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• Triangle Counting

• Other variants:
• Triangle listing
• Local triangle counting/clustering coefficients
• Triangle enumeration
• Approximate counting
• Analogs on directed graphs

• Numerous applications…
• Social network analysis, Web structure, spam detection, outlier 

detection, dense subgraph mining, 3-way database joins, etc.
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Need fast triangle computation algorithms!



• Sequential algorithms for exact counting/listing
• Naïve algorithm of trying all triplets

 O(V3) work
• Node-iterator algorithm [Schank]    

 O(VE) work
• Edge-iterator algorithm [Itai-Rodeh]    

 O(VE) work
• Tree-lister [Itai-Rodeh], forward/compact-forward [Schank-Wagner, 

Lapaty]    
 O(E1.5) work

• Sequential algorithms via matrix multiplication
• O(V2.37) work compute A3, where A is the adjacency matrix
• O(E1.41) work [Alon-Yuster-Zwick]
• These require superlinear space
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Sequential Triangle Computation 
Algorithms V = # vertices  E = # edges
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Sequential Triangle Computation 
Algorithms

What about parallel algorithms?

Source: “Algorithmic Aspects of Triangle-Based Network 
Analysis”, Dissertation by Thomas Schank



• Most designed for distributed memory
• MapReduce algorithms [Cohen ’09, Suri-Vassilvitskii ‘11, Park-

Chung ‘13, Park et al. ‘14]
• MPI algorithms [Arifuzzaman et al. ‘13, Graphlab]
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Parallel Triangle Computation Algorithms

• What about shared-memory multicore?
• Multicores are everywhere!
• Node-iterator algorithm [Green et al. ‘14]

• O(VE) work in worst case

• Can we obtain an O(E1.5) work shared-memory multicore 
algorithm?
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Triangle Computation: 
Challenges for Shared Memory Machines

Irregular 
computation

1 Deep memory
hierarchy

2



• All previous algorithms are sequential
• External-memory (cache-aware) algorithms
• Natural-join    O(E3/(M2 B)) I/O’s
• Node-iterator [Dementiev ’06] O((E1.5/B) logM/B(E/B)) I/O’s
• Compact-forward [Menegola ‘10] O(E + E1.5/B) I/O’s
• [Chu-Cheng ’11, Hu et al. ‘13] O(E2/(MB) + #triangles/B) I/O’s

• External-memory and cache-oblivious
• [Pagh-Silvestri ‘14]   O(E1.5/(M0.5 B)) I/O’s or cache misses

• Parallel cache-oblivious algorithms?
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External-Memory and Cache-Oblivious 
Triangle Computation



8

Algorithm Work Depth Cache Complexity
TC-Merge O(E1.5) O(log2 E) O(E + E1.5/B)
TC-Hash O(V log V + αE) O(log2 E) O(sort(V) + αE)
Par. Pagh-Silvestri O(E1.5) O(log3 E) O(E1.5/(M0.5 B)) 

1
Our Contributions

Parallel Cache-Oblivious Triangle Counting Algs

2

Extensive Experimental Study3

Extensions to Other Triangle Computations: 
Enumeration, Listing, Local Counting/Clustering Coefficients, 
Approx. Counting, Variants on Directed Graphs

V = # vertices  E = # edges      α = arboricity (at most E0.5) 
M = cache size      B = line size                  sort(n) = (n/B) logM/B(n/B)



Sequential Triangle Counting (Exact)
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Rank vertices by degree (sorting)
Return A[v] for all v storing higher   
ranked neighbors

for each vertex v:
     for each w in A[v]:
 count += intersect(A[v], A[w])

Work = O(E1.5)      
[Schank-Wagner ‘05, Latapy ‘08]

Gives all triangles (v, w, x) where 
rank(v) < rank(w) < rank(x)

1

2

(Forward/compact-forward algorithm)



Proof of O(E1.5) work bound when intersect 
uses merging
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Rank vertices by degree (sorting)
Return A[v] for all v storing higher   
ranked neighbors

for each vertex v:
     for each w in A[v]:
 count += intersect(A[v], A[w])

• Step 1: O(E+V log V) work
• Step 2:

• For each edge (v,w), intersect does O(d+(v) + d+(w)) work
• For all v, d+(v) ≤ 2E0.5

• If d+(v) > 2E0.5, each of its higher ranked neighbors also 
have degree > 2E0.5 and total number of directed edges > 
4E, a contradiction

• Total work = E * O(E0.5) = O(E1.5)

