Thread Scheduling for Multiprogrammed Multiprocessors

N.S. Arora, R.D. Blumofe, C.G. Plaxton (2001)

Presented by Jason Liu

DAG-based computation model

- Each vertex takes one processor one unit of time
- Each vertex represents an instruction
- Up to two children per vertex
- Up to two parents per vertex
- All ancestors must be processed before a vertex may be processed
- Work T_1 is total number of nodes
- Span T_∞ is length of longest path

Thread Scheduling on Dedicated Processors

- P processors available
- Lower bounds for runtime are T_1/P and T_∞
- Greedy scheduling achieves runtime of $T_1/P + T_\infty$

Modifications for multi-programmed machines

- Programmer assigns vertices/tasks to processes
- Kernel chooses processes to run on processors
- Kernel is adversarial, but may have different levels of adversariality
- Expected runtime will be $O(T_1/P_A + T_\infty P/P_A)$

Difficulties for multi-programmed machines

- May not always have P processors available for use
- Processor availability varies over algorithm runtime
 - If some p_i processors are available at each step i, then average availability is $P_A = \frac{1}{T} \sum_{i=1}^{T} p_i$
- Adversarial kernel may be able to choose which p_i of the P total processes to run

Basic bounds for Multi-programmed parallel processing

Theorem 1. Consider any multithreaded computation with work T_1 and critical-path length T_{∞} , and any number P of processes. Then for any kernel schedule, every execution schedule has length at least T_1/P_A , where P_A is the processor average over the length of the schedule. In addition, for any number P'_A of the form $T_{\infty}P/(k + T_{\infty})$ where k is a nonnegative integer, there exists a kernel schedule such that every execution schedule has length at least $T_{\infty}P/P_A$, where P_A is the processor average over the length of the schedule and is in the range $\lfloor P'_A \rfloor \leq P_A \leq P'_A$.

Theorem 2 (Greedy Schedules). Consider any multithreaded computation with work T_1 and critical-path length T_{∞} , any number P of processes, and any kernel schedule. Any greedy execution schedule has length at most $T_1/P_A + T_{\infty}(P-1)/P_A$, where P_A is the processor average over the length of the schedule.

Work-Stealing

- Each process maintains a double-ended queue of ready threads/nodes and an assigned node
 - Processes with empty deques and no assigned node are thieves
- Non-thief processes push/pop from bottom of own deque
- Thieves pick random deques to pop top until they find something and are no longer thieves
- To deal with adversarial kernels, thieves will yield between steal attempts to restrict kernel behavior

1 2 3	<pre>// Assign root node to process zero. assignedNode ← NIL if self = processZero assignedNode ← rootNode</pre>	
4	<pre>// Run scheduling loop. while computationDone = FALSE</pre>	
	// Execute assigned node.	
5	if assignedNode \neq NIL	
6	(numChildren, child1, child2) ← execu	te (assignedNode)
7	if numChildren = 0	// Terminate or block.
8	assignedNode ← self.popBottom()	
9	else if numChildren = 1	// No synchronization.
10	assignedNode ← child1	
11	else	// Enable or spawn.
12	self.pushBottom (child1)	
13	assignedNode ← child2	
	// Make steal attempt.	
14	else	
15	yield()	// Yield processor.
16	victim <- randomProcess()	// Pick victim.
17	assignedNode \leftarrow victim.popTop()	// Attempt steal.
		to to consider the second s

Deque semantics

- Ideal semantics: there should exist linearization times
 - Pick distinct times for each operation between their start and end times
 - Return values should be consistent with serial execution in this order
- Relaxed semantics: there should exist linearization times, except that popTop may return NIL even if queue is nonempty if a different process has just popped the top.

void pushBottom (Node node)

age

bot

tag top

- 1 load localBot ← bot
- 2 store node \rightarrow deq[localBot]
- 3 localBot \leftarrow localBot + 1
- 4 store localBot \rightarrow bot

Node popTop()

