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A General Framework for
Bilateral and Mean Shift Filtering

Justin Solomon, Keenan Crane, Adrian Butscher, and Chris Wojtan

Abstract —We present a generalization of the bilateral �lter that can be applied to feature-preserving smoothing of signals on
images, meshes, and other domains within a single uni�ed framework. Our discretization is competitive with state-of-the-art
smoothing techniques in terms of both accuracy and speed, is easy to implement, and has parameters that are straightforward to
understand. Unlike previous bilateral �lters developed for meshes and other irregular domains, our construction reduces exactly
to the image bilateral on rectangular domains and comes with a rigorous foundation in both the smooth and discrete settings.
These guarantees allow us to construct unconditionally convergent mean-shift schemes that handle a variety of extremely noisy
signals. We also apply our framework to geometric edge-preserving effects like feature enhancement and show how it is related
to local histogram techniques.

F

1 INTRODUCTION

Signals on images, surfaces, and other domains rarely
obey the smoothness assumptions imposed by meth-
ods from classical signal processing. Even when these
methods are successful with respect to formal mea-
sures like smoothness and continuity, the resulting
signal may fail to meet basic aesthetic or percep-
tual criteria. For instance, Gaussian convolution is
arguably an ideal image denoising �lter, yet it ignores
object boundaries and other semantic features.

As a result, a variety of nonlinear �lters have
been developed to take priors on signal content into
account. In particular, an effective replacement for
Gaussian convolution is the bilateral �lter: rather than
blindly averaging pixels that are near each other, the
bilateral blends pixels that are nearby in both location
and intensity. The result is a �lter that behaves like
Gaussian convolution within object boundaries but
prevents pixels on opposite sides of a boundary from
averaging together.

Due to the success of the bilateral in image process-
ing and computational photography, many attempts
have been made to adapt it to geometric domains
like meshes. This transition is not straightforward,
however: existing discretizations rely on local oper-
ations that are sensitive to the triangulation or use a
distortion-inducing parameterization. In some sense
these methods are only “inspired” by the bilateral
�lter and provide few guarantees in the limit of
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re�nement.
We introduce a bilateral �ltering technique for sig-

nals on any domain admitting a diffusion operator.
This �lter coincides with the image bilateral in the
planar case but can also be used to process signals
on meshes, point clouds, and other domains with
minimal modi�cation. We can also process geomet-
ric signals such as xyz positions or mesh normals,
enabling applications such as mesh smoothing. Our
discretization is a faithful interpretation of the contin-
uous formulation and naturally extends to a larger
class of �ltering tasks. More generally, our formu-
lation builds upon and generalizes many previous
image �ltering ([4], [5]), mesh smoothing ([6], [7]), and
distributional mode-�nding ([8], [9]) techniques.

Iterative application of the bilateral leads to the
mean shift �lter, introduced in [10] and elsewhere,
which has stronger denoising and edge-sharpening
properties. We show that the standard formulation of
the mean shift translates directly into our framework
and can be used to �lter signals like surface normals,
which are naturally treated as signals with values on
the sphere S2. The result is a strong geometry �lter
illustrated in Figure 1.

Our method applies to several tasks from geometry
processing including mesh smoothing, normal �lter-
ing on oriented point clouds, and curvature smooth-
ing, all while respecting sharp edges. We also explore
how modi�cations of our �lter can be used to achieve
interesting feature enhancement effects that respect
sharp edges and prove that a slight modi�cation of
our method generates a smooth analog of a recently-
introduced mesh vertex descriptor.

1.1 Contributions

The basic contribution of this paper is a framework for
bilateral �ltering of signals with arbitrary domain and
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(a) (b) (c)

Fig. 1. (a,b) Examples of edge-preserving mesh smoothing using our mean-shift �lter; noise is removed without
mollifying sharp edges, and in (b) the circular holes are rounded; (c) comparisons with [1], [2], and [3], resp.

distance manifolds in Section 3. Section 4 develops
schemes for mean-shift �ltering using the generalized
bilateral as a base, including proof that these methods
are unconditionally convergent. We describe a stable,
easy-to-implement, and convergent discretization in
Section 5 and apply it to signals encountered in com-
puter graphics in Sections 6 and 7, including geomet-
ric signals. Section 8 suggests additional applications
and non-smoothing uses of our method.

2 BACKGROUND

[7], [11] survey work on mesh smoothing and fair-
ing; we focus on bilateral geometry �ltering schemes,
which are the closest to our method.

