
Parallel Filtered Graphs for Hierarchical Clustering
Shangdi Yu
MIT CSAIL

Julian Shun
MIT CSAIL

Abstract—Given all pairwise weights (distances) among a set of
objects, filtered graphs provide a sparse representation by only
keeping an important subset of weights. Such graphs can be
passed to graph clustering algorithms to generate hierarchical
clusters. In particular, the directed bubble hierarchical tree
(DBHT) algorithm on filtered graphs has been shown to produce
good hierarchical clusters for time series data.

We propose a new parallel algorithm for constructing triangu-
lated maximally filtered graphs (TMFG), which produces valid
inputs for DBHT, and a scalable parallel algorithm for generating
DBHTs that is optimized for TMFG inputs. In addition to
parallelizing the original TMFG construction, which has limited
parallelism, we also design a new algorithm that inserts multiple
vertices on each round to enable more parallelism. We show that
the graphs generated by our new algorithm have similar quality
compared to the original TMFGs, while being much faster to
generate. Our new parallel algorithms for TMFGs and DBHTs
are 136–2483x faster than state-of-the-art implementations, while
achieving up to 41.56x self-relative speedup on 48 cores with
hyper-threading, and achieve better clustering results compared
to the standard average-linkage and complete-linkage hierarchi-
cal clustering algorithms. We show that on a stock data set, our
algorithms produce clusters that align well with human experts’
classification.

I. INTRODUCTION

Clustering is an unsupervised machine learning method that
has been widely used in many fields including finance, biology,
and computer vision, to discover structures in a data set.
Often times, one is interested in exploring clusters at varying
resolutions. A hierarchical clustering algorithm can be used
to produce a tree, also known as a dendrogram, that represents
clusters at different scales.

Running a metric clustering algorithm on a set of n points
often involves working with Θ(n2) pairwise distances, and is
computationally prohibitive on large data sets. One approach
to improving efficiency is to use a filtered graph that keeps
only a subset of the pairwise distances, and then pass the
resulting graph to a graph clustering algorithm. Filtered graphs
reduce the number of distances considered while retaining the
most important features, both locally and globally. Simply
removing all edges with weights below a certain threshold
may not perform well in practice, as the threshold may require
significant tuning, and the importance of an edge is not
only determined by its weight, but also its location in the
graph. Several other methods for constructing filtered graphs
have been proposed, including k-nearest neighbor graphs [1],
minimum spanning trees [2], [3], and weighted maximal planar
graphs [4], [5].

A variant of weighted maximal planar graphs, called planar
maximally filtered graphs (PMFG) [4], has been shown to
perform well in practice in combination with the directed

10−2 10−1 100 101 102 103 104 105

1-thread runtime (sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
dj

us
te

d
R

an
d

In
de

x

PMFG+DBHT TMFG+DBHT average linkage complete linkage

Fig. 1: Sequential runtime vs. clustering quality for hierarchical
clustering methods on different data sets.

bubble hierarchy tree (DBHT) technique, especially on finan-
cial [6]–[8] and biological [9], [10] data sets. The PMFG is
constructed by repeatedly adding an edge between the pair of
points with the highest weight, while preserving planarity. The
DBHT technique constructs a dendrogram based on certain
triangles in the input graph, along with various shortest path
calculations. It has the benefit that no prior information about
the data is required, and no parameter tuning is needed.
However, the state-of-the-art PMFG and DBHT algorithms
are sequential and do not scale to large data sets. Massara
et. al [5] proposed the triangulated maximally filtered graphs
(TMFG), a variant of maximal weighted planar graph that can
be generated more efficiently. Instead of repeatedly adding
a single edge as in PMFG, the TMFG is constructed by
repeatedly adding a single vertex to a triangle with its three
edges to the triangle corners, while respecting planarity. In
other words, we search for an uninserted vertex x that is
”close” to three vertices that already form a triangle in the
graph, and insert x by adding three edges from x to the three
vertices. However, the state-of-the-art TMFG implementation
is also sequential, and to the best of our knowledge, the
clustering quality of using DBHTs with TMFGs has not been
evaluated.

One important type of data that PMFGs, TMFGs, and
DBHTs have been shown to perform well on is time series
data. Time series data arise in a multitude of applications,
including in finance, signal processing, biology, astronomy,
and weather forecasting. To extract insights from the data,
one is often interested in finding correlations between different
time series, and clustering the data based on these correlations.
The correlation matrix stores the correlation between every
pair of time series It is important to construct a filtered
graph on the correlation matrix to enable efficient and scalable
clustering. We show in Figure 1 the runtime and cluster
quality (using the Adjusted Rand Index [11]) for PMFG and
TMFG combined with DBHT, compared with the standard
average-linkage and complete-linkage methods for hierarchical

2

clustering, for a collection of time series data sets. For all
methods, the dendrogram is cut such that the number of
resulting clusters is the same as the number of ground truth
clusters. We see that, while the runtimes of PMFG and TMFG
are higher than those of average-linkage and complete-linkage,
they are able to generate higher quality clusters. Thus, PMFG,
TMFG, and DBHT are preferable for hierarchical clustering,
when one is willing to use a larger time budget to obtain better
quality clusters.

To reduce the runtime of TMFG and DBHT, we propose
new parallel algorithms and fast implementations for con-
structing TMFGs and a scalable parallel DBHT algorithm that
is optimized for TMFGs. Besides parallelizing the original
TMFG construction, which has limited parallelism, we also
design a new algorithm that inserts multiple vertices on each
round to enable more parallelism. We show that the filtered
graph generated by our new algorithm has similar quality to
that of the original TMFG, while being much faster. The
key challenge in our algorithm is in resolving the conflicts
when inserting multiple vertices into the TMFG. In TMFG
construction, we resolve the conflict of vertices by designating
a single triangle for each vertex based on edge weights. Our
DBHT algorithm leverages the special topological structure of
TMFGs. We are able to construct a rooted undirected bubble
tree on the fly with a special invariant while constructing
the TMFG, and we use this invariant to efficiently direct
the bubble tree with a recursive process. This reduces the
complexity of these two steps from quadratic (which the
original DBHT algorithm requires) to linear.

We compare the speed and quality of our parallel al-
gorithms with parallelized versions of the average-linkage
and complete-linkage hierarchical clustering algorithms. As
a baseline, we also compare with k-means, which is a non-
hierarchical clustering algorithm and only produces clusters at
a single resolution. On a collection of 16 data sets generated
from time series and image data, we find that the DBHT using
TMFG produces similar and sometimes better clusters than the
DBHT using PMFG. It also gives better clusters than average-
linkage and complete-linkage clustering, and is competitive
with k-means on most data sets.

We show that our new algorithm is up to 15589 times faster
than the sequential DBHT on PMFG and has Adjusted Rand
Index scores up to 0.65 higher than agglomerative clustering
algorithms. We show that on time series data sets of stock
prices from 2013–2019 from the US stock market, DBHT on
TMFG is able to produce clusters that align well with human
experts’ classification, and in our experiment it produced better
clusters than the original TMFG algorithm. On 48 cores with
hyper-threading, our new algorithm for constructing a TMFG
variant and DBHT are 136–2483x faster times faster than
the state-of-the-art TMFG implementation, and achieves up
to 41.56x self-relative speedup on 48 cores.

We summarize our contributions below:

• We design a new parallel algorithm for constructing a
TMFG variant that produces high-quality graphs.

• We design a new parallel algorithm for constructing the
DBHT, which is optimized for TMFG-like inputs.

• We perform experiments showing that our parallel algo-
rithms achieve significant speedups over state-of-the-art
algorithms, while producing clusters of similar or better
quality.
Our source code and data is available at https://github.com

/yushangdi/par-filtered-graph-clustering.

II. BACKGROUND

We briefly describe the sequential construction of PMFGs and
TMFGs, and introduce the notation and primitives that we use.

A planar graph can be drawn on the plane such that no
edges cross each other. Both PMFGs and TMFGs are maximal
planar subgraphs of a complete undirected, edge-weighted
graph (”maximal” means that no additional edge can be added
to the vertex set without violating planarity). They give an
approximation to the NP-hard Weighted Maximum Planar
Graph problem, which requires the sum of the edge weights
kept to be maximized [12]. The complete edge-weighted graph
input can also be viewed as a similarity matrix S, where S[i, j]
is the weight of edge (i, j) in the graph.
Planar Maximally Filtered Graph (PMFG). The sequential
algorithm for constructing PMFGs [4] first sorts all of the
edges by their edge weights. It then starts with an empty
graph G and considers each edge in the sorted order, from
highest to lowest weight. An edge is added to the graph if
and only if it does not violate the planarity of G, which is
checked by running a planarity testing algorithm. This process
is computationally expensive due to the need to run a planarity
testing algorithm Θ(n2) times.
Triangulated Maximally Filtered Graph (TMFG). TM-
FGs [5] have been proposed to improve the efficiency of
PMFG construction. Instead of considering edges one by one,
the original sequential TMFG algorithm adds one vertex x
to the vertex set of the subgraph under construction, as well
as three edges (each from x to one of the three vertices of
a triangular face in a planar embedding of the subgraph) on
every iteration, and eliminates the vertex from consideration in
future iterations. The vertex-triangle pair that gives the highest
increase in total edge weight is chosen. This leads to only
Θ(n) iterations for TMFG, compared to Θ(n2) for PMFG. The
algorithm starts with four vertices with maximum weighted
degree and all six edges connecting them. By definition, it
ensures that edges added do not violate planarity, and so
planarity testing is not needed. Figure 2(a) shows an example
of a TMFG. If there were additional vertices to insert, they
could go into any of the faces, which are all triangles.
Directed Bubble Hierarchy Tree (DBHT). After obtaining
the TMFG or PMFG, we can then generate a dendrogram from
it for hierarchical clustering using the DBHT [13] algorithm,
which has been shown to produce high-quality dendrograms
for financial time series [6]–[8] and biological [9], [10] data.
The original, sequential DBHT algorithm first constructs a
bubble tree [14], which is a tree where nodes correspond
to planar subgraphs, and edges between two nodes corre-

https://github.com/yushangdi/par-filtered-graph-clustering
https://github.com/yushangdi/par-filtered-graph-clustering

