
Parallel Five-cycle Counting Algorithms

JESSICA SHI, LOUISA RUIXUE HUANG, and JULIAN SHUN, MIT CSAIL, USA

Counting the frequency of subgraphs in large networks is a classic research question that reveals the underly-

ing substructures of these networks for important applications. However, subgraph counting is a challenging

problem, even for subgraph sizes as small as five, due to the combinatorial explosion in the number of possible

occurrences. This article focuses on the five-cycle, which is an important special case of five-vertex subgraph

counting and one of the most difficult to count efficiently.

We design two new parallel five-cycle counting algorithms and prove that they are work efficient and

achieve polylogarithmic span. Both algorithms are based on computing low out-degree orientations, which

enables the efficient computation of directed two-paths and three-paths, and the algorithms differ in the

ways in which they use this orientation to eliminate double-counting. Additionally, we present new paral-

lel algorithms for obtaining unbiased estimates of five-cycle counts using graph sparsification. We develop

fast multicore implementations of the algorithms and propose a work scheduling optimization to improve

their performance. Our experiments on a variety of real-world graphs using a 36-core machine with two-way

hyper-threading show that our best exact parallel algorithm achieves 10–46× self-relative speedup, outper-

forms our serial benchmarks by 10–32×, and outperforms the previous state-of-the-art serial algorithm by

up to 818×. Our best approximate algorithm, for a reasonable probability parameter, achieves up to 20× self-

relative speedup and is able to approximate five-cycle counts 9–189× faster than our best exact algorithm,

with between 0.52% and 11.77% error.

CCS Concepts: • Theory of computation→ Shared memory algorithms; Graph algorithms analysis;

• Computing methodologies→ Shared memory algorithms;

Additional Key Words and Phrases: Cycle counting, parallel algorithms, graph algorithms

ACM Reference format:

Jessica Shi, Louisa Ruixue Huang, and Julian Shun. 2022. Parallel Five-cycle Counting Algorithms. J. Exp.

Algorithmics 27, 4, Article 4.1 (October 2022), 23 pages.

https://doi.org/10.1145/3556541

1 INTRODUCTION

Subgraph or graphlet counting is a long standing research topic in graph processing with rich
applications in bioinformatics, social network analysis, and network model evaluation [13, 20, 21,
25]. While there has been significant recent work on counting subgraphs of size three or four
[2, 18, 19], counting subgraphs of size five or more is a difficult task even on the most modern

This research was supported by NSF Graduate Research Fellowship #1122374, DOE Early Career Award #DE-SC0018947,

NSF CAREER Award #CCF-1845763, Google Faculty Research Award, Google Research Scholar Award, CSAIL CAP Ini-

tiative, DARPA SDH Award #HR0011-18-3-0007, and Applications Driving Architectures (ADA) Research Center, a JUMP

Center co-sponsored by SRC and DARPA.

Authors address: J. Shi, 32 Vassar Street, 32-G728, Cambridge, MA 02139; email: jeshi@mit.edu; L. R. Huang, 32 Vassar

Street, 32-G728, Cambridge, MA 02139; email: louisah8191@gmail.com; J. Shun, 32 Vassar Street, 32-G736, Cambridge, MA

02139; email: jshun@mit.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).

1084-6654/2022/10-ART4.1

https://doi.org/10.1145/3556541

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

https://orcid.org/0000-0003-4485-5492
https://orcid.org/0000-0003-1951-1372
https://orcid.org/0000-0001-6163-6625
https://doi.org/10.1145/3556541
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3556541

4.1:2 J. Shi et al.

hardware due to the massive number of such subgraphs in large graphs. As the subgraph sizes
grow, the number of possible subgraphs grows exponentially.

We consider specifically the efficient counting of five-cycles. This pattern is particularly impor-
tant for fraud detection [37]. Compared to other connected five-vertex patterns, five-cycles are
much more difficult to count, because they are the only such pattern that requires first counting
all directed three-paths. Notably, the Efficient Subgraph Counting Algorithmic PackagE (ES-

CAPE), a software package by Pinar et al. that serially counts all five-vertex subgraphs in large
graphs [36], spends between 25% and 58% of the total runtime on counting five-cycles alone based
on our measurement.

While there has been prior work on developing and implementing serial five-cycle counting
algorithms [24, 28, 36], there has been no prior work on designing and implementing theoretically
efficient and scalable parallel five-cycle counting algorithms. We focus on designing multicore so-
lutions, as nearly all publicly available graphs (which have up to hundreds of billions of edges [33])
can fit on a commodity multicore machine [16, 17].

We present two new parallel five-cycle counting algorithms that not only have strong theoretical
guarantees but are also demonstrably fast in practice. These algorithms are based on two different
serial algorithms, namely by Kowalik [28] and from ESCAPE by Pinar et al. [36]. Kowalik studied
k-cycle counting in graphs for k ≤ 6 and proposed a five-cycle counting algorithm that runs in
O (md2) = O (mα2) time for d-degenerate graphs [28], wherem is the number of edges in the graph
and α is the arboricity of the graph.1 The ESCAPE implementation contains a five-cycle counting
algorithm that, with an important modification that we make, achieves the same asymptotic com-
plexity of O (mα2) [36]. The arboricity of a graph is a measure of its sparsity, and having running
times parameterized by α is desirable, since most real-world graphs have low arboricity [16].

The main procedure in both algorithms and the essential modification to the ESCAPE algo-
rithm is to first compute an appropriate arboricity orientation of the graph in parallel, where the
vertices’ out-degrees are upper bounded byO (α). This orientation then enables the efficient count-
ing of directed two-paths and three-paths, which are then appropriately aggregated to form five-
cycles. Notably, the counting and aggregation steps can each be efficiently parallelized. The two
algorithms differ fundamentally in the ways in which they use the orientations of these path sub-
structures to eliminate double-counting. We prove theoretical bounds that show that both of our
algorithms match the work of the best sequential algorithms, taking O (mα2) work and O (log2 n)
span with high probability (w.h.p.).2 Additionally, we present two approximate five-cycle count-
ing algorithms based on counting five-cycles in a sparsified graph, and we prove that both ap-
proximation algorithms give unbiased estimates on the global five-cycle count. We show that both
algorithms takeO (pmα2+m) expected work andO (log2 n) span w.h.p. for a sampling probabilityp.

We present optimized implementations of our algorithms, which use thread-local data struc-
tures, fast resetting of arrays, and a new work scheduling strategy to improve load balancing.
We provide a comprehensive experimental evaluation of our five-cycle counting algorithms. On
a 36-core machine with two-way hyperthreading, our best exact parallel algorithm achieves be-
tween 10× and 46× self-relative speedup and between 162× and 818× speedups over the fastest
prior serial five-cycle counting implementation, which is from ESCAPE [36]. We also implement
our own serial versions of the two exact algorithms, which are 7–38.91× faster than ESCAPE’s
algorithm due to improved theoretical work complexities. Our best parallel algorithm achieves
between 10× and 32× speedups over our best serial algorithm. Moreover, we show the tradeoffs

1A graph is d-degenerate if every subgraph has a vertex of degree at most d , and a graph has arboricity α if the minimum

number of spanning forests needed to cover all of the edges of the graph is α .
2With high probability (w.h.p.) means that the probability is at least 1−1/nc for some constant c > 0 for an input of size n.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

Parallel Five-cycle Counting Algorithms 4.1:3

between error and running time of our approximate five-cycle counting algorithms. In particular,
we are able to approximate five-cycle counts with 11.77% error with a 9.10–188.94× speedup over
exact five-cycle counting on the same graphs. Our parallel five-cycle counting code is available at
https://github.com/ParAlg/gbbs/tree/master/benchmarks/CycleCounting.

This is an extended version of our article appearing in the International Symposium on Ex-

perimental Algorithms [26]. This extended version includes new contributions regarding paral-
lel approximate five-cycle counting. Specifically, we introduce two approximate five-cycle count-
ing algorithms based on graph sparsification, and we prove that both algorithms give unbiased
estimates on the global five-cycle count. We also prove bounds on the variance, obtain a (ε,δ)-
estimator of the global five-cycle count, and provide a comprehensive evaluation of our implemen-
tations, demonstrating significant speedups over exact five-cycle counting while maintaining good
accuracy.

2 BACKGROUND AND RELATED WORK

The difficulty of cycle counting has attracted considerable research effort over the years. Counting
the number of k-cycles with k as an input parameter is NP-complete, since it includes the problem
of finding a Hamiltonian cycle. However, efficient algorithms have been developed to count k-
cycles for k ≤ 5. Notably, Alon et al. [3] developed algorithms for efficiently finding a k-cycle
for general k , but these translate to efficient k-cycle counting algorithms only for planar graphs
where k ≤ 5. For k = 3, 4, Chiba and Nishizeki [14] proposed algorithms that take O (mα) time.
More recently, Bera et al. [6] analyzed the subgraph counting problem for k = 5 and gave an
algorithm that takesO (mα3) time, and the five-cycle counting part of the algorithm takesO (mα3)
time. However, it is shown in the same study that this result is unlikely to be extended to k > 5,
due to the Triangle Detection Conjecture, which puts a lower bound of Ω(m1+γ) time with γ > 0
on any triangle detection algorithm on an input graph with m edges [1]. If the conjecture holds,
then a reduction of the triangle detection problem to the six-cycle counting problem implies that
there cannot be a o(f (α)m1+γ) time algorithm for six-cycle counting.