2.1 Scalar Bilateral Filtering

The bilateral �lter was introduced in [4] for �ltering
signals f : I ! Rn on an image I using a kernel that
is the product of a spatial term Ws and an intensity
term Wc:

�f (x) =

R
I f (y )Ws(kx � yk)Wc(kf (x) � f (y )k) dy
R

I Ws(kx � yk)Wc(kf (x) � f (y )k) dy
(1)

Pixels are combined only when they are nearby both
in space and in intensity. The cross bilateral�lters a
signal f 1 using intensity distances from another signal
f 2 [12], [13]:

�f (x) =

R
I f 1(y )Ws(kx � yk)Wc(kf 2(x) � f 2(y )k) dy

R
I Ws(kx � yk)Wc(kf 2(x) � f 2(y )k) dy

(2)
For instance, f 1 may be too noisy to have well-
de�ned features, but it can instead be smoothed using
features from f 2. Considerable work has been put into
accelerating these �lters; see [5], [14], [15] for recent
examples.

Several methods apply bilateral �ltering on non-
image domains. Mostly, they map the domain to a
regular grid and apply image processing methods;
for instance, [16] uses the bilateral on a voxel grid
for surface reconstruction. [14] can be used to process
signals that are not on grids, but distances for f 1 and
f 2 must be measured using the Euclidean norm k � k2.
[17] makes use of a bilateral on scalar mesh curvature
signals, but their focus is on shape editing rather than
evaluation of the bilateral itself.

2.2 Mesh Bilateral Filtering

One domain in which applications of the bilateral ex-
tend beyond grid-based methods is mesh fairing and
smoothing. Table 1 lists several past approaches to
extend the bilateral to mesh domains in this fashion.
Despite the considerable amount of research devoted
to mesh bilateral �ltering, we �nd that none of the
prior contributions exhibits the following desirable
properties simultaneously, and most methods do not
exhibit more than one at a time:

1) Use of intrinsic and smooth distance weights
respecting the domain's metric without resorting
to parameterization

2) Convergence in the limit of re�nement or theory
identifying the effects of the �lter on an abstract
surface

3) Applicability to multiple signal types and do-
mains

4) Reduction to [4] for image signals
These desiderata characterize desirable behavior and
convergence of generalized bilateral �ltering tech-
niques. For example, 1) ensures that the algorithm
is tailored for mesh processing rather than adapting
image-based strategies to local neighborhoods; avoid-
ing local parameterization also contributes to algorith-
mic ef�ciency. Item 2) helps ensure that discretiza-
tions of �lter integrals converge to their continuous
counterparts; ad-hoc methods considering ring-based
vertex neighborhoods on meshes do not satisfy this
criterion. We include 3) to ensure that �lters support
multiple applications without tuning for a narrow set
of domains, and 4) con�rms our intuition that a �lter
is truly “bilateral” and thus can be understood using
intuition from image processing. Our algorithm satis-
�es all these criteria and still performs comparably to
the methods in Table 1.

2.3 Mean Shift Filtering

Mean shift �ltering, introduced for image segmenta-
tion in [8], was shown to be equivalent to iterated
cross bilateral �ltering in [10]–before the bilateral �lter
formally was introduced. Given this connection, [29]
and others make use of bilateral �lter accelerations
to accomplish mean shift. It produces strong feature-
preserving denoising for images, but few attempts
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Paper Description
[6] Bilaterally �lters the height function of the surface over vertex tangent planes
[18] Combines vertices with their projections onto nearby tangent planes; bilateral weights take into

account distances to the tangent plane projection and to the tangent plane center
[19] Uses bilateral �ltering as part of a multi-pass approach to modify Laplacian smoothing using weights

inspired by those in [6]
[20] Iteratively applies a modi�cation of [18] to improve surface normals for rendering.
[21] Bilaterally �lters jets on point clouds for reconstruction
[22] Bilaterally �lters mesh normals and then adjusts surface; weights are Gaussians in normal difference

and an approximation of geodesic distance
[23] Explicitly �lters sharp edges and then faces separately using extrinsic distances, edge directions,

normal difference, and projections as in [18]
[24] Filters face normals using Euclidean distance between centroids and normal differences
[25] Filters non-manifold surfaces by iteratively applying a bilateral similar to [18] and remeshing
[14] Filters the difference between a mesh and its Laplace-smoothed counterpart in principal curvature

coordinates using spin-images [26] for weights without a distance term
[3] Denoises quadric surface approximations by extending [6]
[27] Applies [24] with automatic parameter choice to normals and �ts a new surface
[1] Locally �lters face normals using one-ring information; derives alternative implicit normal smoothing

scheme using one-ring bilateral weights to change Laplacian operator
[28] Approximates mesh bilateral �ltering using separable �lters along curvature directions

TABLE 1
A summary of previous attempts to adapt bilateral �ltering to mesh domains.

have been made to apply it to mesh domains. [30]
mean shifts mesh normals for segmentation; [31] pro-
poses a mesh mean shift operator requiring local
geodesic parameterizations. While attempts to mean
shift signals on meshes or surfaces have been limited,
mean shift �ltering has been applied to different
manifold- valued signals; for instance, [9], [32], [33]
propose mean shift methods for �ltering sphere-,
analytic manifold-, and Riemannian manifold-valued
signals, resp. Our framework bridges the gaps among
a variety of existing methods in this domain.