- 1 load oldAge ← age
 2 load localBot ← bot
 3 if localBot ≤ oldAge.top
- 4 return NIL
- 5 load node ← deq[oldAge.top]
- 6 newAge ← oldAge
- 7 newAge.top \leftarrow newAge.top + 1
- 8 **cas** (age, oldAge, newAge)
- 9 **if** oldAge = newAge
- 10 return node
- 11 return NIL

Nod	e popBottom()
1	load localBot ← bot
2	if localBot = 0
3	return NIL
4	localBot ← localBot - 1
5	store localBot \rightarrow bot
6	<pre>load node</pre>
7	load oldAge ← age
8	<pre>if localBot > oldAge.top</pre>
9	return node
10	store $0 \rightarrow bot$
11	newAge.top $\leftarrow 0$
12	newAge.tag \leftarrow oldAge.tag + 1
13	<pre>if localBot = oldAge.top</pre>
14	cas (age, oldAge, newAge)
15	<pre>if oldAge = newAge</pre>
16	return node
17	store newAge \rightarrow age
18	return NIL

dea

0

0

Structural Lemma

For any node in the computation, we can define the *designated parent* to be the parent which enables the child.

Lemma: For any deque, the *designated parents* of the nodes in the deque (and the assigned node) lie, in top-to-bottom order, on a root-to-leaf path in the computation. Furthermore, all the parents are distinct except potentially those of the bottommost node and the assigned node.

Proof: Induction!

(a)

$$\varphi_i(u) = \begin{cases} 3^{2w(u)-1} & \text{if } u \text{ is assigned}; \\ 3^{2w(u)} & \text{otherwise.} \end{cases}$$

Potential

 $w(u) = T_{\infty} - d(u)$ $\Phi_0 = 3^{2T_{\infty} - 1}$

- Let d(u) be the depth of a node in computation
- Potential is sum of node potentials for all nodes in all deques
- Potential always decreases, is always integral, and ends at zero
- By structural lemma, most of the potential of each deque is in the top node of the deque

Runtime analysis

- Split computation into rounds of at least two iterations of the scheduling loop
- Mark scheduled processes as either *throws* or *successes* depending on whether or not the second iteration of each loop is a steal
- For S throws the runtime is $O(T_1/P_A + S/P_A)$
- Within sequences of $\Theta(P)$ throws, enough steals will succeed in expectation so that total potential decreases by a constant fraction (for valid yield/kernel pairs)
 - Enough non-empty deques are probably targeted by steals to decrease potential
 - With yields, enough empty-deque processes will have their assigned nodes executed and therefore the potential will be used
- By Chernoff bounds, at most $O((T_{\infty} + \lg(1/\varepsilon))P)$ throws with high probability

Theorem statements

Lemma 6 (Top-Heavy Deques). Consider any round *i* and any process *q* in D_i . The topmost node *u* in *q*'s deque contributes at least three-quarters of the potential associated with q. That is, we have $\varphi_i(u) \geq \frac{3}{4}\Phi_i(q)$.

Lemma 7 (Balls and Weighted Bins). Suppose that P balls are thrown independently and uniformly at random into P bins, where for i = 1, ..., P, bin i has a weight W_i . The total weight is $W = \sum_{i=1}^{P} W_i$. For each bin i, define the random variable X_i as

$$X_i = \begin{cases} W_i & \text{if some ball lands in bin } i; \\ 0 & \text{otherwise.} \end{cases}$$

If $X = \sum_{i=1}^{P} X_i$, then for any β in the range $0 < \beta < 1$, we have $\Pr\{X \ge \beta W\} > 1 - 1/((1 - \beta)e)$.

Types of adversarial kernels

• Benign

- Picks random processes to schedule
- $\circ \qquad {\rm Yield} \ {\rm doesn't} \ {\rm need} \ {\rm to} \ {\rm do} \ {\rm anything} \\$
- Oblivious
 - Chooses processes to schedule, but offline
 - Yield requires kernel to schedule a random other process before rescheduling current process, essentially forcing the kernel to behave benignly for part of the time when processing many throws
- Adaptive
 - Chooses processes to schedule, possibly online
 - Yield forces kernel to schedule every other process before the rescheduling current process

Future work

- Ideal semantics for deque
- Implementation
- Less powerful yield for adaptive adversary