Until recently, because of the high computational power required, exact five-vertex subgraph
counting was often deemed impractical on graphs with more than a few million edges. Most effort
has focused on obtaining approximate counts or approximate graphlet frequency distributions [9,
38, 48]. Hocevar and Demsar [24] developed Orca to count subgraphs of up to size five and tested
them on graphs with tens of thousands of vertices. Pinar et al. [36] developed ESCAPE, which is the
first package that aims to perform exact counting of all five-vertex subgraphs on moderately large
graphs. However, ESCAPE does not exploit parallelism and is not optimized for cycle-counting.
Kowalik [28] gave a serial algorithm for five-cycle counting that takes O (mα2), the best known
theoretical bound for five-cycle counting, but does not provide an implementation. In Section 4,
we describe Kowalik’s and Pinar et al.’s five-cycle counting algorithms in more detail.

While there has not been prior work on parallel five-cycle counting algorithms, parallel cycle
counting algorithms for smaller cycles have been studied over the years. Specifically, for the case
of three-cycles, or triangles, there has been a significant amount of attention over the past two
decades (e.g., References [7, 35, 42, 45], among many others).

Moreover, fast sequential algorithms for four-cycles have been studied extensively. For bipartite
graphs, four-cycles, also known as butterflies, are the smallest non-trivial subgraphs. Chiba and
Nishizeki’s work [14] described a four-cycle counting algorithm that takes O (mα) work by using
a degree ordering of the graph. Subsequently, butterfly counting algorithms using degree ordering
and other orderings have also been designed [40, 41, 46, 49, 50].

There have been fewer studies on parallel four-cycle counting algorithms. The Parametrized
Graphlet Decomposition package by Ahmed et al. [2] provides efficient parallel implementations

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

https://github.com/ParAlg/gbbs/tree/master/benchmarks/CycleCounting

4.1:4 J. Shi et al.

of exact counting of subgraphs of up to size four, including four-cycles. Wang et al. [46] im-
plement a distributed algorithm using MPI that partitions the vertices across processors, where
each processor sequentially counts the number of butterflies for vertices in its partition. Shi and
Shun [44] presented a framework for parallel butterfly counting with several algorithms achiev-
ing O (mα) expected work and O (logm) span with high probability. Wang et al. [47] describe
a similar parallel butterfly counting algorithm, with an additional cache optimization in their
implementation.

3 PRELIMINARIES

Graph Notation. The input to our algorithms is a simple, undirected, unweighted graphG (V ,E).
The number of vertices is |V | = n and the number of edges is |E | = m. Vertices are labeled
0, 1, . . . ,n − 1. In our analysis, we assume that m = Ω(n). For a vertex v , we use N (v) to de-
note the neighbors of v and deg(v) to denote the degree of v. When discussing directed graphs,
N→ (v) denotes v’s out-neighbors and N← (v) denote the in-neighbors.

Furthermore, we use Nv (u) (N→v (u) for directed graphs) to represent the neighbors of vertex
u that are after v given a non-increasing degree ordering. When vertices are relabeled by non-
increasing degree order, we can easily obtain Nv (u) = N (u) ∩ {w ∈ V | w > v}.

The arboricity of a graph G, denoted α (G), is defined as the minimum number of spanning
forests needed to cover the graph. α (G) is known to be upper bounded by O (

√
m). Due to

the fact that graphs modeling the real world tend to be sparse, α (G) tends to be small for
graphs that we are interested in processing. It is also known that

∑
(u,v)∈E min(deg(u), deg(v)) =

O (mα (G)) [14]. Closely related to arboricity is the degeneracy of a graph G, d (G), or the small-
est k such that every subgraph of G contains a vertex of degree at most k . It is known that
d (G) = Θ(α (G)) [34]. As such, our asymptotic bounds can use α (G) or d (G) interchange-
ably. When it is unambiguous, we write the arboricity and degeneracy of a graph as α and d ,
respectively.

Graph Format. For the theoretical analysis, we assume the graphs are stored in hash tables in
the adjacency list format to obtain constant time edge queries. In our implementations, graphs
are stored in Compressed Sparse Row (CSR) format, which is more compact and has better
cache locality.

The Work-Span Model. To analyze the complexity of our parallel algorithms, we use the work-
span model [27] with arbitrary forking. The workW of an algorithm is the total number of oper-
ations, and the span S of an algorithm is the longest dependency path. The work of a sequential
algorithm is the same as its time. A work-efficient parallel algorithm has a work complexity match-
ing the time of the best sequential algorithm for the problem. For an algorithm with workW and
span S , the running time on P processors is upper bounded byW /P + S [12].

Parallel Primitives. We use the following parallel primitives. A parallel for-loop (parfor) with
n iterations that can be executed in parallel launches all of its iterations in O (n) work and O (1)
span, assuming no dependencies between iterations. Prefix sum takes as input a sequence A of
size n, an identity ε , and an associative binary operator ⊕, and returns a sequence B where B[i] =⊕

j<i A[i] ⊕ ε for 0 ≤ i < n. Filter takes as input a sequence A of size n and a predicate function

f , and returns a sequence B of all a ∈ A such that f (a) is true, preserving the order of elements
in A. Prefix sum and filter can be implemented to take O (n) work and O (logn) span [27]. Parallel

integer sort sorts n integers in the range [0,O (n)] in O (n) work and O (logn) span w.h.p. [39]. We
also use parallel hash tables, which support a batch of n instructions in O (n) work and O (log∗ n)
span w.h.p. [22]. We assume atomic adds take O (1) work and span.

Estimators. We define a (ε,δ)-estimator of a numberX , to be a random variableY , where Pr [|Y −
X | ≥ εX] ≤ δ for any ε,δ ∈ [0, 1].

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

Parallel Five-cycle Counting Algorithms 4.1:5

4 FIVE-CYCLE COUNTING ALGORITHMS

In this section, we present two new parallel algorithms for counting five-cycles. The first algorithm
is based on the serial algorithm by Kowalik [28]. Kowalik shows that the algorithm achieves a time
complexity of O (m) on planar graphs, in which α = O (1), or O (md2) = O (mα2) on d-degenerate
graphs. The second algorithm is based on the serial algorithm by Pinar et al. in their ESCAPE
framework for counting all 5-vertex subgraphs in a graph [36]. We show that both of the parallel
algorithms that we design are provably work efficient with polylogarithmic span.

Additionally, we present two techniques that, combined with our parallel exact five-cycle count-
ing algorithms, allow us to generate unbiased estimates of the global five-cycle count in parallel
using graph sparsification.

4.1 Preprocessing: Graph Orientation

Similarly to many previous subgraph counting algorithms [6, 43], a key step in our algorithms is
a preprocessing step that orients the graphG, creating a directed acyclic graphG→ where the out-
degrees of vertices are upper bounded. We use l-orientation to refer to an orientation where each
vertex’s out-degree is bounded by l . Furthermore, orientations in our context are always induced
from a total ordering of the vertices, where directed edges point from vertices lower in the ordering
to vertices higher in the ordering. As such, the problem of orienting the graph is reduced to the
problem of finding an appropriate ordering of the vertices.

Degree Orientation. The core idea of orienting an undirected input graph based on ordering the
vertices by non-increasing degree to perform subgraph counting or listing is attributed to Chiba
and Nishizeki [14]. Using degree ordering, they proposed efficient triangle and four-cycle counting
algorithms based on this key result:

Lemma 4.1 ([14]). For a graph G = (V ,E),
∑

(u,v)∈E min{deg(u), deg(v)} ≤ 2αm.

This result allows us to bound the number of wedges in graph G by 2mα , where a wedge is
defined as a triple (v,w,u) where (v,w), (w,u) ∈ E, deg(v) ≥ deg(w) and deg(v) ≥ deg(u). In
Kowalik’s five-cycle algorithm, wedges are the building blocks of five-cycles, and we can show that
O (α) work is done for each wedge. Combined with the O (mα) bound on the number of wedges,
this gives us the O (mα2) running time bound.

Arboricity Orientation. An arboricity orientation of a graph is one where the vertices’ out-degrees
are upper bounded by O (α (G)). An arboricity-oriented graph has slightly different theoretical
properties compared to a degree-oriented graph, but literature has shown that in some algorithms
arboricity orientation can achieve the same practical efficiency as degree orientation [43]. We note
that in Kowalik’s five-cycle counting algorithm as well as our parallelization of the algorithm, both
a degree ordering and an arboricity ordering are required to achieve work efficiency.

One way to obtain an arboricity orientation is by computing the degeneracy ordering using a
standard k-core decomposition algorithm [31, 32]. The algorithm repeatedly removes the vertex
with the lowest degree from the graph. When we direct edges using this orientation, we obtain a
DAG where each vertex’s out-degree is bounded by d (G). While this algorithm can be parallelized
to be work efficient, it does not attain polylogarithmic span; notably, the problem is P-complete [4].

Since the parallel algorithm for exact degeneracy ordering has sub-optimal span, we use approx-
imate algorithms with polylogarithmic span. We test two such algorithms: Goodrich–Pszona and
Barenboim–Elkin. Both algorithms work by peeling low-degree vertices in batches. Goodrich and
Pszona originally designed the algorithm in the external-memory model [23], while Barenboim
and Elkin designed the algorithm for a distributed model [5]. Shi et al. adapted both algorithms for
shared memory and showed that both compute an O (α)-orientation in O (m) work and O (log2 n)

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

4.1:6 J. Shi et al.

ALGORITHM 1: Kowalik’s Five-Cycle Counting Algorithm Parallelized

1: procedure COUNT-FIVE-CYCLES(G = (V ,E))
2: #c ← 0

3: Relabel vertices of G such that d (0) ≥ d (1) ≥ · · · ≥ d (n − 1)
4: Orient G using arboricity orientation to produce G→

5: parfor v ← 0 to n − 1 do

6: Initialize an empty parallel hash table Uv

7: parfor u ∈ Nv (v) do

8: parfor w ∈ Nv (u) do Uv [w]← Uv [w] + 1

9: parfor u ∈ Nv (v) do

10: Initialize an empty parallel hash table Tv,u

11: parfor w ∈ Nv (u) do

12: Tv,u [w]← 1

13: parfor w ∈ Nv (u) do

14: parfor x ∈ N→v (w) do

15: if x � u then

16: if w ∈ N→ (v) or v ∈ N→ (w) then

17: #c ← #c +Uv [x] −Tv,u [x] − 1

18: else

19: #c ← #c +Uv [x] −Tv,u [x]

20: return #c

span (one of which is deterministic and the other of which is randomized) [43]. A different algo-
rithm with the same (deterministic) work and span bounds was described by Besta et al. [8].

