (Shards)

Shard is formatted so that each vertex in the interval has an edge array.

Each edge array begins with the length of the array followed by a list of the
neighbors.

If a vertex has no neighbors, we instead write a zero length byte followed by
another value indicating how many subsequent vertices have no neighbors.

The edge data/values are contained in a flat array of user-defined type.

Sharder (Preprocessing)

GraphChi includes a program for creating shards from standard graph file formats.

1. Counts the in-degree of each vertex, then computes the prefix sum of the
array to split the vertices into P intervals.

2. Does another pass of edges, writing each edge to a scratch file associated to
each shard.

3. Sorts the edges in each scratch file and compresses the data.
4. Also compiles a degree file which contains the in-degree and out-degree for

each vertex.

Main Execution

Uses the degree file to calculate exactly how much memory is needed to store the
edge arrays before initializing a subgraph.

Vertex values are also stored in a flat array in sequential order of user-defined
type.

In cases where there are a lot of vertices with high out-degree in a single interval,
the interval is split into sub-intervals, and each sub-interval is run in a separate
iteration.

When adding vertices, the degree file needs to be updated and vertex data file will
also grow. In addition, number of intervals must remain consistent with the number
of shards.

Pagerank Example

Unlike other programs such as
GraphLab, GraphChi does not allow
vertices to modify the values of their
neighbors (not necessarily loaded into
memory).

Thus, in GraphChi, vertices broadcast
neighbor updates via edges.

Other Applications

GraphChi has been implemented with:

Sparse Matrix Vector Multiplication

Pagerank

Connected Components

Community Detection

Triangle Counting

Collaborative Filtering

Probabilistic Graph Models

Experimental Setup

Apple Mac Mini Computer

Dual-core 2.5 GHz Intel i5 Processor

8 GB Main Memory

256 GB SSD Drive

750 GB, 7200 rpm Hard Drive

Preprocessing Results

Algorithm Results

Parallelism and Overhead

SSD vs Hard Drive

Conclusion

Main result of the paper was introducing the Parallel Sliding Windows method and
the GraphChi implementation.

This method can be used on consumer PCs to run algorithms previously restricted
to mainly cluster computing.