3

0

6

45
2

3

1

𝑏2={0,1,2,3}

𝑏3={0,1,3,6}

𝑏4={1,2,3,5}𝑏1={0,1,2,4}

t2={0,1,3}

t4={1,2,3}t1={0,1,2}
𝑏2={0,1,2,3}

𝑏3={0,1,3,6}

𝑏4={1,2,3,5}𝑏1={0,1,2,4}

t2={0,1,3}

t4={1,2,3}t1={0,1,2}

(a) (b) (c) (d)
123 4 56 0

Fig. 2: (a) An example TMFG. The edges have weights 0.8, 0.4, or 0.2. The darker and thicker edges have larger weights. For example,
w(0, 1) = 0.8, w(2, 3) = 0.4, and w(0, 6) = 0.2. (b) The undirected bubble tree. Each bubble node is a gray box and nodes are connected
by blue edges. Each bubble is marked with vertices in the bubble and a name bi. Each edge is marked with the triangle it corresponds to
and a name ti. (c) The directed bubble tree. The bolded node is the only converging bubble in this example. The red vertices are assigned
to the bubble in which they are marked. (d) The dendrogram for DBHT.

spond to triangles in the original graph that separate the two
corresponding planar subgraphs. The DBHT algorithm then
directs the tree edges by computing the strength of connection
from the separating face to its interior and exterior. Next, the
algorithm runs a number of shortest distance computations to
assign vertices to bubbles, and finally uses complete-linkage
clustering to generate a hierarchy. We will describe more
details of the DBHT algorithm along with how we parallelize
and optimize it in Section V.
Notation and Terminology. Given a planar graph G and its
planar embedding, a face of G is a maximal region bounded
by edges, except for the outer face, which is unbounded. For
example, in Figure 2(a), {0, 3, 6} is the outer face in this
embedding. A bounded face is an inner face. We insert vertex
v into a triangular face t with three corners vx, vy , and vz by
adding three weighted edges from v to each of vx, vy , and
vz . The gain of inserting v to t is the sum of these three
edge weights. Let V be a set of vertices. We say that a vertex
v ∈ V is the best vertex in V for face t if inserting v to t
gives the maximum gain among all vertices in V . The weight
of an edge (i, j) in graph G is denoted as w(i, j).

A face is separating if removing it disconnects the graph.
A bubble is a maximal planar graph whose 3-cliques are non-
separating cycles. If we create a bubble node for each bubble
and connect bubble nodes that share separating triangles, then
the bubble nodes and connection edges form a tree [13], [14],
which we call a bubble tree. We will denote a clique with C
and a bubble node in the bubble tree as b.

The output of our algorithm is a tree called a dendrogram,
where the height of each node corresponds to the dissimilarity
between the two clusters represented by its two children.
The height of a dendrogram node is a value computed by
our algorithm, and a node’s height is at most the height of
its parent. Cutting the dendrogram at different heights gives
subtrees that correspond to clusters at different scales.
Model of Computation. To analyze our parallel algorithms,
we use the work-span model [15], [16], a standard model
for analyzing shared-memory algorithms. The work W of an
algorithm is the total number of operations, and the span S
is the length of the longest dependency path of the algorithm.
The work of a sequential algorithm is the same as its time.
We can bound the running time of the algorithm on P
processors by W/P +O(S) using a randomized work-stealing

TABLE I: Parallel Primitives.
Operator Description Work Span

Filter Filter out desired elements O(n) O(logn)
Sort Sort elements O(n) O(logn) w.h.p.

Maximum Find the maximum O(n) O(1) w.h.p.
WRITEMIN concurrently write O(1) O(1)

the smallest value
WRITEMAX concurrently write O(1) O(1)

the largest value
WRITEADD atomically add O(1) O(1)

scheduler [17].
Parallel Primitives [15], [18]. Table I gives a summary of
the parallel primitives that we use. A parallel filter takes an
array A and a predicate function f , and returns a new array
containing a ∈ A for which f(a) is true, in the same order
that they appear in A. Filter takes O(n) work and O(log n)
span. A parallel sort takes an array A and a binary function
f(a, b) that returns true if a <k b where <k is a total ordering,
and returns a new array containing a ∈ A in non-decreasing
order. Sorting takes O(n log n) work and O(log n) span. A
parallel integer sort can be done in O(n) work and O(log n)
span with high probability (w.h.p.)1 for integers in the range
[1, . . . , O(n logc n)] [19]. A parallel maximum takes an array
A and returns the largest element in A. A maximum can be
computed in O(n) work and O(1) span with high probability.
WRITEMIN is a priority concurrent write that takes as input
two arguments, where the first argument is the location to write
to and the second argument is the value to write; on concurrent
writes, the smallest value is written [20]. WRITEMAX is
similar but writes the largest value. WRITEADD is a priority
concurrent write that takes as input two arguments, where
the first argument is the location to write to and the second
argument is the value to atomically add to the value at the first
location. We assume that these priority concurrent writes take
constant work and span.

III. RELATED WORK

There is a rich literature in designing both sequential and paral-
lel hierarchical clustering algorithms. The most popular hierar-
chical clustering algorithm variants are hierarchical agglomer-
ative clustering algorithms (HAC) [21]–[25]. Different variants
of HAC use different linkage functions to compute the distance
between clusters. Popular linkage functions include complete,

1We say that a bound holds with high probability (w.h.p.) if it holds with
probability at least 1− n−q for q ≥ 1, where n is the input size.

4

average, single, centroid, and median linkage. Several papers
have been written on the topic of parallel HAC, such as
parallel HAC under the single-linkage metric [22], [23], [26]–
[28] as well as other metrics [22]. Song et al. [13] showed
that DBHT with PMFG is superior to complete-linkage and
average-linkage HAC. We also show in Section VII that our
method has higher quality than complete-linkage and average-
linkage HAC. Musmeci et al. [6] showed that DBHT with
PMFG produces better clusters on stock data sets than single
linkage, average linkage, complete linkage, and k-medoids.

There has also been work on other hierarchical clustering
methods, such as partitioning hierarchical clustering algo-
rithms, algorithms that combine agglomerative and partitioning
methods [29], [30], and density-based methods [23], [31].
Compared to the density-based methods [23], [31], our al-
gorithm has two advantages, the first is that many density-
based methods are most suitable for low-dimensional data,
while our algorithm does not have this constraint. Moreover,
these clustering methods require some apriori information to
set the parameters to obtain high-quality clusters. In com-
parison, DBHT does not require any additional parameters.
Dash et al. [29] proposed a parallel hierarchical clustering
algorithm that divides data into overlapping cells and clusters
the cells. However, the parallel version is only described for
low-dimensional data sets. Cohen-Addad et al. [32] designed
a parallel algorithm for the hierarchical k-median problem,
but it is limited to the Euclidean metric. There are also
algorithms designed for specific types of data, such as cate-
gorical data [33] and genomics data [30]. While most parallel
algorithms have been designed for shared memory, there have
also been algorithms designed for distributed memory [34].

The PMFG is an approximate solution to the weighted max-
imal planar graph (WMPG) problem, which is NP-hard [12].
There have also been other approximate solutions designed for
the WMPG. Massara et al. [5] propose the TMFG, which is
based on local topological moves. Kataki et al. [35] design a
heuristic that is based on a transformation to the connected
spanning subgraph problem and the dual graph. Osman et
al. [36] use a greedy random adaptive search procedure to
solve the WMPG problem. Other heuristics have been devel-
oped for the WMPG problem [37]–[39].

Besides filtering graphs based on topological constraints,
there are other graph filtering methods that are used for
clustering. For example, Ma et al. [40] use a low-pass filter
to extract useful data representations for subspace clustering,
and Tremblay et al. [41] use graph filtering for faster spectral
clustering. Another graph construction algorithm used for
clustering is b-matching [42]–[44]. The b-matching algorithm
filters graph edges such that the in-degree and out-degree of
each node is at most b, and can be solved in polynomial time.

IV. PARALLEL TMFG

This section introduces our algorithm for parallelizing TMFG
construction, whose pseudocode is shown in Algorithm 1.
We first give a high-level overview. Our parallel algorithm
simultaneously adds multiple vertices to the graph. Adding

Algorithm 1: Parallel TMFG
Input: n × n similarity matrix S, prefix size PREFIX ≥ 1
// The four vertices that have highest total
sum across its row in S

1 C = {v1, v2, v3, v4}
2 E = {(v1, v2)(v1, v3), (v1, v4), (v2, v3), (v2, v4), (v3, v4)}
// The four triangular faces in the initial
graph

3 F = {{v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}, {v2, v3, v4}}
4 V = {v5, . . . , vn}
// The best vertex in V for each triangle

5 GAINS = [argmaxu∈V (
∑

v∈t S[v, u]) for t ∈ F]
6 Initialize bubble tree T with C
7 OUTERFACE = {v1, v2, v3}
8 while |V | > 0 do
9 L = the PREFIX vertex-face pairs with the largest gains in GAINS using

parallel sorting.
10 For vertices paired with multiple faces in L, only keep the pair with

maximum gain, using a parallel filter and parallel sorting.
11 V = V \ {vertices ∈ L}
12 parallel for (v, t = {vx, vy, vz}) ∈ L do
13 E = E ∪ {(v, vx), (v, vy), (v, vz)}
14 F = F ∪ {{v, vx, vy}, {v, vy, vz}, {v, vx, vz}} \ t
15 parallel for t ∈ {t′ : GAINS[t′] =

v} ∪ {{v, vx, vy}, {v, vy, vz}, {v, vx, vz}} do
16 GAINS[t] = argmaxu∈V (

∑
v∈t S[v, u])

17 UpdateBubbleTree(v, t, T)
18 return E

multiple vertices may give results that differ from the sequen-
tial TMFG algorithm because the sequential algorithm updates
the graph after every insertion, giving future vertices more
faces to choose from, whereas our parallel algorithm will only
update the graph after all of the vertices in a round have been
added. Therefore, the more vertices we add in parallel, the
more we deviate from the sequential algorithm. This gives a
tradeoff in the quality of the graph and the amount of available
parallelism. We therefore consider adding only a prefix of
the vertices that give the highest gain in total edge weight.
The prefix size can be tuned for the application and available
parallelism.

In the rest of the section, we describe the details of our
parallel TMFG algorithm (Algorithm 1). The input is an n×n
symmetric matrix S that represents the complete undirected
graph, and a parameter PREFIX. The highlighted lines are used
for building DBHT, and will be explained in Section V. On
Lines 1–4, we first find the four vertices {v1, v2, v3, v4} that
have the highest total sum across their rows in S, and add all
edges among them to the resulting graph’s edge list E . The
four faces formed by the four vertices are added to the set
of faces F . The rest of the vertices are in set V , and will
be added to the graph later. On Line 5, for each face in F ,
we find its best vertex (the vertex that maximizes the gain if
inserted into this face).