4.2 Kowalik’s Algorithm

We present in Algorithm 1 our parallelization of Kowalik’s serial five-cycle counting algorithm [28].
In this algorithm, vertices are sorted and processed in non-increasing degree order. Each vertex
is processed by counting all five-cycles with the vertex itself as the lowest-ranked (i.e., highest-
degree) vertex. After processing all vertices, each five-cycle is counted exactly once and the counts
are summed.

Recall that we use Nv (u) (N→v (u) for directed graphs) to represent the neighbors of vertexu that
are afterv in the non-increasing degree ordering. Since the vertices are relabeled by non-increasing
degree order on line 3, we can easily obtain Nv (u) = N (u) ∩ {w ∈ V | w > v}.

We now focus on the iterationv of the outer for-loop. An example is shown in Figure 1. We note
that for each v , we consider only vertices ranked higher than v to complete five-cycles containing
v . Lines 7 and 8 count in a parallel hash table Uv all wedges, where v is one of the endpoints and
v is the lowest-ranked vertex in the wedge. Then, lines 11 and 12 store in a parallel hash table
Tv,u all wedges where v is one of the endpoints, v is the lowest-ranked vertex in the wedge, and
u is the center. Both hash tables are indexed on w , the other endpoint of the wedge. We label each
subfigure in Figure 1 with the corresponding parallel hash table Uv , where v = 0 for subfigures
(a)–(e), andv = 1 for subfigure (f). However, note that we preemptively subtract each entry inTv,u

fromUv in our labels, for fixed u; specifically, u = 1 for subfigures (a) and (b), u = 2 for subfigures
(c) and (f), u = 3 for subfigure (d), and u = 4 for subfigure (e).

On each iteration of the loop in line 13, the algorithm counts all five-cycles that contain the
wedgev u w . To accomplish this, the algorithm iterates through each neighbor x ofw inG→

and considers the number of wedges that x shares withv , which is stored inUv [x]. Note that three
vertices of the cycle are given (v ,u, andw), so the algorithm must ensure that the two vertices used
to complete the cycle do not include these existing vertices. Each subfigure in Figure 1 considers

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

Parallel Five-cycle Counting Algorithms 4.1:7

Fig. 1. This figure outlines steps in our parallelization of Kowalik’s five-cycle counting algorithm where
#c is updated (Algorithm 1). Each subfigure considers a different {u,v,w,x } from lines 13 and 14, and the
corresponding Uv is displayed for each subfigure. For simplicity, the Ui hash tables are depicted as arrays,
with the appropriate wedge counts stored at the index on the corresponding endpoint, and the updates to
the parallel hash tables Tv,u in lines 11 and 12 of Algorithm 1 are shown as subtracted directly from the
corresponding Uv for a fixed u from line 9.
The vertices have already been relabeled by non-increasing degree and the entries in each Uv have already
been computed (lines 10–12). The vertexv that we are considering on line 5 is colored in red. The edges colored
in blue form wedges v u w , and the direction of those edges is irrelevant. The red edges represent the
out-edge w → x on line 14. When w and v are neighbors (the edge is colored grey), the condition checked
on line 16 returns true, and the subsequent line in each algorithm is executed (sub-figures (a), (c), and (d)).
Otherwise, line 19 is executed (sub-figures (b), (e), and (f)). The final value of #c is 4.

a different {u,v,w,x }, where {u,v,w } are given by the blue edges, and x is given by the red edge.
Line 15 ensures that x � u in the cycle; note that x � w , because the graph is assumed to not
contain self-loops, and x � v by definition of N→v . Lines 16–19 check if v and w are neighbors;
if so, then the number of wedges ending in x includes the wedge v w x , which does not
properly complete a five-cycle. In this case, there is one fewer five-cycle completed by the wedges
ending in x , and so we subtract one on line 17. In Figure 1, this case holds when there is a grey
edge, which is precisely the edge connecting v and w . Finally, note that if there exists the wedge
v u x , then this similarly does not properly complete a five-cycle, so we subtract Tv,u [x],
which stores precisely this wedge. We assume that indexing an entry that does not exist in a hash
table returns a value of 0. In Figure 1, this is already noted in our preemptive subtraction of Tv,u

from Uv in our labels.
As every thread operates on the variable #c , we use atomic add for all of these operations, which

takes O (1) work. In practice, we use thread-local variables to keep the count and sum them in the

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

4.1:8 J. Shi et al.

ALGORITHM 2: Five-Cycle Counting in ESCAPE Parallelized

1: procedure Count-Five-Cycles(G = (V ,E))
2: #c ← 0

3: Orient G using arboricity orientation to produce G→

4: parfor v ← 0 to n − 1 do

5: Initialize an empty parallel hash table Uv

6: parfor w ∈ N← (v) do

7: parfor u ∈ N (w) do

8: Uv [u]← Uv [u] + 1

9: parfor w ∈ N→ (v) do

10: parfor u ∈ N→ (w) do

11: Uv [u]← Uv [u] + 1

12: parfor u ∈ N← (v) do

13: parfor w ∈ N← (u) do

14: parfor x ∈ N→ (w) do

15: if x � v and x � u then

16: #c ← #c +Uv [x]

17: if w ∈ N (v) then

18: #c ← #c − 1

19: if x ∈ N (u) then

20: #c ← #c − 1

21: return #c

end to avoid heavy contention. We now show that the parallel algorithm is work efficient and has
polylogarithmic span.

Theorem 4.2. Algorithm 1 can be performed in O (mα2) work and O (log2 n) span w.h.p. and

O (mα) space on a graph withm edges and arboricity α .

Proof. For line 3, we sort n integers in the range [0,n − 1], which can be done in O (n) work
and O (logn) span w.h.p. using parallel integer sorting [39]. As discussed in Section 4.1, line 4 can
be implemented in O (m) work and O (log2 n) span [43]. As a result, the for-loops on lines 7 and 9
iterating over u ∈ Nv (v) take at most min(deg(u), deg(v)) iterations, and by Lemma 4.1, the total
number of times we iterate through w ∈ Nv (u) on each of lines 8, 11, and 13 is at most 2mα .

Since parallel hash tables can perform a batch of k operations in O (k) work and O (log∗ k) span
w.h.p., the time complexities of lines 8 and 12 are given by O (mα) work and O (log∗ n) span w.h.p.
Then the for-loop of line 14 has at most O (α) iterations because of the O (α)-orientation of the
graph. In total, lines 15–19 are executed at most O (α) · 2mα = O (mα2) times, and again due to the
parallel hash tables, the time complexity is given byO (mα2) work andO (log∗ n) span w.h.p. In all,
the total time complexity is given by O (mα2) work and O (log2 n) span w.h.p.

Finally, this algorithm uses O (mα) space. Based on Lemma 4.1, the total number of keys stored
over all Uv ’s is upper bounded by O (mα), as is the number of keys stored over all Tv,u ’s (over all
pairs (v,u)). The parallel hash table’s space usage is linear in the number of keys [22]. Hence, the
total space usage is O (mα). �

4.3 ESCAPE Algorithm

Another serial five-cycle counting algorithm is given by Pinar et al. as part of ESCAPE, which
counts all 5-vertex subgraphs in a graph serially [36].

The first step of the ESCAPE five-cycle counting algorithm is to orient the graph. The ESCAPE
framework uses degree orientation and achieves a time complexity of O (m2). We note that if

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

Parallel Five-cycle Counting Algorithms 4.1:9

Fig. 2. This figure outlines steps in the ESCAPE five-cycle counting algorithm where #c is updated
(Algorithm 2). Each subfigure considers a different {u,v,w,x } from lines 12–15, and the correspondingUv is
displayed for each subfigure. For simplicity, the Ui hash tables are depicted as arrays, with the appropriate
wedge counts stored at the index on the corresponding endpoint. Note that the entries in each Uv have
already been computed (lines 6–11). The vertex v that we are considering on line 4 is colored in red. The red
edges represent the directed 3-paths v ← u ← w → x found on lines 12–15. Lines 17 and 19 check whether
v and w or u and x are neighbors, respectively. When either of the conditions holds, the relevant edge is
colored grey. Each grey edge subtracts one from the five-cycle count. Note that in sub-figures (a) and (c), the
condition that v is adjacent to w from line 17 holds, and in sub-figure (f), the condition that u is adjacent to
x from line 19 holds. In sub-figures (b), (d), and (e), neither conditions hold, and therefore 1 is not subtracted
from the final count. The final value of #c is 4.

instead an arboricity orientation is used, then the five-cycle counting algorithm achieves an im-
proved time complexity of O (mα2). We include this modification in our parallelization of the ES-
CAPE five-cycle counting algorithm to achieve work-efficient bounds. The proof of the serial time
complexity with the arboricity orientation follows directly from the proof of our parallel algorithm.

We present in Algorithm 2 our parallelization of the algorithm from ESCAPE, and an example
is shown in Figure 2. We use u ≺ v to indicate that u precedes v in the ordering that produced the
orientation, and so an edge from u to v exists in the directed graph G→ if and only if u ≺ v .