1

2



Parallel Triangle Counting (Exact)
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Rank vertices by degree (sorting)
Return A[v] for all v storing higher   
ranked neighbors

for each vertex v:
     for each w in A[v]:
 count += intersect(A[v], A[w])

Parallel sort 
and filter

parallel_
parallel_

Parallel reduction

Parallel merge (TC-Merge) 
or

Parallel hash table (TC-Hash)

1

2

Step 1
Work = O(E+V log V)
Depth = O(log2 V)
Cache = O(E+sort(V))

parfor v ∈ V

parfor w ∈ A[0]
parfor w ∈ A[1]

parfor w ∈ A[2]
parfor w ∈ A[3]

parfor w ∈ A[4]

v = 0
v = 1

v = 2 v = 3 v = 4

intersect((A [0], A [1])+ +

intersect((A [0], A [3])+ +
intersect((A [2], A [1])+ +

intersect((A [3], A [1])+ +

intersect((A [4], A [1])+ +

intersect((A [4], A [3])+ +
safe to 

run all in 
parallel



TC-Merge and TC-Hash Details
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for each vertex v:
     for each w in A[v]:
 count += intersect(A[v], A[w])

parallel_
parallel_

Parallel reduction

Parallel merge (TC-Merge) 
or

Parallel hash table (TC-Hash)

Step 2: TC-Merge
Work = O(E1.5) 
Depth = O(log2 E)
Cache = O(E+E1.5/B)

2

Step 2: TC-Hash
Work = O(αE) 
Depth = O(log E)
Cache = O(αE)

• TC-Merge
• Preprocessing: sort adjacency lists
• Intersect: use a parallel and cache-oblivious merge based on divide-

and-conquer [Blelloch et al. ‘10, Blelloch et al. ‘11]
• TC-Hash
• Preprocessing: for each vertex, create parallel hash table storing 

edges [Shun-Blelloch ‘14]
• Intersect: scan smaller list, querying hash table of larger list in parallel

(α = arboricity (at most E0.5))
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Algorithm Work Depth Cache Complexity
TC-Merge O(E1.5) O(log2 E) O(E + E1.5/B) (oblivious)
TC-Hash O(V log V + αE) O(log2 E) O(sort(V) + αE) (oblivious)
Par. Pagh-Silvestri O(E1.5) O(log3 E) O(E1.5/(M0.5 B)) (oblivious) 
Chu-Cheng ‘11, 
Hu et al. ‘13

O(E log E + E2/M 
+ αE)

O(E2/(MB) + #triangles/B) 
(aware)

Pagh-Silvestri ‘14 O(E1.5) O(E1.5/(M0.5 B)) (oblivious) 
Green et al. ’14 O(VE) O(log E)

Comparison of Complexity Bounds

V = # vertices  E = # edges      α = arboricity (at most E0.5) 
M = cache size      B = line size                  sort(n) = (n/B) logM/B(n/B)
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Algorithm Work Depth Cache Complexity
TC-Merge O(E1.5) O(log2 E) O(E + E1.5/B)
TC-Hash O(V log V + αE) O(log2 E) O(sort(V) + αE)
Par. Pagh-Silvestri O(E1.5) O(log3 E) O(E1.5/(M0.5 B)) 

1
Our Contributions

Parallel Cache-Oblivious Triangle Counting Algs

Extensive Experimental Study3

V = # vertices  E = # edges      α = arboricity (at most E0.5) 
M = cache size      B = line size                  sort(n) = (n/B) logM/B(n/B)

2 Extensions to Other Triangle Computations: 
Enumeration, Listing, Local Counting/Clustering Coefficients, 
Approx. Counting, Variants on Directed Graphs



Extensions of Exact Counting Algorithms
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• Triangle enumeration
• Call emit function whenever triangle is found 
• Listing: add to hash table to list; return contents at the end
• Local counting/clustering coefficients: atomically increment 

count of three triangle endpoints
• Directed triangle counting/enumeration
• Keep separate counts for different types of triangles

• Approximate counting
• Use colorful triangle sampling scheme to create smaller sub-graph 

[Pagh-Tsourakakis ‘12]
• Run TC-Merge or TC-Hash on sub-graph with pE edges (0 < p < 1) 

and return #triangles/p2 as estimate



Approximate Counting
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• Colorful triangle counting [Pagh-Tsourakakis ’12]

Assign random color in {1, …, 1/p}         
to each vertex 1

Sampling: Keep edges whose    
endpoints have the same color 2

Run exact triangle counting on     
sampled graph, return Δsampled/p2 3

Parallel scan

Parallel filter

Use TC-Merge 
or TC-Hash 

Steps 1 & 2
Work = O(E)
Depth = O(log E)
Cache = O(E/B)