On Lines 8–18, we insert the remaining vertices into the
graph in batches of up to size PREFIX. On Lines 9–11, we
obtain the batch of vertices to insert and their corresponding
faces to insert into. We first obtain the PREFIX vertex-face
pairs with the largest gains in the GAINS array, and store the
pairs in L. This can be done using a parallel sort on the GAINS
array. On Line 10, we ensure that a given vertex is only added
to a single face to avoid race conditions. Conflicts for a given
vertex are resolved by only allowing the vertex to add itself to
the face that gives the highest gain. We can use parallel sorting
to group vertices based on which face (among all faces) gives

5

Algorithm 2: UpdateBubbleTree
1 Function UpdateBubbleTree(v, t = {vx, vy, vz}, T):
2 b∗ = new bubble {v, vx, vy, vz}
3 b = the bubble that t is in
4 if t = OUTERFACE then
5 b.PARENT = b∗

6 Add b to b∗.CHILDREN
7 OUTERFACE = {v, vx, vy}
8 else
9 b∗.PARENT = b

10 Add b∗ to b.CHILDREN

the highest gain, and have each face pick the vertex (among
all vertices that choose this face) that gives the highest gain.
The available parallelism increases as the number of faces in
the graph grows. If PREFIX = 1, Lines 9–10 can be simplified
to a single parallel maximum computation. On Line 11, we
remove the vertices in L from V using a parallel filter.

On Lines 12–16, we loop over the vertex-face pairs (v, t)
in L, add v to t, and update E and F . To update F , we add
the three new faces created and remove t. We also update
GAINS by computing the new best vertex among V for the
three new faces and faces that previously had v as their best
vertex. Unlike the original algorithm [5], which loops over all
of the faces to find the faces that previously had v as their
best vertex, we keep an array for each vertex that stores such
faces to improve the efficiency of this step.

If we choose PREFIX = 1 in Algorithm 1, we obtain the
same result as the sequential TMFG algorithm, but we still
have some parallelism from the parallel maximum call on
Line 9 on Lines 15–16. This case gives the same parallel
algorithm that is described (but not implemented) by Massara
et al. [5]. However, we show in Section VII that using
PREFIX = 1 has limited parallelism because on each round
only a single vertex can be inserted.

V. PARALLEL DBHT FOR TMFG

We describe our parallel algorithm for building the DBHT,
which leverages the special structure of the bubble tree for
TMFGs. The original DBHT construction of Song et al. [13]
takes a planar graph, and two weights on each edge—a
similarity measure and a dissimilarity measure. The similarity
measure is from the similarity matrix S, and the dissimilarity
measure needs to be additionally supplied. The construction
has the following steps: building an undirected bubble tree [14]
from a planar graph; assigning directions to the bubble
tree edges; assigning graph vertices to bubbles; and using
complete-linkage clustering to generate a hierarchy. Below,
we describe how we accelerate and parallelize each step.

A. Bubble Tree for TMFG

As described in Section II, a bubble tree [14] is a tree where
nodes correspond to planar subgraphs, and edges between
nodes correspond to triangles in the original graph that sep-
arate the two corresponding planar subgraphs. Specifically, a
bubble is a maximal planar graph whose triangles are non-
separating [14]. The original DBHT construction is inefficient,
as it involves first finding all of the triangles in the graph,
and then testing for every triangle whether removing it would
disconnect the graph.

The key observation is that the bubble tree can be more
efficiently constructed during TMFG construction, as a vertex
that is added in the TMFG algorithm will correspond to exactly
one bubble node and one edge in the bubble tree. In TMFG,
every time we insert a new vertex, we create a 4-clique, which
is a bubble because all faces of a 4-clique are non-separating
triangles. This will also produce a separating triangle, which
corresponds to a new edge in the bubble tree. This separating
triangle is shared by the 4-cliques corresponding to the two
bubble nodes incident to it. For example, consider the graph
without vertex 5 in Figure 2(a). If we now insert vertex 5
into triangle t4 = {1, 2, 3}, we created a new bubble b4 =
{1, 2, 3, 5} and t4 now becomes a separating triangle, which is
shared by b2 = {0, 1, 2, 3} and b4. We incorporate the bubble
tree construction into our parallel TMFG algorithm to save a
significant amount of work.

Our undirected bubble tree for TMFG has the invariant that
each bubble node has a parent and at most three children
(because for each 4-clique, there is one outer face and three
inner faces), except for the root, which does not have a parent.
Moreover, all descendants of an edge are on the interior
side of the separating triangle corresponding to the edge.
This invariant is important for us to accelerate the direction
computation, which we describe later.

We now describe the details of bubble tree construction,
which are the highlighted lines in Algorithm 1. On Line 6,
we initialize our bubble tree with a single bubble node, which
contains the 4-clique that we start our TMFG with. On Line 7,
we initialize our outer face to be {v1, v2, v3}. This outer face
can be chosen arbitrarily among the four faces of C because
the bubble tree’s topological structure is independent of this
choice [14]. On Line 17, we add a new node and a new edge
to the bubble tree T for each vertex v inserted into face t.
This can be done in parallel because each vertex v is inserted
into a single, unique face t, so there will not be any conflicts.

Algorithm 2 shows the subroutine for building the bubble
tree. On Line 2, we create a new bubble node b∗. On Line 3,
we find the bubble b in T that t is in. This is the bubble that is
created when t is created (in some previous call to UpdateBub-
bleTree). b∗ is the bubble that the faces {v, vx, vy}, {v, vy, vz},
and {v, vx, vz} are in. If t is the current outer face, this means
we are inserting v into the outer face, and b is the current root
of T . So on Lines 4–7, we let b’s parent be b∗, and add b to
b∗’s children. This maintains the invariant above because the
vertices in the bubbles before inserting v are in the interior of
the outer face, and after the procedure these bubbles become
descendants of the edge corresponding to the outer face t. The
OUTERFACE is then updated to be a face {v, vx, vy} in the
4-clique corresponding to b∗. If t is not the current outer face,
then we do not need to change the outer face, because the
vertex is inserted into some inner face of b. In this case, on
Lines 8–10, we let b∗’s parent be b, and add b∗ to b’s children.
This maintains the invariant above because v must be in the
interior of t and its ancestors, and the bubble b∗ containing v
is a descendant of the edge corresponding to t.
Example 1. We now give an example of the bubble tree

6

construction by running our algorithm on the example TMFG
in Figure 2. We will first describe inserting a single vertex, and
then describe inserting multiple vertices in parallel. Suppose
we start with the 4-clique C = {0, 1, 2, 4}. We have four faces
{{0, 1, 2}, {0, 1, 4}, {0, 2, 4}, {1, 2, 4}}, where t1 = {0, 1, 2}
is the outer face. We initialize the bubble tree T with node
b1 = {0, 1, 2, 4}, which corresponds to C. We insert vertices 3,
5, and 6, in order, into faces {0, 1, 2}, {1, 2, 3}, and {0, 1, 3},
respectively. We first insert 3 into t = t1 = {0, 1, 2}. For this
insertion, the new bubble b∗ on Line 2 is b2 = {0, 1, 2, 3},
and the b on Line 3 is b1. Since t is the current outer face,
we let b2 be b1’s parent. The new outer face is t2 = {0, 1, 3}.
Now suppose we insert 5 and 6 into {1, 2, 3} and {0, 1, 3},
respectively, in parallel. This is similar to inserting 3, and we
add b3 = {0, 1, 3, 6} as b2’s parent and b4 = {1, 2, 3, 5} as
b2’s child in parallel.

B. Directing Bubble Tree Edges

We now describe how to direct the bubble tree edges after
obtaining the undirected bubble tree from Algorithms 1 and
2, and how we significant improve the efficiency of this step
over the original sequential DBHT algorithm. Each edge of the
bubble tree corresponds to a separating triangle. The direction
is decided by computing the sum over the weights of the edges
in the TMFG connecting the triangle with its interior versus
its exterior [13]. Figure 2(c) shows an example of directing
the edges.

We denote the sum over the weights of the edges to the
interior as INVAL and to the exterior as OUTVAL. In the
original algorithm, the two values are computed by running a
breadth-first-search (BFS) on G\t for each separating triangle
t to find its exterior and interior, and then computing the sum
of edge weights. This takes Θ(n2) work because PMFGs and
TMFGs have Θ(n) edges [13] and each BFS takes Θ(n) work.

In our bubble tree, the interior of a separating triangle
contains all of the vertices in the descendants of the edge
corresponding to this separating triangle, and the exterior con-
tains all other vertices. Using this property, we can compute
the direction of all edges in Θ(n) work using a novel recursive
algorithm, starting from the root of bubble tree. At each
bubble node b, we compute the direction of the edge from
itself to its parent, and recursively call the procedure on the
bubble’s children. This gives a significant improvement over
the quadratic work of the original algorithm.

Specifically, we compute the direction of all edges by
recursively calling the COMPUTEDIRECTION function, shown
in Algorithm 3, with the root of bubble tree as the argument
to the initial call. At each bubble node b, we compute the
direction of the edge from itself to its parent. If b is the root,
then it has no edge to its parent, and so we do not need to
compute anything besides initializing the computation on its
children (Lines 20–22). Otherwise, we compute the INVAL and
OUTVAL for the separating triangle corresponding to the edge
from the bubble to its parent. If INVAL > OUTVAL, then the
edge goes from b’s parent to b, and vice versa (Lines 14–17).

On Lines 3–4, we obtain the vertices {vx, vy, vz} in the

Algorithm 3: ComputeDirection
1 Function ComputeDirection(bubble tree node b):
2 if b has a parent then
3 {vx, vy, vz} = vertices shared by b and its parent
4 v = b \ {vx, vy, vz}
5 r = {}
6 r[vx] = w(vx, v), r[vy] = w(vy, v), r[vz] = w(vz, v)
7 parallel for b∗ ∈ b’s children do
8 r∗ = {v∗

x : val∗x, v
∗
y : val∗y, v

∗
z : val∗z} =

computeDirection(b∗)
9 if v∗

x ∈ r then WRITEADD(r[v∗
x], val

∗
x)

10 if v∗
y ∈ r then WRITEADD(r[v∗

y], val
∗
y)

11 if v∗
z ∈ r then WRITEADD(r[v∗

z], val
∗
z)

12 INVAL = r[vx] + r[vy] + r[vz]
13 OUTVAL = deg(vx) + deg(vy) + deg(vz) − INVAL −

2(w(vx, vy) + w(vx, vz) + w(vy, vz))
14 if INVAL > OUTVAL then
15 Direct the edge from b’s parent to b
16 else
17 Direct the edge from b to b’s parent
18 return r
19 else /* b is the root */
20 parallel for b∗ ∈ b’s children do
21 computeDirection(b∗)
22 return {}

Algorithm 4: Parallel DBHT for TMFG
Input: n × n dissimilarity matrix D, weighted undirected planar graph G

generated by TMFG, bubble tree T
1 computeDirection(root of T)
2 v.g = (−∞,−∞), v.q = (−∞,−∞) ∀ vertices v ∈ G
3 BB = set containing T ’s nodes
4 CVGBB = {b ∈ BB : b.out-degree=0}
5 parallel for b ∈ BB do
6 BFS(T , b)
// all-pairs shortest paths