After orienting the graph using an arboricity orientation (line 3), for each vertex v (line 4), the
algorithm counts all out-wedges and inout-wedges (see Figure 3). We denote the number of out-
wedges with endpoints v and u byW++ (v,u), and the number of inout-wedges with endpoints v
and u, starting with a directed edge out of v , by W+− (v,u). For each v , the algorithm computes
W++ (u,v)+W+− (u,v) on lines 6–8 andW+− (v,u) on lines 9–11, and stores these counts in a parallel
hash table Uv . Note that lines 6–8 computes the total sumW++ (u,v) +W+− (u,v) rather than the
constituent parts, so we iterate over all directed neighbors w ∈ N← (v), and then all undirected
neighbors u ∈ N (w).

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

4.1:10 J. Shi et al.

Fig. 3. An inout-wedge (left) and an out-wedge
(right).

Fig. 4. All three possible acyclic orientations of di-
rected five-cycles, assuming a graph orientation in-
duced by a total ordering of the vertices. All three
forms have the component v ← u ← w → x , which
is a 3-path between v and x . They are completed
by an inout-wedge from x to v , an out-wedge be-
tween v and x , and an inout-wedge from v to x ,
respectively.

Figure 4 shows all possible orientations of acyclically directed five-cycles. We iterate over the
3-path shown in Figure 4 from vertex v to vertex x (lines 12–15), each of which can be completed
by either an inout-wedge or an out-wedge with endpointsv and x , assuming x � v and x � u. Now,
any orientation of a five-cycle has one of the three configurations shown in Figure 4, where exactly
one of the vertices can be assigned to be v . Thus, every 3-path between a pair (v,x) contributes
W+− (v,x) +W++ (v,x) +W+− (x ,v) (which is stored in U from lines 6–11) to the five-cycle count.
However, this over-counts five-cycles, since the wedge and the 3-path may overlap. Lines 16–20
deal with the over-counting when adding the number of wedges to the total count.

In more detail, Line 16 first adds Uv [x] to the count (again, assume that indexing an entry that
does not exist in a hash table returns a value of 0). Line 17 checks if w is adjacent to v ; if so, then,
depending on the direction of the edge betweenw and v , there is either an out-wedge or an inout-
wedge on v , w , and x , that does not complete a five-cycle with the 3-path. Line 18 subtracts the
five-cycle counted for this case. Similarly, line 19 checks if x is adjacent to u, and if so, then there
is either an out-wedge or an inout-wedge on v , u, and x , that does not complete a five-cycle; line
20 corrects this.

Similarly to the parallelization of Kowalik’s algorithm, in theory we use atomic adds for all of
the increments on the #c variable, and in practice we use thread-local variables.

Theorem 4.3. Algorithm 2 can be performed in O (mα2) work and O (log2 n) span w.h.p., and

O (mα) space on a graph withm edges and arboricity α .

Proof. As discussed in Section 4.1, line 3 can be implemented in O (m) work and O (log2 n)
span [43]. Lines 6–11 go through all inout-wedges and out-wedges wherev is an endpoint. Because
of the arboricity orientation, there are at most mα inout-wedges and out-wedges. Each wedge is
counted at most twice, and so lines 6–11 incur O (mα) hash table operations, which takes O (mα)
work and O (log∗ n) span w.h.p.

There are O (mα2) 3-paths (i.e., v ← u ← w → x) and each is encountered exactly once in
the triply-nested for-loop (lines 12–20). Again, by using an arboricity orientation, the algorithm
executes lines 15–20 for at most O (mα2) times, which due to the hash table operations, takes
O (mα2) work and O (log∗ n) span w.h.p.

Overall, the algorithm takes O (mα2) work and O (log2 n) span w.h.p.
The parallel hash tables and the space to store the accumulated cycle counts account for all of

the additional space usage. Since each wedge results in at most two additional keys in the hash
tables, the number of keys in all of the hash tablesUi is upper bounded by twice the total number
of out-wedges and inout-wedges. For the arboricity-oriented graph, there are O (mα) out-wedges

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

Parallel Five-cycle Counting Algorithms 4.1:11

and O (mα) inout-wedges, and so the number of keys across all hash tables is bounded by O (mα).
Thus, the algorithm takes O (mα) space. �

4.4 Approximate Counting

To further speed up five-cycle counting, we present here two techniques, edge sparsification and
colorful sparsification, that allow us to compute approximate five-cycle counts in parallel. These
techniques are based on prior work on approximate triangle, butterfly (bi-clique), and k-clique
counting [35, 43, 44]. Both methods involve constructing a sparsified graph and running an exact
parallel five-cycle counting algorithm on the sparsified graph. We prove that scaling the count
returned gives an unbiased estimate of the total five-cycle count.

4.4.1 Edge Sparsification. In the edge sparsification method, we sparsify our input graph G by
choosing to preserve each edge of G uniformly at random with probability p, in parallel. We call
the resulting graph with only preserved edges G ′. Then, we run our parallel five-cycle counting
algorithm (Algorithm 1 or Algorithm 2) on G ′, which outputs a count C . We output Y = Cp−5 as
the estimate for the global five-cycle count.

We prove the following theorem about the properties of this estimator.

Theorem 4.4. Let X be the true five-cycle count in G, and let C be the five-cycle count in the

sparsified graph G ′ using probability p. Let Y = Cp−5. Then, E[Y] = X and Var [Y] = p−10 (X (p5 −
p10) +

∑3
z=1 sz (p10−z − p10)) where sz is the number of pairs of five-cycles that share z edges.

Proof. Let Xi be the indicator variable denoting whether the ith five-cycle in G is preserved
in G ′. For a five-cycle to be preserved, all edges in the cycle must be preserved. This occurs with
probability p5, since each edge is preserved with probability p. Thus, since the number of five-
cycles in G ′ is given by C =

∑
i Xi , we have E[C] =

∑
i E[Xi] = Xp5. Moreover, E[Y] = E[Cp−5] =

Xp5 · p−5 = X , as desired.
Now, by definition, the variance is given by Var [Y] = Var [Cp−5] = p−10

Var [
∑

i Xi] =
p−10 (

∑
i Var [Xi] +

∑
i�j Cov[Xi ,X j]). By definition, for all i , Var [Xi] = E[X 2

i] − E[Xi]
2 =

E[Xi] − E[Xi]
2 = p5 − p10. Thus, Var [Y] = p−10 (X (p5 − p10) +

∑
i�j Cov[Xi ,X j]).

Now, for i � j, Cov[Xi ,X j] = E[XiX j]−E[Xi]E[X j]. This term depends on the number of edges
that cycles i and j share. The covariance is 0 if they share no edges, sinceXi andX j are independent
in this case. For pairs of cycles sharing z edges where z = 1, 2, or 3, we have E[XiX j] = Pr [Xi =

1] · Pr [X j = 1 | Xi = 1] = p5 · p5−z = p10−z . The latter term is because the z shared edges are
guaranteed to be preserved by the condition, so it remains to compute the probability of preserv-
ing the remaining 5 − z edges. Moreover, E[Xi]E[X j] = p10, so in total, Cov[Xi ,X j] = p10−z − p10.
If we let sz denote the number of pairs of five-cycles that share z edges, then

∑
i�j Cov[Xi ,X j]) =∑3

z=1 sz (p10−z − p10). In total, we have Var [Y] = p−10 (X (p5 − p10) +
∑3

z=1 sz (p10−z − p10)),
as desired. �

Corollary 4.5. Let Δ denote the maximum degree of any vertex in G, and let X be the true five-

cycle count in G. Let Y be the approximate five-cycle count computed using probability p. If p ≥
max(208Δ3/X , (208Δ2/X)1/2, (208Δ/X)1/3, (208/X)1/5), then Var [Y] ≤ X 2/8.

Proof. First, from Theorem 4.4, Var [Y] = p−10 (X (p5 − p10) +
∑3

z=1 sz (p10−z − p10)) ≤ Xp−5 +

s3p
−3 + s2p

−2 + s1p
−1 where sz is the number of pairs of five-cycles that share z edges. Note that

sz ≤ X
(

5
z

)
Δ4−z . This follows from fixing each five-cycle, and upper bounding the number of pos-

sible ways to extend the five-cycle to a new five-cycle such that the extension shares z edges
with the original five-cycle and requires 5 − z additional edges. Substituting for sz and the value
of p in the corollary statement, we have Var [Y] ≤ Xp−5 + 10XΔp−3 + 10XΔ2p−2 + 5XΔ3p−1 ≤

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

4.1:12 J. Shi et al.

X (208/X) (1/5) ·(−5) + 10XΔ(208Δ/X) (1/3) ·(−3) + 10XΔ2 (208Δ2/X) (1/2) ·(−2) + 5XΔ3 (208Δ3/X)−1 =

X 2/8. �

Now, let Z be the mean of β independent instances of Y , where we define β later. Then, by

Markov’s inequality, Pr [|Z − X | ≥ εX] = Pr [(Z − X)2 ≥ ε2X 2] ≤ E[(Z−X)2]
ε2X 2 =

Var [Z]
ε2X 2 =

Var [Y]
ε2X 2β

.

Using Corollary 4.5, if p ≥ max(208Δ3/X , (208Δ2/X)1/2, (208Δ/X)1/3, (208/X)1/5), then Var [Y] ≤
X 2/8. Thus, Pr [|Z − X | ≥ εX] ≤ X 2/8

ε2X 2β
= 1

8ε2β
, and if we let β = 1

8ε2δ
, then Z is a (ε,δ)-estimator

of X . Notably, if we increase the number of samples β by a factor of b, then we can either decrease
δ by a factor of b or ε by a factor of b2. The opposite relation holds if we decrease β by a factor of
b; namely, we can either increase δ by a factor of b or increase ε by a factor of b2.

We further prove the following theorem about the complexity of our sampling algorithm based
on edge sparsification.

Theorem 4.6. Our parallel five-cycle sampling algorithm using edge sparsification with probabil-

ity p gives an unbiased estimate of the global five-cycle count and takes O (pmα2 +m) expected work

and O (log2 n) span w.h.p.