Step 3: TC-Merge
Work = O((pE)1.5) 
Depth = O(log2 E)
Cache = O(pE+(pE)1.5/B)

Step 3: TC-Hash
Work = O(V log V + αpE) 
Depth = O(log E)
Cache = O(sort(V)+pαE)

Expected # edges = pE

Sampling rate: 0 < p < 1
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Algorithm Work Depth Cache Complexity
TC-Merge O(E1.5) O(log2 E) O(E + E1.5/B)
TC-Hash O(V log V + αE) O(log2 E) O(sort(V) + αE)
Par. Pagh-Silvestri O(E1.5) O(log3 E) O(E1.5/(M0.5 B)) 

1
Our Contributions

Parallel Cache-Oblivious Triangle Counting Algs

Extensive Experimental Study3

V = # vertices  E = # edges      α = arboricity (at most E0.5) 
M = cache size      B = line size                  sort(n) = (n/B) logM/B(n/B)

2 Extensions to Other Triangle Computations: 
Enumeration, Listing, Local Counting/Clustering Coefficients, 
Approx. Counting, Variants on Directed Graphs



Experimental Setup
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• Implementations using Intel Cilk Plus
• 40-core Intel Nehalem machine (with 2-way hyper-threading)
• 4 sockets, each with 30MB shared L3 cache, 256KB private L2 caches

• Sequential TC-Merge as baseline (faster than existing 
sequential implementations)

• Other multicore implementations: Green et al. and GraphLab
• Our parallel Pagh-Silvestri algorithm was not competitive
• Variety of real-world and artificial graphs



Both TC-Merge and TC-Hash scale well 
with # of cores:

19

LiveJournal 
4M vtxes, 34.6M edges 

~ 27x ~ 48x

Orkut
3M vtxes, 117M edges 



40-core (with hyper-threading) Performance
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• TC-Merge always faster than TC-Hash (by 1.3—2.5x)
• TC-Merge always faster than Green et al. or GraphLab 

(by 2.1—5.2x)



Why is TC-Merge faster than TC-Hash?
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• TC-Hash less cache-efficient than TC-Merge
• Running time more correlated with cache misses than work



Comparison to existing counting algs.
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0 2 4 6 8 10 12 14 16 18 20

TC-Merge (40 cores)

GraphLab (40 cores)

GraphLab (MPI, 64 nodes, 1024 cores)

PATRIC (MPI, 1200 cores)

Park and Chung (MapReduce, 47 nodes)

Suri and Vassilvitskii (MapReduce, 1636 nodes)

Minutes

Twitter graph (41M vertices, 1.2B undirected edges, 34.8B triangles)

(213 minutes)

(423 minutes)

• Yahoo graph (1.4B vertices, 6.4B edges, 85.8B triangles) 
on 40 cores:  TC-Merge takes 78 seconds
– Approximate counting algorithm achieves 99.6% accuracy in 9.1 

seconds



Shared vs. distributed memory costs

• Amazon EC2 pricing
• Captures purchasing costs, maintenance/operating 

costs, energy costs
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Triangle Counting 
(Twitter)

Our algorithm GraphLab GraphLab

Running Time 0.932 min 3 min 1.5 min
Machine 40-core (256 

GB memory)
40-core (256 GB 
memory)

64 x 16-core

Approx. EC2 pricing < $4/hour < $4/hour 64 x $0.928/hour
Overall cost < $0.062 < $0.2 $1.49



Approximate counting
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p=1/25 Accuracy Tapprox Tapprox/Texact
Orkut (V=3M, E=117M) 99.8% 0.067sec 0.035
Twitter (V=41M, E=1.2B) 99.9% 2.4sec 0.043
Yahoo (V=1.4B, E=6.4B) 99.6% 9.1sec 0.117
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• Simple multicore algorithms for triangle computations are 
provably work-efficient, low-depth, and cache-efficient

• Implementations require no load-balancing or tuning for 
cache

• Experimentally outperforms existing multicore and 
distributed algorithms

• Future work: Design a practical parallel algorithm 
achieving O(E1.5/(M0.5 B)) cache complexity
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Conclusion
Algorithm Work Depth Cache Complexity
TC-Merge O(E1.5) O(log2 E) O(E + E1.5/B)
TC-Hash O(V log V + αE) O(log2 E) O(sort(V) + αE)
Par. Pagh-Silvestri O(E1.5) O(log3 E) O(E1.5/(M0.5 B)) 