7 A = allPairsShortestPaths(G, D)
// assign vertices to converging bubbles

8 parallel for b ∈ CVGBB do
9 parallel for v ∈ b do

10 χ = computeChi(v, b)
11 WRITEMAX(v.g, (χ,b))
12 V 0

b = {v ∈ G : v.g = b} ∀b
13 v.g = (∞,∞) if v.g is (−∞,−∞) ∀v
14 parallel for b ∈ CVGBB do
15 parallel for v ⇀ b and v.g == (∞,∞) do
16 L̄ = computeAverageShortestPath(v, V 0

b)
17 WRITEMIN(v.g, (L̄, b))
// assign vertices to bubbles

18 parallel for b ∈ BB do
19 χtotal = 0
20 for v ∈ b do
21 χv = computeChi’(v, b); χtotal += χv
22 for v ∈ b do
23 WRITEMAX(v.q, (χv/χtotal, b))
// build hierarchy using complete linkage

24 {Z1, . . . ,Zn} /* initialize dendrogram nodes */
25 parallel for bc ∈ CVGBB do
26 BBbc = {v.q : v ∈ bc}
27 parallel for b ∈ BBbc do
28 Let Z(bc,b) = completeLinkage({Zv : v.q = b ∧ v.g = bc})
29 parallel for bc ∈ CVGBB do
30 Let Zbc = completeLinkage({Z

(bc
′
,∗) : bc

′
= bc})

31 Z = completeLinkage({Zbc : bc ∈ CVGBB})
32 dendrogram = computeHeight(Z)
33 return dendrogram

separating triangle represented by the edge from b to its parent,
and let v be the remaining vertex in the bubble. On Lines 5–6,
we initialize the sum of edges to the interior from each corner
of the triangle with the edge weights from each corner to v
since v is in the interior. Then, on Lines 7–11 we recursively,
and in parallel, compute the sum of edge weights from the
corners of b’s children to the children’s interior. Note that
this computation is nested parallel, meaning that parallel tasks
are recursively created. Since the children’s interior is also
b’s interior, we can sum the weights of b’s corners obtained
from its children to compute the INVAL of b. On Line 13,
we compute OUTVAL by subtracting the INVAL and the edge

7

weights of the triangle from the weighted degrees of the
corners of the triangle. On Line 18, we return the weights
at the corners to b’s parent.

Now, we describe the derivation of the formula on Line 13
of Algorithm 3. Let D = deg(vx)+ deg(vy)+ deg(vz), Ik be
the total weighted degree of vk to the interior, and Ok be the
total weighted degree of vk to the exterior. We can rewrite D
as follows:

D = Ix +Ox + w(vx, vy) + w(vx, vz)

+ Iy +Oy + w(vy, vx) + w(vy, vz)

+ Iz +Oz + w(vz, vx) + w(vz, vy)

= (Ix + Iy + Iz) + (Ox +Oy +Oz)

+ 2(w(vx, vy) + w(vx, vz) + w(vy, vz))

= INVAL + OUTVAL + 2(w(vx, vy) + w(vx, vz) + w(vy, vz))

Rearranging gives the following formula for computing
OUTVAL: OUTVAL = D− INVAL−2(w(vx, vy)+w(vx, vz)+
w(vy, vz))
Example 2. We continue to our example for Algorithm 3.
Given the rooted bubble tree in Figure 2(b), we start our
computation at the root b3. Since b3 does not have a parent,
we recurse down to its child b2. For b = b2, the vertices
shared with its parent are {vx, vy, vz} = t2 = {0, 1, 3}
and the remaining vertex is v = 2. Then, we initialize
r[0] = w(0, 2), r[1] = w(1, 2), and r[3] = w(3, 2) on
Line 6. Next, we recurse down to b2’s children, b1 and b4.
For b1, the resulting r∗ array should contain r∗[0] = w(0, 4),
r∗[1] = w(1, 4), and r∗[2] = w(2, 4) from the recursion
on Line 8 because the shared vertices with its parent are
t1 = {0, 1, 2} and the remaining vertex is 4. On Lines 9–
11, since v∗x = 0 ∈ r and v∗y = 1 ∈ r, we increment
r[0] by w(0, 4) and r[1] by w(1, 4). Since v∗z = 2 /∈ r,
we do not process it. Now r[0] = w(0, 4) + w(0, 2) and
r[1] = w(1, 4) + w(1, 2). Similarly for b4, we increment r[1]
by w(1, 5) and r[3] by w(3, 5). Now r[0] = w(0, 4)+w(0, 2),
r[1] = w(1, 4)+w(1, 2)+w(1, 5) and r[3] = w(3, 2)+w(3, 5).

When we get to Line 12 for b2, the sum of r[0], r[1], and r[3]
is INVAL because it contains the edge weights from the three
corners of t2 to its interior. OUTVAL is computed by summing
the weights of all edges from t2 and then subtracting INVAL
and the weight of t2’s edges (once in each direction). In our
example, we find that INVAL > OUTVAL, and so the edge
is directed from b3 to b2 (Figure 2(c)). The other edges are
directed similarly by comparing INVAL and OUTVAL.

C. Assigning Vertices

A converging bubble is a bubble with only incoming edges,
and no outgoing edges. Intuitively, converging bubbles are the
“end points of a directional path that follows the strongest
connections” [13], so they are considered the center of local
clusters. The first level of clustering assigns each vertex to
a unique converging bubble. If a vertex is in at least one
converging bubble, then it is assigned to the converging bubble
with the strongest attachment χ(v, b) =

∑
u∈b w(u,v)

3(|b|−2) , where
3(|b| − 2) is the number of edges in the bubble b. For

TMFG, all bubbles have 6 edges, and so we can simplify
it to χ(v, b) =

∑
u∈b w(u, v). For a vertex that is not in any

converging bubble, it is assigned to the converging bubble that
has the minimum mean average shortest path distance:

L̄(v, b) = mean{lD(u, v) | u ∈ V 0
b ∧ v ⇀ b}.

v ⇀ b means v is in some bubble that can reach b in the
directed bubble tree, and lD(u, v) is the shortest path distance
from u to v in the TMFG using the dissimilarity measure
D as the edge weights. For all bubbles b, we let V 0

b be the
set of vertices in converging bubbles that have already been
assigned to b from computing χ. Let vertices assigned to the
same converging bubble b in the procedure above be a group.

After this initial partitioning of vertices, we investigate how
each of these groups is internally structured by performing a
second level of clustering. This time we assign each vertex to
a unique bubble, but not necessarily a converging bubble. A
vertex v is assigned to the bubble b that maximizes a different
attachment score

χ′(v, b) =

∑
u∈b w(u, v)∑

u′,v′∈b w(u
′, v′)

.

The pseudocode for our parallel DBHT algorithm is in Al-
gorithm 4. On Lines 1–23, we show how the two assignments
are computed. We first compute the necessary auxiliary data
used in the vertex assignment computation. On Line 1, we
compute the directions of bubble tree edges using Algorithm 3.
On Line 2, we initialize the fields g and q for each vertex to
(−∞,−∞) to prepare for the WRITEMAX operation on them.
g is the group assignment and q is the bubble assignment. On
Line 3, we initialize the set BB containing the bubble nodes.
On Line 4, we obtain all of the converging bubbles CVGBB by
using a parallel filter based on the out-degree of the tree nodes.
On Lines 5–6, we run a BFS in the directed bubble tree for
each bubble in parallel, and record for vertices in the bubbles
which converging bubbles they can reach. This helps us to do
the v ⇀ b computation later. On Line 7, we compute all-pairs
shortest paths in the TMFG by running Dijkstra’s shortest path
algorithm from each bubble node in parallel.

Now that we have obtained all necessary auxiliary data, we
start to compute the assignments. On Lines 8–17, we compute
the vertex assignments to converging bubbles, i.e., the groups.
First, we compute the group assignment for vertices in at least
one converging bubble by computing all of the attachment
scores χ) in parallel and using concurrent WRITEMAXes to
write the group assignment (Lines 8–11). On Line 12, we
compute V 0

b for all converging bubbles b by first using a
parallel integer sort to sort the vertices by group assignment,
and then using a parallel filter to obtain the start and end
indices of the groups in the sorted vertex array. Then on
Lines 13–17, we assign the rest of the unassigned vertices to
converging bubbles. Finally on Lines 18–23, we compute the
bubble assignment in parallel using concurrent WRITEMINs.
Example 3. We continue with our example in Figure 2(c).
Here we only have a single converging bubble b2 because
this is the only bubble with no outgoing edges. Therefore, all

8

vertices are assigned to this converging bubble on Lines 8–17.
Next, we look at what happens on Lines 18–23. Vertices 4, 5,
and 6 are only in a single bubble, and so they are assigned to
the bubble they are in. Vertices 0, 1, 2, and 3 are in multiple
bubbles, and so we compute the χ′ score and assign each
vertex to the bubble with the maximum χ′. For example, for
vertex 3, we will compute χ′(3, b2), χ′(3, b3), and χ′(3, b4).
In our example, we find that χ′(3, b3) is the largest, and so
we assign vertex 3 to b3.

D. Complete Linkage

Now we describe how to obtain the dendrogram from the
vertex assignments. At a high level, we build the complete-
linkage hierarchy at three levels: intra-bubble, inter-bubble,
and inter-group [13]. For the complete-linkage algorithm, the
distance between two vertices u and v is their shortest path
distance lD(u, v), and the distance between two set of vertices
V1 and V2 is d(V1, V2) = max{lD(u, v) | u ∈ V1, v ∈ V2}. We
use the parallel complete-linkage algorithm by Yu et al. [22].

The steps for building the dendrogram are shown on
Lines 24–33 of Algorithm 4. On Line 24, we initialize n
dendrogram nodes, one for each vertex in the TMFG. We
define a subgroup to be the set of vertices in a group that
belong to the same bubble. On Lines 25–28, for each subgroup
we run the complete-linkage algorithm on the dendrogram
nodes corresponding to vertices within the subgroup. The
result is a dendrogram for each subgroup. We use subgroups so
that vertices within the same group, but in different bubbles
will not be processed together, which is consistent with the
sequential algorithm [13]. Then, on Line 30, we run the
complete-linkage algorithm on dendrogram nodes in each
group. The result is a dendrogram for each group. Finally, on
Line 31, we run the complete-linkage algorithm on the group
dendrogram nodes to obtain the final dendrogram.
Dendrogram Heights. In conventional complete-linkage clus-
tering, the dendrogram height is the distance between the
two merged clusters. The dendrogram’s height requires that
nodes closer to the dendrogram root (clusters merged later)
have a height at least the height of nodes further away from
the root. However, since we are concatenating three levels of
dendrograms, the shortest path distance might not satisfy the
height requirement. For example, the maximum shortest path
distance might be larger between two vertices in a bubble than
between two bubbles. As a result, we will have to re-assign
heights to the dendrogram nodes. We use the same height
assignment in the implementation by Aste [45], which ensures
that all nodes that contain exactly one group are at the same
height.