Proof. First, Theorem 4.4 shows that our algorithm gives an unbiased estimate of the global
count. We now discuss the work and span of our algorithm. Choosing each edge to preserve uni-
formly at random takes O (m) work and O (1) span. Creating a subgraph containing preserved
edges can be done using a parallel filter and a parallel prefix sum inO (m) work andO (logm) span.
Since each edge is preserved with probability p, the subgraph has pm edges in expectation. The
arboricity of the subgraph is upper bounded by the arboricity of the original graph, α . Thus, by
Theorems 4.2 and 4.3, running our parallel five-cycle counting algorithm on the subgraph takes
O (pmα2) expected work and O (log2 n) span w.h.p. In total, we have O (pmα2 +m) expected work
and O (log2 n) span w.h.p. �

4.4.2 Colorful Sparsification. In the colorful sparsification method, we sparsify our input graph
G by coloring each vertex of G uniformly at random with one of c colors, and preserving edges
only if both endpoints are of the same color. Note that we can perform this sparsification in parallel.
Let p = 1/c . We call the resulting graph with only preserved edges G ′. Then, we run our parallel
five-cycle counting algorithm (Algorithm 1 or Algorithm 2) on G ′, which outputs a count C . We
output Y = Cp−4 as the estimate for the global five-cycle count.

We prove the following theorem about the properties of this estimator.

Theorem 4.7. Let X be the true five-cycle count in G, and let C be the five-cycle count in the

sparsified graph G ′ using c colors. Let p = 1/c , and let Y = Cp−4. Then, E[Y] = X and Var [Y] =
p−8 (X (p4−p8)+

∑4
z=2 tz (p9−z −p8)) where tz is the number of pairs of five-cycles that share z vertices.

Proof. Let Xi be the indicator variable denoting whether the ith five-cycle inG is preserved in
G ′. For a five-cycle to be preserved, all edges in the cycle must be preserved, or in other words,
all vertices in the cycle must be colored using the same color. This occurs with probability p4,
since after fixing the color of one vertex v in the cycle, the remaining four vertices must have
the same color as v . Thus, since the number of five-cycles in G ′ is given by C =

∑
i Xi , we have

E[C] =
∑

i E[Xi] = Xp4. Moreover, E[Y] = E[Cp−4] = Xp4 · p−4 = X , as desired.
Now, by definition, the variance is given by Var [Y] = Var [Cp−4] = p−8

Var [
∑

i Xi] = p−8

(
∑

i Var [Xi] +
∑

i�j Cov[Xi ,X j]). By definition, for all i , Var [Xi] = E[X 2
i] − E[Xi]

2 = E[Xi] −
E[Xi]

2 = p4 − p8. Thus, Var [Y] = p−8 (X (p4 − p8) +
∑

i�j Cov[Xi ,X j]).
Now, for i � j, Cov[Xi ,X j] = E[XiX j] − E[Xi]E[X j]. This term depends on the number of

vertices that cycles i and j share. The covariance is 0 if they share no vertices, and the covariance

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

Parallel Five-cycle Counting Algorithms 4.1:13

is also 0 if they share one vertex, since the event that the remaining vertices of each cycle have
the same color as the shared vertex is independent between the two cycles. For pairs of cycles
sharing z vertices where z = 2, 3, or 4, we note that E[XiX j] = Pr [Xi = 1] · Pr [X j = 1 | Xi = 1] =
p4 ·p5−z = p9−z . The latter term is because the z shared vertices are guaranteed to be the same color
by the condition, and so it remains to compute the probability that the remaining 5 − z vertices
are also of the same color. Moreover, E[Xi]E[X j] = p8, and so in total, Cov[Xi ,X j] = p9−z − p8. If
we let tz denote the number of pairs of five-cycles that share z vertices, then

∑
i�j Cov[Xi ,X j]) =∑4

z=2 tz (p9−z −p8). In total, we have Var [Y] = p−8 (X (p4 −p8) +
∑4

z=2 tz (p9−z −p8)), as desired. �

Corollary 4.8. Let Δ denote the maximum degree of any vertex in G, and let X be the true five-

cycle count inG. Let Y be the approximate five-cycle count computed using c colors, where p = 1/c . If

p ≥ max(208Δ3/X , (208Δ2/X)1/2, (208Δ/X)1/3, (208/X)1/4), then Var [Y] ≤ X 2/8.

Proof. First, from Theorem 4.7, Var [Y] = p−8 (X (p4 − p8) +
∑4

z=2 tz (p9−z − p8)) ≤ Xp−4 +

t4p
−3 + t3p

−2 + t2p
−1 where tz is the number of pairs of five-cycles that share z vertices. Note that

tz ≤ X
(

5
z

)
Δ5−z . This follows from fixing each five-cycle, and upper bounding the number of pos-

sible ways to extend the five-cycle to a new five-cycle such that the extension shares z vertices
with the original five-cycle and requires 5− z additional vertices. Substituting for tz and the value
of p in the corollary statement, we have Var [Y] ≤ Xp−4 + 5XΔp−3 + 10XΔ2p−2 + 10XΔ3p−1 ≤
X (208/X) (1/4) ·(−4) + 5XΔ(208Δ/X) (1/3) ·(−3) + 10XΔ2 (208Δ2/X) (1/2) ·(−2) + 10XΔ3 (208Δ3/X)−1 =

X 2/8. �

Again, let Z be the mean of β independent instances of Y , where we define β later. Then, by

Markov’s inequality, Pr [|Z − X | ≥ εX] = Pr [(Z − X)2 ≥ ε2X 2] ≤ E[(Z−X)2]
ε2X 2 =

Var [Z]
ε2X 2 =

Var [Y]
ε2X 2β

.

Using Corollary 4.8, if p ≥ max(208Δ3/X , (208Δ2/X)1/2, (208Δ/X)1/3, (208/X)1/4), then Var [Y] ≤
X 2/8. Thus, Pr [|Z − X | ≥ εX] ≤ X 2/8

ε2X 2β
= 1

8ε2β
, and if we let β = 1

8ε2δ
, then Z is a (ε,δ)-estimator

of X .
We further prove the following theorem about the complexity of our sampling algorithm based

on colorful sparsification.

Theorem 4.9. Our parallel five-cycle sampling algorithm using colorful sparsification with c colors

where p = 1/c gives an unbiased estimate of the global five-cycle count and takes O (pmα2 + m)
expected work and O (log2 n) span w.h.p.

Proof. First, Theorem 4.7 shows that our algorithm gives an unbiased estimate of the global
count. We now discuss the work and span of our algorithm. Coloring each vertex takesO (n) work
and O (1) span. Creating a subgraph containing edges where endpoints are the same color can be
done using a parallel filter and a parallel prefix sum in O (m) work and O (logm) span. Since each
edge is preserved with probability p = 1/c , the subgraph has pm edges in expectation. The rest of
the proof is the same as the proof of Theorem 4.6. �

4.5 Implementation

We implement the serial and parallel versions of Kowalik’s algorithm and Pinar et al.’s algorithm,
as well as our approximate algorithms, using the Graph-based Benchmark Suite framework

(GBBS) [16, 17]. In GBBS, graphs are represented in CSR format, which does not allow us to check
edge existence in O (1) work; instead, we sort the neighbor lists in the preprocessing step and use
binary search to locate neighbors.

In our approximate counting algorithms, the sparsification is done by simply using a hash func-
tion to sample the edges or assign a color to each vertex, and then applying a filter and prefix

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

4.1:14 J. Shi et al.

sum to create the subgraph in CSR format. The rest of this section describes the optimizations for
five-cycle counting either on the original graph (for exact counting) or on the sparsified graph (for
approximate counting).

In our parallel implementations, we only parallelize the outer for-loop for each algorithm, since
there is sufficient parallelism provided by the outer for-loop alone. For Kowalik’s algorithm, instead
of using parallel integer sort, we use a cache-efficient implementation of parallel sample sort [10]
from GBBS to sort the vertices by degree. We also use vertex-indexed size-n arrays instead of
parallel hash tables for Ui and Ti, j .

Thread-local Data Structures. As we parallelize the outer for-loop, the arrays Ui in
both algorithms must be allocated per iteration. We optimize this allocation by using the
parallel_for_alloc construct in GBBS, which allocates one array per thread and reuses this
space over iterations. Each iteration uses the array as a local array, and so this incurs no synchro-
nization overhead. With this optimization, the algorithm only requires O (Pn) space, where P is
the number of processors.

Fast Reset. Additionally, the thread-local arrays must be reset after each iteration of the outer
for-loop. Depending on the structure of the graph, the array can be sparse, and naively resetting
the entire array incurs O (n2) extra work, which is costly. We use a separate thread-local array to
record the non-zero entries and reset only those entries after an iteration of the outer for-loop. This
optimization at most doubles the space requirement for the algorithm, but drastically improves the
running time by avoiding unnecessary writes.

Work Scheduling. The naive parallelization of the five-cycle counting algorithms blocks a fixed
number of vertices together and processes them in series. For our experiments, we use a block
size of 16, which we found to give the best performance in this setting. However, due to the na-
ture of the algorithm, the amount of work per vertex is not uniform. This is particularly true for
Kowalik’s algorithm, which processes vertices in non-increasing degree order and deletes a vertex
after processing it. The number of five-cycles that can be counted under a given vertex v in the
outermost loop falls off rapidly with the vertex’s degree rank. In our work scheduling optimiza-
tion, we block vertices together into groups that require similar amounts of work by estimating
the work required for each vertex. We use the sum of the degrees of a vertex’s neighbors as the
estimator. That is, for each vertex v , we estimate the amount of work done on the vertex to be∑

w ∈N (v) deg(w).