For inter-group dendrogram nodes merged on Line 31, the
height is the number of converging bubbles in its descendants.
This can be computed in a top-down traversal from the root Z .
Intra-bubble and inter-bubble dendrogram nodes that belong
to the same converging bubble bc have heights chosen from
[1
nb−1 ,

1
nb−2 , . . . ,

1
2 , 1], where nb is the number of vertices

assigned to converging bubble bc. Each bubble’s dendrogram
nodes have a contiguous segment of the heights in the height

list. To obtain the dendrogram height for descendants of each
Z(bc), we sort these dendrogram nodes such that nodes merged
on Line 28 appear before nodes merged on Line 30. Nodes
merged on Line 30 are sorted by the distance when they
are merged. Nodes merged on Line 28 are sorted first by
bubble assignment and then by the distance when they are
merged. Now all dendrogram nodes in the same bubble and
converging bubble are contiguous. We then assign heights
[1
nb−1 ,

1
nb−2 , . . . ,

1
2 , 1] to the dendrogram nodes in the sorted

order. This sorted order ensures that the inter-group hierarchy
is below the inter-bubble hierarchy in the dendrogram.
Example 4. In Figure 2(c), since {2, 4}, {0, 3, 6}, and {1, 5}
are all assigned to the same bubble, we first have three
dendrograms Z(b2,b1), Z(b2,b3), and Z(b2,b4). Then we get a
single dendrogram Zb2 by running complete linkage on the
three dendrogram roots. In this example, we only have a single
converging bubble, and so we are done. If there were multiple
converging bubbles, our algorithm would run complete linkage
on the group dendrogram roots, which would all be at the
same height 1, to produce the final dendrogram. The resulting
dendrogram is shown in Figure 2(d).

VI. ANALYSIS

In this section, we analyze the complexity of our parallel
algorithms using the work-span model defined in Section II.

We use ρ to denote the number of rounds required by the
parallel TMFG algorithm, i.e., the number of times we iterate
the while loop on Line 8 of Algorithm 1. We use π to denote
the size of the PREFIX.
Parallel TMFG. First, we analyze the complexity of the
parallel TMFG algorithm given in Section IV. The first step
of computing the initial four vertices takes O(n2) work and
O(1) span. Initializing the GAINS array takes O(n) work and
O(1) span because initially there are n − 4 nodes in V and
four faces in F .

Now we analyze the while loop. Line 9 takes O(n log n)
work and O(log n) span for parallel sorting. Lines 10–11 takes
O(π log π) time and O(log π) span for parallel filtering and
sorting. In the for-loop, each vertex in L contributes O(1) work
and span on Lines 13– 14. On Lines 15–16, we maintain a
sorted list of vertices for each face. Every time we create a
new face, we take O(n log n) work to sort all vertices by their
gains with respect to this face, and we maintain a linked list
of sorted vertices for each face. Each vertex stores pointers to
its positions in these linked lists. When we insert a vertex to
a face, we remove the vertex from the linked lists of all other
faces. Since there are O(n) faces, the total work of sorting
is O(n2 log n) and the total work of removing vertices from
linked lists is O(n2) because each vertex is removed exactly
once for each face. The span of this algorithm is O(ρ log n)
because the span of each round is O(log n).
Bubble Tree Construction. The bubble tree is constructed by
the highlighted lines in Algorithm 1 (which calls Algorithm 2).
Building the bubble tree takes O(n) work because we insert n
vertices, and each insertion takes O(1) work. Since we update

9

the bubble tree on each round in O(1) span, the total span is
O(ρ).
Directing Edges. The directions of bubble tree edges are
computed in Algorithm 3. Computing the bubble tree direction
takes Θ(n) work because for each bubble, we perform O(1)
work (and span), and there are n−3 bubbles in total. The span
of computing the directions is asymptotically the same as the
height of the bubble tree. This is because on each round of
Algorithm 1 we only add tree edges adjacent to existing bubble
node, so the height can increase by at most 2 in each round,
and thus the span of this step is O(ρ).
Assigning Vertices. Now, we give the complexity of the vertex
assignment step in parallel DBHT algorithm (Lines 4–23 in
Algorithm 4). Lines 4, 8–13, and 17–23 take O(n) work
because there are O(n) bubbles, and each bubble has four
vertices. Lines 14–17 takes O(n2) work because there are
at most O(n) converging bubbles, and each vertex can reach
O(n) converging bubbles in the worst case. Lines 8–23 have
span O(1) except Line 12 which has O(log n) span for integer
sorting. Lines 5–6 take O(n2) work because we run O(n)
BFS’s. The span of running a BFS is O(ρ log n) because the
bubble tree has diameter O(ρ) [46].

The all-pairs shortest paths (APSP) on Line 7 can either be
computed by running single-source shortest path (SSSP) from
all nodes or can be computed by a dedicated APSP algorithm.
The APSP and SSSP problems, both in the sequential and
parallel settings, have been well-studied [47]–[56]. There
are also APSP and SSSP algorithms specifically designed
for planar graphs, which have better complexity than their
general counterparts [57]–[69]. While Federickson [59] gives a
sequential algorithm that computes APSP in O(n2), we are not
aware of any parallel algorithms that achieve the same work
with lower depth. Some examples for APSP on planar undi-
rected graphs include an algorithm by Pan and Reif that runs in
O(n2 log n) work and O(log2 n) span [70], and an algorithm
by Henzinger et al. that runs in O(n7/3 log n log(nD)) work
and O(n2/3 log7/3 n log(nD)) span, where D is the sum of
the absolute values of the edge weights [57]. Let the work of
the APSP algorithm used be WAPSP and the span be SAPSP .
Complete Linkage. Finally, we consider the complete linkage
step. Let ρl be the number of rounds used by the parallel
complete linkage algorithm [22]. The span is O(ρl log n) and
the work is O(ρln

2) in the worst case. Yu et al. [22] show that
in practice, the running time of the complete linkage algorithm
is close to O(n2).
Summary. In total, TMFG takes O(n2 log n) work and
O(ρ log n) span and DBHT takes O(WAPSP + ρln

2) work
and O(SAPSP + ρ + ρl log n) span. Compared to Song et
al. [13], our algorithm has a lower span in all steps and lower
work in bubble tree construction and direction computations.
Song et al. take O(n2) work for bubble tree construction and
direction computations, while our algorithm takes O(n) work.
We show in Section VII that all of our steps are faster. The
fastest part of their DBHT code was the APSP computation,
and all other parts were up to orders of magnitude slower; we
have significantly reduced the running times of all parts of the

DBHT code, and now our bottleneck is APSP.

VII. EXPERIMENTS

Testing Environment. We perform experiments on a
c5.24xlarge machine on Amazon EC2, with 2 Intel Xeon
Platinum 8275CL (3.00GHz) CPUs for a total of 48 hyper-
threaded cores, and 192 GB of RAM. By default, we use all
cores with hyper-threading. For the C++ code tested, we use
the g++ compiler (version 7.5) with the -O3 flag, and use
ParlayLib [71] for parallelism in our code.
• PMFG-DBHT is the existing sequential PMFG and DBHT

implementation in MATLAB, which we obtained on-
line [45]. The bottleneck of PMFG-DBHT is in constructing
the PMFG. We tried implementing the same PMFG con-
struction algorithm in C++, but found it slower than the
MATLAB implementation, and so we report the MATLAB
runtime.

• SEQ-TDBHT is the state-of-art implementation of sequen-
tial TMFG and DBHT in MATLAB, which we obtained
online [45].

• PAR-TDBHT is our implementation of parallel TMFG and
DBHT in C++. We tested prefixes of size 1, 2, 5, 10, 30,
50, and 200.

• COMP and AVG are the parallel C++ complete and average
linkage implementations, respectively, by Yu et al. [22].

• K-MEANS is the scalable k-means++ [72] implementa-
tion [73] in C, parallelized using OpenMPI.

• K-MEANS-S is the parallel k-means++ implementation from
scikit-learn with a preprocessing step that computes a spec-
tral embedding, which constructs its affinity matrix using
a nearest-neighbors graph [74]. We choose the number of
nearest neighbors that gives the best clustering quality. If
the true number of clusters is c, then we project the original
data onto the c-dimensional space, which we find to be a
good heuristic for finding good clusters. We also tried a C++
implementation using Eigen [75], but found the scikit-learn
version to be faster.

Evaluation. We evaluate the clustering quality using the
Adjusted Rand Index (ARI) [11] and Adjusted Mutual Infor-
mation (AMI) [76] scores. In our experiments, AMI showed
similar trends as ARI, and so we only show the plots for ARI.
Let nij be the number of objects in the ground truth cluster i
and the cluster generated by the algorithm j, ni∗ be

∑
j nij ,

n∗j be
∑

i nij , and n be
∑

i ni∗. The ARI is computed as∑
i,j

(
nij

2

)
− [

∑
i

(
ni∗
2

)∑
j

(
n∗j
2

)
]/
(
n
2

)
1
2 [
∑

i

(
ni∗
2

)
+

∑
j

(
n∗j
2

)
]− [

∑
i

(
ni∗
2

)∑
j

(
n∗j
2

)
]/
(
n
2

) .
The ARI score is 1 for a perfect match, and its expected value
is 0 for random assignments.

When computing the ARI for the hierarchical methods, we
cut the dendrogram such that the number of resulting clusters
is the same as the number of ground truth clusters. For the k-
means methods, we set k to be equal to the number of ground
truth clusters.
Data sets. We show results on 18 data sets from the UCR
Time Series Classification Archive [77], including the three

10

TABLE II: Summary of UCR data sets used in the experiments. n
is the number of objects, and L is the length or size of the object.

ID Name n L # of classes
1 Mallat 2400 1024 8
2 UWaveGestureLibraryAll 4478 945 8
3 NonInvasiveFetalECGThorax2 3765 750 42
4 MixedShapesRegularTrain 2925 1024 5
5 MixedShapesSmallTrain 2525 1024 5
6 ECG5000 5000 140 5
7 NonInvasiveFetalECGThorax1 3765 750 42
8 StarLightCurves 9236 84 2
9 HandOutlines 1370 2709 2
10 UWaveGestureLibraryX 4478 315 8
11 CBF 930 128 3
12 InsectWingbeatSound 2200 256 11
13 UWaveGestureLibraryY 4478 315 8
14 ShapesAll 1200 512 60
15 SonyAIBORobotSurface2 980 65 2
16 FreezerSmallTrain 2878 301 2
17 Crop 19412 46 24
18 ElectricDevices 16160 96 7

10−2

10−1

100

101

102

103

104

105

1-
th

re
ad

ru
nt

im
e

(s
ec

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Dataset ID

10−2

10−1

100

101

48
-c

or
e

ru
nt

im
e

(s
ec

)

COMP

AVG

SEQ-TDBHT

PMFG-DBHT

PAR-TDBHT-10

PAR-TDBHT-1

Fig. 3: Time (seconds) of different methods on UCR data sets. The
top plot shows run times on a single thread and the bottom plot
shows run times on 48 cores with hyper-threading. PMFG-DBHT
and SEQ-TDBHT timed out for data sets 17 and 18. PMFG-DBHT
also timed out for data set 8.
largest data sets Crop, ElectricDevices, and StarLightCurves
(we removed duplicate points from these three data sets). The
data sets are summarized in Table II. Since the UCR Archive
is designed for classification tasks, not all data sets are suitable
for clustering. We choose the two largest data sets as well as 16
data sets which have ARI scores of at least 0.2 for K-MEANS.

We also collected the closing daily prices of 1614 US stocks
between Jan. 1, 2013 and Jan. 1, 2019 (1761 trading days)
using the Yahoo Finance API. We used the Industry Classifi-
cation Benchmark (ICB) to obtain ground truth clusters.

We used the Pearson correlation coefficient p for the sim-
ilarity measure and d =

√
2(1− p) for the dissimilarity

measure [78]. For normalized and zero-mean vectors, d is the
same as the squared Euclidean distance.

A. Runtime

We show the running times of all hierarchical clustering
algorithms and data sets in Figure 3 (sequential times are in the
top plot and parallel times are in the bottom plot). PAR-TDBHT-
1 is PAR-TDBHT with a prefix of size 1 and PAR-TDBHT-10 is
PAR-TDBHT with a prefix of size 10 (we chose this prefix size
for most experiments as it gives a good tradeoff between speed
and cluster quality). Since PMFG-DBHT and SEQ-TDBHT are

1 4 12 24 36 48 48h
Threads

0

5

10

15

20

25

30

35

P
A

R
-T

D
B

H
T

S
p

ee
du

p Prefix Size

1

2

5

10

30

50

200

Fig. 4: Self-relative parallel speedup vs. thread counts for PAR-
TDBHT with different prefix sizes on the Crop data set. ”48h”
indicates 48 cores with two-way hyper-threading. The speedups of
some data sets decrease when hyper-threading because there is not
enough work and the overhead of hyper-threading is high relative to
the work of the algorithm.

0 2 4 6 8
200

50
30
10

5
2
1

P
re

fix
S

iz
e

1 thread

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
runtime (sec)

200
50
30
10

5
2
1

P
re

fix
S

iz
e

48 cores with two-way hyper-threading

tmfg

apsp

bubble-tree

hierarchy

Fig. 5: Breakdown of runtime across different steps of our al-
gorithm on ECG5000. ”tmfg” corresponds to TMFG construction
(Algorithm 1); ”apsp” corresponds to the all-pairs shortest paths
computation; ”bubble-tree” corresponds to computing the direction of
bubble tree edges and assigning vertices to bubbles; and ”hierarchy”
corresponds to running the complete-linkage subroutine.

sequential, we only include it in the top plot.
We see that PMFG-DBHT and SEQ-TDBHT are both orders of

magnitude slower than all other methods. PMFG-DBHT is 458–
15586x slower than PAR-TDBHT-1 and 414–14254x slower
than PAR-TDBHT-10 on a single thread. SEQ-TDBHT is 56–
276x slower than PAR-TDBHT-1 and 50–235x slower than
PAR-TDBHT-10 on a single thread. On 48 cores with hyper-
threading, SEQ-TDBHT is 136–2483x slower than PAR-TDBHT-
1 and 226–4487x slower than PAR-TDBHT-10. We discuss
the reasoning for this speedup in the Runtime Decomposition
section below. PAR-TDBHT-1 and PAR-TDBHT-10 are slower
than AVG and COMP, which is expected because DBHT uses
complete-linkage clustering as a subroutine. However, we see
in Section VII-B that PAR-TDBHT-1 and PAR-TDBHT-10 give
significantly better clusters than AVG and COMP on most data
sets.

K-MEANS-S and K-MEANS are not included because they
do not generate a dendrogram, and one would need to run
the algorithm multiple times to obtain clusters of different
scales. On average across the data sets, one run of K-MEANS
is 1.82x faster than PAR-TDBHT-1 and 1.31x faster than PAR-
TDBHT-10 on 48 cores with hyper-threading; and one run of
K-MEANS-S is 10.33x slower than PAR-TDBHT-1 and 16.23x
slower than PAR-TDBHT-10. We used the 12-thread times for
K-MEANS-S because it became slower past 12 threads due its
parallel overheads. Though we are slower than K-MEANS, K-
MEANS is not hierarchical and also not deterministic.
Scalability with Thread Count. In Figure 4, we show the
scalability of our algorithm vs. thread count on the largest

11

Crop data set. PAR-TDBHT with a prefix size of 200 achieves a
self-relative speedup of 36.6x on 48 cores with two-way hyper-
threading. In general, a larger prefix size results in higher
scalability, because more insertions in the TMFG construction
can be processed in parallel. However, using a prefix of size
2 is actually slower than using a prefix of size 1, which
corresponds to the exact TMFG, for the following reason.
When we only have a prefix of size 1, our implementation
only needs to find the best vertex-face pair to insert using a
parallel maximum, but when the prefix size is larger than 1,
the algorithm needs to first sort all vertex-face pairs, and then
find a prefix of the sorted pairs to insert. A prefix of size
2 is small, and so there is not enough additional parallelism
to offset the overheads of sorting. In our experiments, using
a prefix of size 5 or larger gives similar or better runtimes
than using exact TMFG. Our largest self-relative speedup is
on StarLightCurves (data set 8), where PAR-TDBHT with a
prefix size of 200 achieves a speedup of 41.57x.
Scalability with Data Size. We observe that on our data
sets, the PAR-TDBHT runtimes scale with the data size n
approximately as a function of O(n2.22) on a single thread
and O(n1.79) on 48 cores with two-way hyper-threading. The
scaling for parallel runtimes is better than for the single-
threaded runtimes because we get more parallel speedups for
larger values of n.
Runtime Decomposition. We show the breakdown of runtime
across different steps of our algorithm in Figure 5 on the
ECG5000 data set (the different steps are described in the
figure caption). Sequentially, the majority of the runtime is in
the ”tmfg” and ”apsp” steps, while in parallel the majority of
the runtime is in the ”tmfg” step, especially for small prefix
sizes where TMFG construction has limited parallelism. When
the prefix size is larger, the runtime of the ”tmfg” step is
significantly shorter. Our ”bubble-tree” for TMFG is very fast
and the runtime is too small to be visible in the plot.

For comparison, SEQ-TDBHT requires 628s for ”tmfg”, 9s
for ”apsp”, 69s for ”bubble-tree”, and 1136s for ”hierarchy”
on the same data set, and thus all steps of PAR-TDBHT, even
on one thread, are faster than SEQ-TDBHT. Our ”tmfg” step is
faster because we use optimized data structures to update the
gain table that do not require looping over all faces. The ”apsp”
step is faster because we use a different graph data structure.
SEQ-TDBHT uses Johnson’s algorithm from the Boost Graph
Library, while we used the faster Dijkstra’s algorithm from
the same library. We also tried Dijkstra’s algorithm for SEQ-
TDBHT and found that in MATLAB’s Boost Graph Library,
Dijkstra’s algorithm is on average 16% slower than Johnson’s
algorithm (possibly due to having to convert the MATLAB
graph to C++ format many more times). Our ”bubble-tree” is
step is faster because we optimized it for the TMFG topology.
While this step is much slower than ”apsp” in SEQ-TDBHT,
its time becomes negligible in PAR-TDBHT. Our ”hierarchy”
step is faster because we use the optimized complete-linkage
algorithm by Yu et al. [22], whereas SEQ-TDBHT uses a less
efficient implementation. Across all data sets, our ”tmfg” step
is 15.62–9629x faster than SEQ-TDBHT and the remaining

1 2 3 4 5 6 7 8 9
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

A
R

I

10 11 12 13 14 15 16 17 18
Dataset ID

0.0

0.1

0.2

0.3

0.4

0.5

A
R

I

Prefix Size

1 2 5 10 30 50 200

Fig. 6: Clustering quality (ARI score) of PAR-TDBHT. Different
shades represent different prefix sizes.

steps are together 1278–14049x faster than SEQ-TDBHT on 48
cores with hyper-threading. On a single thread, our ”tmfg” step
is 12.19–319.56x faster than SEQ-TDBHT and the remaining
steps are together 59.42–431.17x faster than SEQ-TDBHT. In
PAR-TDBHT, TMFG and APSP take most of the execution time
when running sequentially, which means that the running time
could potentially be improved by using a more sophisticated
APSP implementation. However, in the baseline implementa-
tion [13], APSP takes only a small fraction of running time,
and the bottlenecks are in other steps. This means that our
algorithm has reduced the bottleneck of the original algorithm.

B. Clustering Quality

Prefix Size and Clustering Quality. Our prefix-based TMFG
algorithm is able to produce filtered graphs with weight very
close to, and sometimes even higher than, the sequential
TMFG and PMFG algorithms. In our experiments, our prefix-
based TMFG algorithm produces graphs with edge weight
sums that are 92.1–100.3% of the edge weight sums produced
by PMFG. If we only consider prefix sizes up to 50, then the
edge weight sums are 97.1–100.3% of the edge weight sums
produced by PMFG.