5 EXPERIMENTS

Environment. We run our experiments on a c5.18xlarge AWS EC2 instance, which is a dual-
processor system with 18 cores per processor (two-way hyper-threading, 3.00-GHz Intel Xeon
Platinum 8124M processors), and 144 GiB of main memory. We use Cilk Plus for parallelism [11, 29].
We use the g++ compiler (version 8.2.1) with the -O3 flag.

We test the performance of our parallel exact and approximate five-cycle counting algorithms.
Our parallel implementations use all of the optimizations described in Section 4.5, except that we
test the performance with and without the work scheduling optimization. We compare the perfor-
mance of the exact parallel implementations against our implementations of Kowalik’s algorithm
and the ESCAPE algorithm. We also tested the performance of the exact serial five-cycle counting
algorithm in the ESCAPE package, the fastest known implementation of exact five-cycle counting.
This algorithm is embedded inside the ESCAPE code for counting all five-vertex patterns, and so
we obtained timings by running only the five-cycle counting portion of the code. We found our
exact serial ESCAPE implementation to be 1.1–2.95× faster than the one provided in the ESCAPE
package, and hence present only our running times in the tables.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

Parallel Five-cycle Counting Algorithms 4.1:15

Table 1. Relevant Statistics of Our Input Graphs

Dataset |V | |E | No. 5-cycles

email-Eu-Core (email) 1005 32128 245,585,096
com-DBLP (dblp) 425957 2.10 × 106 3,440,276,253
com-YouTube (youtube) 1.16 × 106 5.98 × 106 34,643,647,544
com-LiveJournal (lj) 4.03 × 106 6.94 × 107 6,668,633,603,006
com-Orkut (orkut) 3.27 × 106 2.34 × 108 42,499,585,526,270
com-Friendster (friendster) 1.25 × 108 3.61 × 109 96,281,214,210,322

Table 2. Running Times (Seconds) of the Two Exact Serial Implementations and the Two Exact Parallel
Five-cycle Counting Implementations without the Work Scheduling Optimization

Exact Serial Algorithm Exact Parallel Kowalik Algorithm Exact Parallel ESCAPE Algorithm

Running times (s) Running times (s) Speedup Running times (s) Speedup

Dataset TE TK T1 T36 T36h T1
/
T36h T1 T36 T36h T1

/
T36h

email 0.36 0.026 0.027b 0.0027g 0.0029b 9.3 0.376b 0.017g 0.0177g 21.2

dblp 2.93 0.46 0.48g 0.046b 0.046g 10.4 3.24g 0.34k 0.277k 11.7

youtube 40.70 4.73 4.80b 1.73g 1.69g 2.8 43.94g 14.5g 9.96g 4.4

lj 2579.34 174.60 174.60b 29.0g 25.72g 6.8 2582.30g 426.38g 308.41g 8.4

orkut 38K 2878.38 2867.07b 504.61b 487.4b 5.9 TL 8192.33g 6384.24g —

All running times include both preprocessing (graph orienting) and five-cycle counting time. We stop each experiment

after 5.5 hours, and “TL” indicates that the time limit was exceeded. For the serial algorithms, TE is our implementation

of the ESCAPE algorithm with arboricity orientation, and TK is our implementation of the serial Kowalik’s algorithm.

The serial runtimes are measured using the Goodrich–Pszona degeneracy ordering algorithm. For the parallel

algorithms, we use superscripts to indicate the orientation that achieved the best running time. g refers to

Goodrich–Pszona, b refers to Barenboim–Elkin, and k refers to k-core orientation. Note that degree orientation is never

the fastest orientation. For the parallel algorithms, we list the runtimes obtained on a single thread (T1), 36 cores

without hyper-threading (T36), and 36 cores with hyper-threading (T36h). We also tested all implementations on

friendster, but they all exceeded the time limit.

We also test the effect of using different parallel arboricity ordering algorithms. Besides
Goodrich–Pszona, Barenboim–Elkin, and k-core, we also tested non-decreasing degree ordering
as an approximation of degeneracy ordering. Intuitively, it limits the out-degree of the graph by
directing edges from lower-degree vertices to higher-degree neighbors. Also, note that we use
the parallel Gooodrich–Pszona and Barenboim–Elkin implementations by Shi et al. [43], and the
parallel k-core implementation from Julienne [15], which is work efficient but does not have poly-
logarithmic span. Finally, we test the accuracy of our approximate algorithms and their speedups
over the exact algorithms.

We perform these tests on a number of real-world graphs from the Stanford Network Analysis
Platform [30]. Table 1 describes the properties of these graphs. All graphs are simple, unweighted,
and undirected.

Exact Serial Five-cycle Counting. Table 2 lists the running times of the two exact serial five-cycle
counting algorithms. Our serial Kowalik implementation always outperforms our serial ESCAPE
implementation, and the difference in running times between the ESCAPE algorithm and Kowa-
lik’s algorithm grows as the graph size grows. The serial Kowalik algorithm achieves between
6.37× and 14.77× speedup over our serial ESCAPE implementation and between 7× and 38.91×
speedup over the original ESCAPE implementation.

Exact Parallel Five-cycle Counting. Table 2 shows the best performance with the exact Kowalik
and ESCAPE algorithms with 1 thread, 36 cores without hyper-threading, and 72 hyper-threads,
without the work scheduling optimization. We see that the algorithms achieve decent speedup

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

4.1:16 J. Shi et al.

Table 3. These Are the Number of Binary Searches Each Exact
Algorithm Performed for Each Dataset and the Ratio of the Number
of Binary Searches in the ESCAPE Algorithm to Kowalik’s Algorithm

binary searches
Dataset Kowalik ESCAPE ESCAPE/Kowalik

email 5.15 × 105 2.98 × 107 58
dblp 8.41 × 106 2.32 × 108 28
youtube 6.28 × 107 2.96 × 109 47
lj 1.39 × 109 1.72 × 1011 124
orkut 1.25 × 1010 3.44 × 1012 273

Table 4. Single-thread (T1) and 36-core with Hyper-threading (T36h) Running
Times (Seconds) of the Exact Parallel Kowalik and ESCAPE Algorithms with the Work

Scheduling Optimization and Their Parallel Speedups

Exact Parallel Kowalik Algorithm Exact Parallel ESCAPE Algorithm

Running times (s) Speedup Running times (s) Speedup

Dataset T1 T36h T1
/
T36h T1 T36h T1

/
T36h

email 0.0265b 0.00252◦ 10.5 0.357b 0.0165b 21.6

dblp 0.46g 0.0143g 32.2 3.07b 0.0866g 35.5

youtube 4.75b 0.338b 14.1 43.32g 1.42g 30.0

lj 171.92b 5.85g 29.4 2510.97b 58.75g 42.7

orkut 2858.18b 136.98g 20.9 TL 1269.1b –
friendster TL 8417.31g – TL TL –

All running times include both preprocessing (graph orienting) and five-cycle counting time. We stop each

experiment after 5.5 hours, and “TL” indicates that the time limit was exceeded. The superscripts indicate the

orientation that achieved the best runtime. g refers to Goodrich–Pszona, b refers to Barenboim–Elkin, and ◦

refers to degree orientation. In Table 5, we present the data for all orientations.

without the work scheduling optimization. The parallel speedup plateaus from 36 to 72 hyper-
threads, especially for the parallelization of Kowalik’s algorithm. The speedup for the Kowalik al-
gorithm is usually lower, since, due to its degree ordering, it does not distribute work evenly across
vertices, but rather concentrates the work on high-degree vertices. Our naive parallel algorithm
groups a fixed number of vertices together regardless of whether they are high- or low-degree,
resulting in unbalanced work distribution across workers.

From both the serial and parallel running times, we observe that the ESCAPE algorithm, with all
of the same optimizations as the parallel Kowalik’s algorithm, generally has about a 10× slowdown
compared to Kowalik’s algorithm. We attribute this difference to the discrepancy in the number
of edge queries the two algorithms must perform. Since we store graphs in CSR format, each
edge query requires a binary search. In Kowalik’s algorithm, an edge query is performed for every
(v,w)-pair, and it can be performed just before the for-loop with x , so there only needs to beO (mα)
binary searches. In the ESCAPE algorithm, (x ,u) needs to be queriedO (mα2) times. Table 3 shows
that the ESCAPE algorithm does significantly more binary searches than Kowalik’s algorithm.

Compared to the state-of-the-art serial five-cycle counting implementation provided in the ES-
CAPE package, without the work scheduling optimization, our parallel Kowalik implementation
achieves a speedup of 33.78–229.79×, and our parallel ESCAPE implementation achieves a speedup
of 5.73–23.16×.

Work Scheduling Optimization. We present the best running times of the exact parallel Kowa-
lik and ESCAPE algorithms using work scheduling in Tables 4 and 5 shows the running times

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

Parallel Five-cycle Counting Algorithms 4.1:17

Table 5. Single-thread (T1) and 36-core with Hyper-threading (T36h)
Running Times (Seconds) of the Exact Parallel Kowalik and ESCAPE Algorithms

with the Work Scheduling Optimization Using All Four Orientations

Exact Kowalik Exact ESCAPE

Running times (s) Speedup Running times (s) Speedup

Dataset T1 T36h T1
/
T36h T1 T36h T1

/
T36h

email 0.0267 0.00289 9.3 0.396 0.0174 22.7
dblp 0.459 0.0143 32.2 3.17 0.0866 36.6
youtube 4.81 0.361 13.3 43.3 1.42 30.6
lj 174.40 5.85 29.8 2546.95 58.75 43.4
orkut 2867.78 136.98 20.9 TL 1552.70 —

(a) Goodrich–Pszona

Exact Kowalik Exact ESCAPE

Running times (s) Speedup Running times (s) Speedup

Dataset T1 T36h T1
/
T36h T1 T36h T1

/
T36h

email 0.0265 0.00294 9.0 0.357 0.0165 21.6
dblp 0.465 0.0147 31.6 3.07 0.0992 31.0
youtube 4.75 0.338 14.0 48.05 1.43 33.6
lj 171.92 5.95 28.9 2510.97 59.03 42.5
orkut 2858.18 139.87 20.4 TL 1269.07 —

(b) Barenboim–Elkin

Exact Kowalik Exact ESCAPE

Running times (s) Speedup Running times (s) Speedup

Dataset T1 T36h T1
/
T36h T1 T36h T1

/
T36h

email 0.0276 0.00252 10.9 1.49 0.0403 37.0
dblp 0.472 0.0144 32.7 10.71 0.773 13.9
youtube 4.79 0.344 13.9 2177.52 59.61 36.5
lj 178.02 5.96 29.9 16651.40 417.00 39.9
orkut 2949.47 139.37 21.2 TL 16129.4 —

(c) Degree

Exact Kowalik Exact ESCAPE

Running times (s) Speedup Running times (s) Speedup

Dataset T1 T36h T1
/
T36h T1 T36h T1

/
T36h

email 0.0278 0.00304 9.2 0.675 0.0245 27.6
dblp 0.473 0.0161 29.3 7.80 0.240 32.4
youtube 5.84 0.531 11.0 922.19 23.62 39.0
lj 198.16 8.06 24.6 11151.50 309.71 36.0
orkut 3100.79 147.83 21.0 TL 7113.44 —

(d) k-Core

All running times include both preprocessing (graph orienting) and five-cycle counting time. We stop

each experiment after 5.5 hours, and “TL” indicates that the time limit was exceeded. The bold values

mark the best serial and parallel runtimes for each of Kowalik and ESCAPE, out of the four orientations,

which are used in Table 4.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

4.1:18 J. Shi et al.

Fig. 5. Running time of the exact parallel Kowalik algorithm vs. number of threads. “36h” is 36 cores with
hyper-threading. Dashed lines indicate that the work scheduling optimization is disabled and solid lines
indicate that the work scheduling optimization is enabled. The lines for Goodrich–Pszona, Barenboim–Elkin,
and degree ordering overlap each other for the most part.

for different orientations. Compared to Table 2, we see that the work scheduling optimization is
effective on both parallel algorithms. It allows exact five-cycle counting to be performed on the
friendster graph in under 2.5 hours using the parallel Kowalik algorithm. Figure 5 shows the rela-
tive running time of the parallel Kowalik algorithm with 72 hyper-threads with different arboric-
ity orientation subroutines, including Goodrich–Pszona, Barenboim–Elkin, degree ordering, and
k-core orientation, with and without the work scheduling optimization. The comparison shows
that work scheduling significantly improves the running time and scaling of the parallel Kowalik
algorithm.

Throughout our tests, we use the sum of neighbors’ degrees as the estimator of the amount of
work. Other work estimators were tested, including a simple out-degree count and the two-hop
neighbor out-degree sum, but did not result in improved performance.

Compared to the state-of-the-art exact serial five-cycle counting implementation provided in
the ESCAPE package, using the work scheduling optimization, our parallel Kowalik implementa-
tion achieves a speedup of 162.70–818.12×, and our parallel ESCAPE implementation achieves a
speedup of 23.56–72.13×. Compared to our best serial baselines, our parallel Kowalik implementa-
tion achieves a speedup of 10.5–32.2×.

Graph Orientation. Figure 6 compares the performance of our exact parallel Kowalik implemen-
tation using different parallel orientation schemes [15, 43]. The Goodrich–Pszona and Barenboim–
Elkin algorithms give very similar performance. k-core performs slightly worse on all graphs ex-
cept for the small email graph. From our experiments, degree ordering results in running times
that are comparable to both Goodrich–Pszona and Barenboim–Elkin.

While Goodrich–Pszona, Barenboim–Elkin, and k-core produce arboricity orderings, we may
want to use degree ordering as it is much more efficient to compute and can compensate for the
potentially worse counting time. Figure 7 shows the proportion of time spent on preprocessing
(Tp) versus counting (Tc) on different orientation methods on three of the graphs. As the graph size
grows, the preprocessing time takes up a smaller fraction of the total running time and becomes
negligible in the case of the orkut graph. However, for smaller graphs, degree orientation has a
clear advantage, because it takes much less time to compute while allowing for similar performance
in the counting step. k-core ordering does not perform well when considering the times for both
preprocessing and counting.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

Parallel Five-cycle Counting Algorithms 4.1:19

Fig. 6. Exact five-cycle counting times using our parallel Kowalik implementation, excluding preprocessing
steps like relabeling and orienting the graph, under different orientation schemes for each of the graphs,
using 36 cores with hyper-threading. The fastest time is labeled under each graph.

Fig. 7. Breakdown of time spent in the exact parallel Kowalik implementation on preprocessing (Tp) vs. count-
ing (Tc) for different orientation subroutines, using 36 cores with hyper-threading. G-P is Goodrich–Pszona;
B-E is Barenboim–Elkin. For the orkut graph, the time spent on preprocessing is not visible.

Approximate Five-Cycle Counting. For our approximate five-cycle counting experiments, we use
the parallel Kowalik algorithm on the sparsified graph, as it outperforms the parallel ESCAPE
algorithm in the exact setting. Figures 8 and 9 show the speedups of approximate five-cycle count-
ing using edge sparsification and colorful sparsification, respectively, over exact five-cycle count-
ing, considering different probabilities p for preserving edges and different numbers of colors c
where p = 1/c , respectively. We generally observe higher speedups for smaller p, although for
the smallest graphs email and dblp, the speedups degrade once the preserved subgraphs are small
enough such that there are few to no five-cycles. Figures 10 and 11 show the fractional errors of
the approximate five-cycle counts obtained using edge sparsification and colorful sparsification
respectively, compared to the exact five-cycle counts. We compute our error using the formula
|exact − approximate|/exact. For p = 1/4, across all graphs, we see 3.22–30.30× speedups of ap-
proximate five-cycle counting using edge sparsification over exact five-cycle counting, with error
rates between 32.26% and 44.40%. For p = 1/4 using colorful sparsification, we see 2.99–38.16×
speedups, with error rates between 0.20% and 11.95%. We observe more significant speedups for
smaller p; in particular, for p = 1/8, across all graphs, we see 8.90–113.42× speedups using edge
sparsification, with error rates between 9.93% and 26.70%, and we see 9.10–188.94× speedups us-
ing colorful sparsification, with error rates between 0.52% and 11.77%. For larger p, we note that
while p = 1/2 reduces the error rate in colorful sparsification to a median of 0.53%, it gives much

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

4.1:20 J. Shi et al.

Fig. 8. These are the parallel speedups over exact
running times for approximate five-cycle counting
using edge sparsification, varying over different
p. The best runtimes considering all orientations
were used. The speedups are given in a log-scale.

Fig. 9. These are the parallel speedups over exact
running times for approximate five-cycle counting
using colorful sparsification, varying over p = 1/c ,
where c is the number of colors used. The best run-
times considering all orientations were used. The
speedups are given in a log-scale.

Fig. 10. These are the fractional errors of the ap-
proximate five-cycle count obtained using edge
sparsification, varying over different p. The errors
are taken over all graphs, with the red circle mark-
ing the median error and the bars marking the
minimum and maximum errors.

Fig. 11. These are the fractional errors of the ap-
proximate five-cycle count obtained using colorful
sparsification, varying over p = 1/c , where c is the
number of colors used. The errors are taken over
all graphs, with the red circle marking the median
error and the bars marking the minimum and max-
imum errors.

lower speedups, of up to 4.63× for edge sparsification and up to 6.80× for colorful sparsification,
and the variance in the percentage error is higher in edge sparsification. Overall, we observe more
significant speedups on larger graphs, and we note that colorful sparsification generally produces
more accurate five-cycle counts compared to edge sparsification. Notably, on friendster, which
takes over 2 hours to complete exact five-cycle counting, we can obtain an approximate count
with 0.20% error in under a minute using colorful sparsification, with p = 1/4.

Figures 12 and 13 show the self-relative parallel speedups of approximate five-cycle counting us-
ing edge sparsification and colorful sparsification, respectively, over different numbers of workers,
where p = 1/8 and using the Goodrich–Pszona orientation. We note that very little self-relative

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

Parallel Five-cycle Counting Algorithms 4.1:21

Fig. 12. These are the self-relative speedups of
approximate five-cycle counting over the single-
threaded running times, using edge sparsifica-
tion with p = 1/8 over varying numbers of
workers. “36h” refers to 36 cores with hyper-
threading. The Goodrich–Pszona orientation
was used.

Fig. 13. These are the self-relative speedups of
approximate five-cycle counting over the single-
threaded running times, using colorful spar-
sification with eight colors (p = 1/8) over
varying numbers of workers. “36h” refers to
36 cores with hyper-threading. The Goodrich–
Pszona orientation was used.

speedup is observed on the smaller graphs, particularly the email graph, where the sparsified graph
is exceedingly small. The largest self-relative speedups appear on the largest graphs, and on these
large graphs, we see good scalability. Overall, we observe up to 11.87× and 20.43× self-relative
speedups over the single-threaded running times, using edge sparsification and colorful sparsifica-
tion, respectively. For these experiments, we see that hyper-threading usually does not help, likely
due to the smaller sizes of the graphs compared to the experiments on the exact algorithms.

6 CONCLUSION

We designed the first theoretically work-efficient parallel five-cycle counting algorithms with poly-
logarithmic span. On 36 cores, our best exact implementation outperforms the fastest existing ex-
act serial implementation by up to 818×, and achieves self-relative speedups of 10–46×. Our best
approximate implementation, for a fixed probability parameter p = 1/8, achieves up to 20.43×
self-relative speedups and is able to approximate five-cycle counts 9.10–188.94× faster than our
best exact implementation, with between 0.52% and 11.77% error. Designing parallel algorithms
for counting larger cycles is interesting for future work, although such algorithms are likely to
require super-linear work, even for low-arboricity graphs [6].