We present the ARI of using varying prefix sizes in Figure 6.
We find that PAR-TDBHT with a prefix of size greater than 1
gives similar, and sometimes even better ARI than using a
prefix of size 1 (which correponds to using the exact TMFG).
Generally, using a larger prefix size results in lower ARI, but
sometimes a larger prefix size can result in better quality as
the clusters could become less sensitive to noise. For smaller
data sets (e.g., data sets 9, 11, and 15), the ARI degradation is
larger. This is because the prefix is a larger percentage of all
edges in the filtered graph. For larger data sets (e.g., data sets
2, 6, 8, 10, 13, 17, and 18), the ARI degradation is smaller.
Hierarchical Methods. We show the clustering quality of all
of the methods and data sets in Figure 7. We see that PAR-
TDBHT-1 and PAR-TDBHT-10 often generate higher-quality
clusters than both of the other hierarchical clustering algo-
rithms, COMP and AVG. On data sets where the number of
ground truth clusters is very small, such as data sets 9, 15,
and 16, COMP and AVG have low ARI scores. This is because
COMP and AVG are sensitive to agglomeration decisions, which
only use local information, and when these decisions are

12

1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0
A

R
I

10 11 12 13 14 15 16 17 18
Dataset ID

0.0
0.1
0.2
0.3
0.4
0.5

A
R

I

PAR-TDBHT-1

PAR-TDBHT-10

PMFG

COMP

AVG

K-MEANS

K-MEANS-S

Fig. 7: Clustering quality of different methods on UCR data sets.
A few bars for COMP and AVG are hard to observe because their
ARIs are close to 0. PMFG timed out for data sets 8, 17, and 18.
The error bar on K-MEANS shows the range of ARI scores obtained
when running it with different numbers of threads.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Dataset ID

0.0
0.2
0.4
0.6
0.8
1.0

A
R

I

0 1000 2000 3000 4000 5000 6000
number of neighbors β

0.0

0.2

0.4

0.6

0.8

A
R

I

Datasets ID
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Fig. 8: ARI of K-MEANS-S with different number of nearest
neighbors on each data set. The top plot shows the distribution of
ARI scores for different values of β. The bottom plot shows the ARI
scores vs. the value of β, demonstrating the oscillating behavior.

wrong, they lead to poor ARI scores. On the other hand,
DBHT’s topological constraints (bubble and converging bub-
ble) uses global information, which makes them less sensitive
to wrong agglomeration decisions. DBHT can also suffer from
the sensitivity of agglomeration decisions when the global
information is not captured correctly (e.g., in data set 9).
k-Means. PAR-TDBHT-1 and PAR-TDBHT-10 generate clusters
of similar quality to K-MEANS across all data sets. However,
K-MEANS does not produce a dendrogram. To find clusters at
different scales, we would have to run the algorithm multiple
times, which would result in longer running times.

Using the spectral embedding preprocessing step boosts the
K-MEANS method to achieve the best quality on most data sets.
However, we show in Figure 8 that the quality of K-MEANS-S
is highly sensitive to the choice of parameter β (the number
of nearest neighbors) in many data sets. On the top plot of
Figure 8, we see that for most data sets, using different values
of β gives a wide range of ARI scores. On the bottom plot,
we see that the ARI oscillates with different β for many data
sets, and that the best β is very different for each data set.
As a result, this parameter is hard to choose apriori. We also
tried PAR-TDBHT on the embedded data sets, and found the
ARI scores to be similar to those of the non-embedded data
sets. For data sets 8, 17, and 18, we run out of memory when
running spectral embedding with β values of 6600, 3000, and
4000 respectively. For all other data sets, we tested β ranging
from 10 to n.
Example: Clustering Stocks. Figure 9 shows the clusters
produced by PAR-TDBHT with a prefix size of 30 on the
US stock data set. We preprocess the daily stock prices by

1 2 3 4 5 6 7 8 9 10 11
PAR-TDBHT Clusters

0

50

100

150

200

C
ou

nt

Industry Code
TECHNOLOGY

INDUSTRIALS

FINANCIALS

HEALTH CARE

CONSUMER DISCRETIONARY

REAL ESTATE

UTILITIES

CONSUMER STAPLES

BASIC MATERIALS

ENERGY

TELECOMMUNICATIONS

Fig. 9: Clustering result on the US stock data set compared to ground
truth using PAR-TDBHT with a prefix of size 30.

computing the detrended daily log-return using the method by
Musmeci et al. [6]. We then compute a spectral embedding
of the normalized detrended daily log-returns. Finally, we
compute the Pearson correlation of the embedded data and
run PAR-TDBHT on the correlation matrix. We see that PAR-
TDBHT is able to find structure and patterns in the stock
data. It accurately clusters the “financial” stocks, “health care”
stocks, and “consumer discretionary” stocks. There is also a
cluster with mostly “technology” stocks, and a cluster with
mostly “industrials” stocks. We also see that almost all of
the “energy”, “utilities”, “consumer staples”, and “real estate”
stocks are clustered together. Though for some clusters, the
companies in the cluster do not come from a single industry in
the ICB classification, they have commonalities between them.
For example, cluster 7 contains both consumer discretionary
and consumer staple stocks—many companies in the consumer
discretionary industry are restaurants and wholesale, and many
companies in the consumer staple industry are food and drink
companies, which are related. In practice, stock clustering can
be used in portfolio optimization and risk hedging [6], [79].

The ARI score of this clustering is 0.36. In comparison, the
ARI score of the exact TMFG clustering is 0.28.
Time and Quality Trade-off. PAR-TDBHT provides a good
trade-off between runtime and clustering quality. It is faster
than the K-MEANS-S method, and is able to produce clusters
of similar quality. Although PAR-TDBHT is slower than AVG
and COMP, its clustering quality is more stable and in most
cases better. Furthermore, it is able to finish within 30 seconds
for all of the data sets.

VIII. CONCLUSION

We designed new parallel algorithms for constructing TMFGs
and DBHTs. We showed that our algorithms are usually able
to produce better clusters than complete and average linkage
clustering. We believe that our implementations will be a
useful addition to the toolkit of data scientists who need to
perform clustering efficiently and accurately.

ACKNOWLEDGEMENTS

This research is supported by DOE Early Career Award #DE-
SC0018947, NSF CAREER Award #CCF-1845763, Google
Faculty Research Award, Google Research Scholar Award,
FinTech@CSAIL Initiative, DARPA SDH Award #HR0011-
18-3-0007, and Applications Driving Architectures (ADA)
Research Center, a JUMP Center co-sponsored by SRC and
DARPA.

13

REFERENCES

[1] J. Ruan, A. K. Dean, and W. Zhang, BMC Systems Biology, vol. 4, no. 1,
p. 8, 2010.

[2] R. N. Mantegna, “Hierarchical structure in financial markets,” The
European Physical Journal B - Condensed Matter and Complex Systems,
vol. 11, no. 1, pp. 193–197, 1999.

[3] M. Tumminello, C. Coronnello, F. Lillo, S. Micciche, and R. Mantegna,
“Spanning trees and bootstrap reliability estimation in correlation-based
networks.” I. J. Bifurcation and Chaos, vol. 17, pp. 2319–2329, 07 2007.

[4] M. Tumminello, T. Aste, T. Di Matteo, and R. Mantegna, “A tool for
filtering information in complex systems,” PNAS, vol. 102, pp. 10 421–
10 246, 08 2005.

[5] G. P. Massara, T. di Matteo, and T. Aste, “Network filtering for big data:
Triangulated maximally filtered graph,” J. Complex Networks, vol. 5, pp.
161–178, 2017.

[6] N. Musmeci, T. Aste, and T. Di Matteo, “Relation between financial
market structure and the real economy: comparison between clustering
methods,” PloS One, vol. 10, no. 3, p. e0116201, 2015.

[7] G.-J. Wang, C. Xie, and S. Chen, “Multiscale correlation networks
analysis of the us stock market: a wavelet analysis,” Journal of Economic
Interaction and Coordination, vol. 12, no. 3, pp. 561–594, 2017.

[8] P. T.-W. Yen and S. A. Cheong, “Using topological data analysis (tda)
and persistent homology to analyze the stock markets in singapore and
taiwan,” Frontiers in Physics, p. 20, 2021.

[9] W.-M. Song and B. Zhang, “Multiscale embedded gene co-expression
network analysis,” PLoS Computational Biology, vol. 11, no. 11, p.
e1004574, 2015.

[10] M. J. Burton et al., “Pathogenesis of progressive scarring trachoma in
ethiopia and tanzania and its implications for disease control: two cohort
studies,” PLoS Neglected Tropical Diseases, vol. 9, no. 5, p. e0003763,
2015.

[11] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classifica-
tion, vol. 2, no. 1, pp. 193–218, 1985.

[12] J. Giffin, “Graph theoretic techniques for facilities layout,” 1984.
[13] W.-M. Song, T. Di Matteo, and T. Aste, “Hierarchical information

clustering by means of topologically embedded graphs,” PloS One,
vol. 7, p. e31929, 03 2012.

[14] W.-M. Song, T. Di Matteo, and T. Aste, “Nested hierarchies in planar
graphs,” Discrete Applied Mathematics, vol. 159, no. 17, pp. 2135–2146,
2011.

[15] J. Jaja, Introduction to Parallel Algorithms, 1992.
[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms (4. ed.). MIT Press, 2022.
[17] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded com-

putations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, Sep.
1999.

[18] U. Vishkin, “Thinking in parallel: Some basic data-parallel algorithms
and techniques,” 2010.

[19] S. Rajasekaran and J. H. Reif, “Optimal and sublogarithmic time
randomized parallel sorting algorithms,” SIAM J. Comput., vol. 18, no. 3,
pp. 594–607, 1989.

[20] J. Shun, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons, “Reducing
contention through priority updates,” in ACM Symposium on Parallelism
in Algorithms and Architectures, 2013, pp. 152–163.

[21] D. Müllner, “fastcluster: Fast hierarchical, agglomerative clustering
routines for R and Python,” Journal of Statistical Software, vol. 53,
no. 9, pp. 1–18, 2013.

[22] S. Yu, Y. Wang, Y. Gu, L. Dhulipala, and J. Shun, “ParChain: A frame-
work for parallel hierarchical agglomerative clustering using nearest-
neighbor chain,” Proc. VLDB Endow., vol. 15, no. 2, p. 285–298, Oct
2021.

[23] Y. Wang, S. Yu, Y. Gu, and J. Shun, “Fast parallel algorithms for
euclidean minimum spanning tree and hierarchical spatial clustering,”
in SIGMOD, 2021, pp. 1982–1995.

[24] L. Dhulipala, D. Eisenstat, J. Lacki, V. S. Mirrokni, and J. Shi,
“Hierarchical agglomerative graph clustering in nearly-linear time,” in
ICML, 2021, pp. 2676–2686.

[25] S. Rajasekaran, “Efficient parallel hierarchical clustering algorithms,”
IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 6,
pp. 497–502, 2005.

[26] C. F. Olson, “Parallel algorithms for hierarchical clustering,” Parallel
Computing, vol. 21, no. 8, pp. 1313–1325, 1995.

[27] W. Hendrix, M. M. A. Patwary, A. Agrawal, W.-k. Liao, and A. Choud-
hary, “Parallel hierarchical clustering on shared memory platforms,” in
International Conference on High Performance Computing, 2012, pp.
1–9.