REFERENCES

[1] A. Abboud and V. V. Williams. 2014. Popular conjectures imply strong lower bounds for dynamic problems. In Pro-

ceedings of the IEEE Symposium on Foundations of Computer Science. 434–443.

[2] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, Nick G. Duffield, and Theodore L. Willke. 2017. Graphlet decom-

position: Framework, algorithms, and applications. Knowl. Inf. Syst. 50, 3 (2017), 689–722.

[3] N. Alon, R. Yuster, and U. Zwick. 1997. Finding and counting given length cycles. Algorithmica 17, 3 (1997), 209–223.

[4] Richard Anderson and Ernst W. Mayr. 1984. A P-complete Problem and Approximations to It. Technical Report.

[5] Leonid Barenboim and Michael Elkin. 2010. Sublogarithmic distributed MIS algorithm for sparse graphs using nash-

williams decomposition. Distrib. Comput. 22, 5 (2010), 363–379.

[6] Suman K. Bera, Noujan Pashanasangi, and C. Seshadhri. 2020. Linear time subgraph counting, graph degeneracy, and

the chasm at size six. In Proceedings of the Innovations in Theoretical Computer Science Conference, Vol. 151. 38:1–38:20.

[7] Jonathan W. Berry, Luke K. Fostvedt, Daniel J. Nordman, Cynthia A. Phillips, C. Seshadhri, and Alyson G. Wilson.

2014. Why do simple algorithms for triangle enumeration work in the real world? In Proceedings of the Conference on

Innovations in Theoretical Computer Science. 225–234.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

4.1:22 J. Shi et al.

[8] Maciej Besta, Armon Carigiet, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, and Torsten Hoefler. 2020.

High-performance parallel graph coloring with strong guarantees on work, depth, and quality. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage and Analysis. Article 99.

[9] M. A. Bhuiyan, M. Rahman, M. Rahman, and M. Al Hasan. 2012. GUISE: Uniform sampling of graphlets for large graph

analysis. In Proceedings of the IEEE International Conference on Data Mining. 91–100.

[10] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. 2010. Low depth cache-oblivious algorithms. In

Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures. 189–199.

[11] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multithreaded computations by work stealing. J. ACM

46, 5 (Sept. 1999), 720–748.

[12] Richard P. Brent. 1974. The parallel evaluation of general arithmetic expressions. J. ACM 21, 2 (April 1974), 201–206.

[13] Ronald S. Burt. 2004. Structural holes and good ideas. Am. J. Sociol. 110, 2 (2004), 349–399.

[14] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and subgraph listing algorithms. SIAM J. Comput. 14, 1 (Feb-

ruary 1985), 210–223.

[15] Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne: A framework for parallel graph algorithms using

work-efficient bucketing. In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA’17). Association for Computing Machinery, New York, NY, 293–304. https://doi.org/10.1145/3087556.3087580

[16] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoretically efficient parallel graph algorithms can be

fast and scalable. In Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures. 393–404.

[17] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun. 2020. The graph based benchmark

suite (GBBS). In Proceedings of the Joint International Workshop on Graph Data Management Experiences & Systems

(GRADES’20) and Network Data Analytics (NDA’20). Article 11, 8 pages.

[18] Ethan R. Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and Alexandros G. Dimakis. 2015. Beyond trian-

gles: A distributed framework for estimating 3-profiles of large graphs. In Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. 229–238.

[19] Ethan R. Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and Alexandros G. Dimakis. 2016. Distributed

estimation of graph 4-profiles. In Proceedings of the International Conference on World Wide Web. 483–493.

[20] Giorgio Fagiolo. 2007. Clustering in complex directed networks. Phys. Rev. E 76, 2 (2007), 026107.

[21] Katherine Faust. 2010. A puzzle concerning triads in social networks: Graph constraints and the triad census. Soc.

Netw. 32, 3 (2010), 221–233.

[22] J. Gil, Y. Matias, and U. Vishkin. 1991. Towards a theory of nearly constant time parallel algorithms. In Proceedings of

the IEEE Symposium of Foundations of Computer Science. 698–710.

[23] Michael T. Goodrich and Paweł Pszona. 2011. External-memory network analysis algorithms for naturally sparse

graphs. In Proceedings of the European Symposium on Algorithms. 664–676.

[24] Tomaz Hocevar and Janez Demsar. 2014. A combinatorial approach to graphlet counting. Bioinformatics 30, 4 (2014),

559–565.

[25] Paul W. Holland and Samuel Leinhardt. 1970. A method for detecting structure in sociometric data. Am. J. Sociol. 76,

3 (1970), 492–513.

[26] Louisa Ruixue Huang, Jessica Shi, and Julian Shun. 2021. Parallel five-cycle counting algorithms. In Proceedings of the

International Symposium on Experimental Algorithms (SEA’21), Vol. 190. 2:1–2:18.

[27] Joseph Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley Professional.

[28] Łukasz Kowalik. 2003. Short cycles in planar graphs. In Proceedings of the International Workshop on Graph-Theoretic

Concepts in Computer Science. 284–296.

[29] Charles E. Leiserson. 2010. The Cilk++ concurrency platform. J. Supercomput. 51, 3 (2010).

[30] Jure Leskovec and Andrej Krevl. 2019. SNAP Datasets: Stanford Large Network Dataset Collection. Retrieved from

http://snap.stanford.edu/data.

[31] Don R. Lick and Arthur T. White. 1970. k-degenerate graphs. Can. J. Math. 22, 5 (1970), 1082–1096. https://doi.org/10.

4153/CJM-1970-125-1

[32] David W. Matula and Leland L. Beck. 1983. Smallest-last ordering and clustering and graph coloring algorithms. J.

ACM 30, 3 (July 1983).

[33] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. 2015. The graph structure in the web–

analyzed on different aggregation levels. J. Web Sci. 1, 1 (2015), 33–47.

[34] Crispin Nash-Williams. 1964. Decomposition of finite graphs into forests. J. Lond. Math. Soc. s1-39, 1 (1964), 12–12.

[35] Rasmus Pagh and Charalampos E. Tsourakakis. 2012. Colorful triangle counting and a mapreduce implementation.

Inf. Process. Lett. 112, 7 (March 2012), 277–281.

[36] Ali Pinar, C. Seshadhri, and Vaidyanathan Vishal. 2017. ESCAPE: Efficiently counting all 5-vertex subgraphs. In Pro-

ceedings of the International Conference on World Wide Web. 1431–1440.

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

https://doi.org/10.1145/3087556.3087580
http://snap.stanford.edu/data
https://doi.org/10.4153/CJM-1970-125-1

Parallel Five-cycle Counting Algorithms 4.1:23

[37] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and Jingren Zhou. 2018. Real-time

constrained cycle detection in large dynamic graphs. Proc. VLDB Endow. 11, 12 (August 2018), 1876–1888.

[38] M. Rahman, M. A. Bhuiyan, and M. Al Hasan. 2014. Graft: An efficient graphlet counting method for large graph

analysis. IEEE Trans. Knowl. Data Eng. 26, 10 (2014), 2466–2478.

[39] S. Rajasekaran and J. H. Reif. 1989. Optimal and sublogarithmic time randomized parallel sorting algorithms. SIAM J.

Comput. 18, 3 (June 1989), 594–607.

[40] Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyuce, and Srikanta Tirthapura. 2018. Butterfly counting in bipartite net-

works. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2150–

2159.

[41] Ahmet Erdem Sarıyüce and Ali Pinar. 2018. Peeling bipartite networks for dense subgraph discovery. In Proceedings

of the ACM International Conference on Web Search and Data Mining. 504–512.

[42] T. Schank. 2007. Algorithmic aspects of triangle-based network analysis. Ph.D. Dissertation. Universitat Karlsruhe

(2007).

[43] Jessica Shi, Laxman Dhulipala, and Julian Shun. 2021. Parallel clique counting and peeling algorithms. In Proceedings

of the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA’21). SIAM, 135–146. https://doi.org/

10.1137/1.9781611976830.13

[44] Jessica Shi and Julian Shun. 2020. Parallel algorithms for butterfly computations. In Proceedings of the SIAM Symposium

on Algorithmic Principles of Computer Systems, Bruce M. Maggs (Ed.). 16–30.

[45] Charalampos E. Tsourakakis, Petros Drineas, Eirinaios Michelakis, Ioannis Koutis, and Christos Faloutsos. 2011. Spec-

tral counting of triangles via element-wise sparsification and triangle-based link recommendation. Soc. Netw. Anal.

Min. 1, 2 (1 April 2011), 75–81.

[46] J. Wang, A. W. Fu, and J. Cheng. 2014. Rectangle counting in large bipartite graphs. In Proceedings of the IEEE Interna-

tional Congress on Big Data. 17–24.

[47] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2019. Vertex priority based butterfly counting for

large-scale bipartite networks. Proc. VLDB Endow. 12, 10 (June 2019), 1139–1152.

[48] Sebastian Wernicke and Florian Rasche. 2006. FANMOD: A tool for fast network motif detection. Bioinformatics 22, 9

(2006), 1152–1153.

[49] Xiangzhou Xia. 2016. Efficient and Scalable Listing of Four-Vertex Subgraphs. Master’s thesis. Texas A&M University.

[50] R. Zhu, Z. Zou, and J. Li. 2018. Fast rectangle counting on massive networks. In Proceedings of the IEEE International

Conference on Data Mining. 847–856.

Received 15 December 2021; revised 6 July 2022; accepted 29 July 2022

ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.1. Publication date: October 2022.

https://doi.org/10.1137/1.9781611976830.13