[28] E. Dahlhaus, “Parallel algorithms for hierarchical clustering and appli-
cations to split decomposition and parity graph recognition,” Journal of
Algorithms, vol. 36, no. 2, pp. 205–240, 2000.

[29] M. Dash, S. Petrutiu, and P. Scheuermann, “Efficient parallel hierarchical
clustering,” in European Conference on Parallel Processing, 2004, pp.
363–371.

[30] Q. Mao, W. Zheng, L. Wang, Y. Cai, V. Mai, and Y. Sun, “Parallel
hierarchical clustering in linearithmic time for large-scale sequence
analysis,” in IEEE International Conference on Data Mining, 2015, pp.
310–319.

[31] R. Campello, D. Moulavi, A. Zimek, and J. Sander, “Hierarchical
density estimates for data clustering, visualization, and outlier detection,”
TKDD, pp. 5:1–5:51, 2015.

[32] V. Cohen-Addad, V. Kanade, F. Mallmann-Trenn, and C. Mathieu,
“Hierarchical clustering: Objective functions and algorithms,” Journal
of the ACM, vol. 66, no. 4, pp. 1–42, 2019.

[33] B. Wang, I. Rahal, and A. Dong, “Parallel hierarchical clustering using
weighted confidence affinity,” International Journal of Data Mining,
Modelling and Management, vol. 3, no. 2, pp. 110–129, 2011.

[34] S. Lattanzi, T. Lavastida, K. Lu, and B. Moseley, “A framework for
parallelizing hierarchical clustering methods,” in Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases,
2020, pp. 73–89.

[35] P. A. Kataki, M. R. Cappelle, L. R. Foulds, and H. J. Longo, “A new
algorithm for the maximum-weight planar subgraph problem,” Anais
do LII Simpósio Brasileiro de Pesquisa Operacional, João Pessoa-PB,
2020.

[36] I. H. Osman, B. Al-Ayoubi, and M. Barake, “A greedy random adaptive
search procedure for the weighted maximal planar graph problem,”
Computers & Industrial Engineering, vol. 45, no. 4, pp. 635–651, 2003.

[37] M. E. Dyer, L. R. Foulds, and A. M. Frieze, “Analysis of heuristics
for finding a maximum weight planar subgraph,” European Journal of
Operational Research, vol. 20, no. 1, pp. 102–114, 1985.

[38] R. Cimikowski, “An analysis of some heuristics for the maximum planar
subgraph problem,” in ACM-SIAM Symposium on Discrete Algorithms,
1995, p. 322–331.

[39] P. Eades, L. Foulds, and J. Giffin, “An efficient heuristic for identifying
a maximum weight planar subgraph,” in Combinatorial Mathematics IX,
1982, pp. 239–251.

[40] Z. Ma, Z. Kang, G. Luo, L. Tian, and W. Chen, “Towards clustering-
friendly representations: Subspace clustering via graph filtering,” in ACM
MM, 2020, pp. 3081–3089.

[41] N. Tremblay, G. Puy, P. Borgnat, R. Gribonval, and P. Vandergheynst,
“Accelerated spectral clustering using graph filtering of random signals,”
in ICASSP, 2016, pp. 4094–4098.

[42] T. Jebara and V. Shchogolev, “B-matching for spectral clustering,” in
European Conference on Machine Learning, 2006, pp. 679–686.

[43] T. Jebara, J. Wang, and S.-F. Chang, “Graph construction and b-matching
for semi-supervised learning,” in Proceedings of the International Con-
ference on Machine Learning, 2009, pp. 441–448.

[44] Y. Emek, S. Kutten, M. Shalom, and S. Zaks, “Hierarchical b-matching,”
in International Conference on Current Trends in Theory and Practice
of Informatics, 2021, pp. 189–202.

[45] T. Aste, “DBHT,” 2022, [MATLAB Central File Exchange]https://ww
w.mathworks.com/matlabcentral/fileexchange/46750-dbht.

[46] G. E. Blelloch and B. M. Maggs, “Parallel algorithms,” in The Computer
Science and Engineering Handbook, 1997, pp. 277–315.

[47] U. Meyer and P. Sanders, “∆-stepping: a parallelizable shortest path
algorithm,” Journal of Algorithms, vol. 49, no. 1, pp. 114–152, 2003.

[48] X. Dong, Y. Gu, Y. Sun, and Y. Zhang, “Efficient stepping algorithms
and implementations for parallel shortest paths,” in ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2021, p. 184–197.

[49] L. Dhulipala, G. Blelloch, and J. Shun, “Julienne: A framework for
parallel graph algorithms using work-efficient bucketing,” in ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA), 2017.

[50] P. N. Klein and S. Subramanian, “A randomized parallel algorithm for
single-source shortest paths,” J. Algorithms, vol. 25, no. 2, Nov. 1997.

[51] E. Cohen, “Polylog-time and near-linear work approximation scheme
for undirected shortest paths,” J. ACM, vol. 47, no. 1, Jan. 2000.

https://www.mathworks.com/matlabcentral/fileexchange/46750-dbht
https://www.mathworks.com/matlabcentral/fileexchange/46750-dbht

14

[52] B. Sinha, B. Bhattacharya, S. Ghose, and P. Srimani, “A parallel
algorithm to compute the shortest paths and diameter of a graph and
its VLSI implementation,” IEEE Transactions on Computers, vol. C-35,
no. 11, nov. 1986.

[53] R. Seidel, “On the all-pairs-shortest-path problem,” in ACM Symposium
on Theory of Computing, 1992.

[54] M. Papaefthymiou and J. Rodrigue, “Implementing parallel shortest-
paths algorithms,” in DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 1994.

[55] K. Madduri, D. A. Bader, J. W. Berry, and J. R. Crobak, “An exper-
imental study of a parallel shortest path algorithm for solving large-
scale graph instances,” in Algorithms Engineering and Experiments
(ALENEX), 2007, pp. 23–35.

[56] A. Karczmarz and P. Sankowski, “A deterministic parallel apsp algorithm
and its applications,” in ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 255–272.

[57] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian, “Faster shortest-
path algorithms for planar graphs,” Journal of Computer and System
Sciences, vol. 55, no. 1, pp. 3–23, 1997.

[58] G. E. Pantziou, P. G. Spirakis, and C. D. Zaroliagis, “Efficient parallel
algorithms for shortest paths in planar graphs,” in Scandinavian Work-
shop on Algorithm Theory, 1990, pp. 288–300.

[59] G. N. Federickson, “Fast algorithms for shortest paths in planar graphs,
with applications,” SIAM Journal on Computing, vol. 16, no. 6, pp.
1004–1022, 1987.

[60] J. L. Träff and C. D. Zaroliagis, “A simple parallel algorithm for the
single-source shortest path problem on planar digraphs,” in International
Workshop on Parallel Algorithms for Irregularly Structured Problems,
1996, pp. 183–194.

[61] P. Klein and S. Subramanian, “A linear-processor polylog-time algorithm
for shortest paths in planar graphs,” in IEEE Symposium on Foundations
of Computer Science, 1993, pp. 259–270.

[62] D. Z. Chen and J. Xu, “Shortest path queries in planar graphs,” in ACM
Symposium on Theory of Computing, 2000, pp. 469–478.

[63] H. N. Djidjev, G. E. Pantziou, and C. D. Zaroliagis, “Computing shortest
paths and distances in planar graphs,” in International Colloquium on
Automata, Languages, and Programming, 1991, pp. 327–338.

[64] H. N. Djidjev, “Efficient algorithms for shortest path queries in planar
digraphs,” in International Workshop on Graph-Theoretic Concepts in
Computer Science, 1996, pp. 151–165.

[65] J. Fakcharoenphol and S. Rao, “Planar graphs, negative weight edges,
shortest paths, and near linear time,” Journal of Computer and System
Sciences, vol. 72, no. 5, pp. 868–889, 2006.

[66] P. Klein, S. Rao, M. Rauch, and S. Subramanian, “Faster shortest-
path algorithms for planar graphs,” in ACM Symposium on Theory of
Computing, 1994, pp. 27–37.

[67] P. N. Klein, S. Mozes, and O. Weimann, “Shortest paths in directed
planar graphs with negative lengths: A linear-space O(n log2 n)-time
algorithm,” ACM Trans. Algorithms, vol. 6, no. 2, apr 2010.

[68] S. Mozes and C. Wulff-Nilsen, “Shortest paths in planar graphs with
real lengths in O(n log2 n/ log) time,” in European Symposium on
Algorithms, 2010, pp. 206–217.

[69] P. Gawrychowski, S. Mozes, O. Weimann, and C. Wulff-Nilsen, “Better
tradeoffs for exact distance oracles in planar graphs,” in ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 515–529.

[70] V. Pan and J. Reif, “Fast and efficient solution of path algebra problems,”
Journal of Computer and System Sciences, vol. 38, no. 3, pp. 494–510,
1989.

[71] G. E. Blelloch, D. Anderson, and L. Dhulipala, “ParlayLib-a toolkit
for parallel algorithms on shared-memory multicore machines,” in ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA),
2020, pp. 507–509.

[72] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii,
“Scalable k-means++,” Proc. VLDB Endow., vol. 5, no. 7, p. 622–633,
mar 2012.

[73] G. Thompson, “mpi-scalablekmeanspp,” 2018, https://github.com/gzt/m
pi-scalablekmeanspp.

[74] M. Lucińska and S. T. Wierzchoń, “Spectral clustering based on k-
nearest neighbor graph,” in IFIP CISIM, 2012, pp. 254–265.

[75] G. Guennebaud, B. Jacob et al., “Eigen,” 2010, http://eigen.tuxfamily.
org.

[76] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correc-
tion for chance,” J. Mach. Learn. Res., vol. 11, p. 2837–2854, dec 2010.

[77] H. A. Dau et al., “The UCR time series classification archive,” October
2018, https://www.cs.ucr.edu/∼eamonn/time series data 2018/.

[78] G. Marti, F. Nielsen, M. Bińkowski, and P. Donnat, “A review of two
decades of correlations, hierarchies, networks and clustering in financial
markets,” Progress in Information Geometry, pp. 245–274, 2021.

[79] V. Tola, F. Lillo, M. Gallegati, and R. N. Mantegna, “Cluster analysis
for portfolio optimization,” Journal of Economic Dynamics and Control,
vol. 32, no. 1, pp. 235–258, 2008.

https://github.com/gzt/mpi-scalablekmeanspp
https://github.com/gzt/mpi-scalablekmeanspp
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

	Introduction
	Background
	Related Work
	Parallel TMFG
	Parallel DBHT for TMFG
	Bubble Tree for TMFG
	Directing Bubble Tree Edges
	Assigning Vertices
	Complete Linkage

	Analysis
	Experiments
	Runtime
	Clustering Quality

	Conclusion
	References