3 GENERALIZED B ILATERAL FILTERING

Take � to be the domain of a signal f 1 : � ! Rn

equipped with a nonnegative symmetric kernel K � :
� � � ! R. Intuitively, we can think of K � (x ; y ) as
measuring the proximity between x and y on � . For
instance, signal processing on an image might take
� � R2 as the image plane, n = 3 for RGB channels,
and K � (x ; y ) = e�k x � y k2 =� 2

, the usual Gaussian blur
kernel. More generally, if � is any domain admitting a
Laplacian operator L , such as a graph, surface, mesh,
or point cloud, we can take K � to be the kernel
corresponding to a solution at some �xed t > 0 of the
heat equation @u

@t = Lu , where u(x; t) : � � [0; 1 ) ! R;
that is, K � (x ; y ) measures how much a unit of heat
diffuses from x to y along � in t time.

We can de�ne a blurred version of f 1 as the convo-
lution

f̂ 1(x) =
1

z(x)

Z

�
f 1(y )K � (x ; y ) dy (3)

where z(x) is the normalizing value
R

� K � (x ; y ) dy .
Let T (f ) be the linear operator on square-integrable
functions taking f 1 to f̂ 1; in other words, T blurs
functions f with kernel K � .

In parallel with the cross bilateral (2), take f 2 : � !
� to be a function designed so that if f 2(x) and f 2(y )

are distant, the signal f 1 at x and y should not be
blended during �ltering. We assume that � is a com-
pact manifold with or without boundary; for instance,
using RGB colors would yield � = [0 ; 1]3, while using
surface normals yields � = S2, the unit sphere. We
equip � with its own kernel K � : � � � ! R.

with non-unit or even non-
� � � ��� � � � ���

signal� �

�
� � � � �

� . Intuitively,
� � � � �

� . Intuitively,

Fig. 2. Notation.

With this notation (illustrated in Figure 2) in place,
we can introduce the generalized cross-bilateral �lteras
follows:

�f (x) =

R
� f 1(y )K � (x ; y )K � (f 2(x); f 2(y )) dy

R
� K � (x ; y )K � (f 2(x); f 2(y )) dy

(4)

Note the similarity to the image cross bilateral �l-
ter (2). The main difference is that we allow our kernel
functions to take into account x and y (as well as f 2(x)
and f 2(y )) directly rather than just the norms kx � yk
and kf 2(x) � f 2(y )k.

We can re-express the cross bilateral using the diffu-
sion operator T de�ned above. In particular, for �xed
p 2 � de�ne numerator and denominator functions
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as:

f num
p (y ) = f 1(y )K � (p; f 2(y )) (5)

f den
p (y ) = K � (p; f 2(y )) (6)

Then, we have

�f (x) =
T [f num

f 2 (x ) (�)](x)

T [f den
f 2 (x ) (�)](x)

(7)

4 GENERALIZED MEAN SHIFT FILTERING

Bilateral �ltering is reliable for minor denoising but
is less effective on highly-noisy signals. In particular,
the K � term combines values only when they are
similar; outliers thus will be in�uenced only slightly
by their nearby counterparts. Furthermore, in certain
scenarios it is desired not only to smooth signals but
also to sharpen edges. For these purposes we propose
a generalized mean shift�lter below.

For �xed x 2 � , we can rewrite the denominator of
the bilateral (4) as a probability distribution h : � ! R
over � :

hx (p) =
1

z(x)

Z

�
K � (x ; y )K � (p; f (y )) dy (8)

where z(x) is a normalizing constant so thatR
� hx (p) dp = 1 . This function, constructed using the

same technique as [34], represents the distribution of
values of f near x.

If � = Rn with K � (p; q) = e�k p � qk2 =� 2
, taking the

gradient with respect to p we �nd that peaks p � of
hx (p) satisfy

p � =

R
� f (y )K � (x ; y )K � (p � ; f (y )) dy
R

� K � (x ; y )K � (p � ; f (y )) dy
(9)

This relationship suggests a �xed-point iteration
scheme for �nding peaks of hx (p) at all x :

f (0) (x) = f (x) (10)

f (k+1) (x) =

R
� f (y )K � (x ; y )K � (f (k ) (x); f (y )) dy
R

� K � (x ; y )K � (f (k ) (x); f (y )) dy
(11)

Each iteration applies a slightly modi�ed cross bilat-
eral (4). This scheme is an instance of the mean-shift
�lter [8], which converges unconditionally to peaks of
hx [35].

The derivation above assumes that � = Rn . This
restriction to Rn re�ects a general drawback of bilat-
eral �lters and related integral operators, that they can
take inputs on a manifold � but give outputs in the
ambient Rn ; we are unaware of a bilateral �lter that
does not have this property without postprocessing.
In particular, �lters including [1] modify surface nor-
mals (on the sphere S2) but result in �ltered versions
without unit length; these �lters can be dif�cult to
understand and control. The description of the mean
shift as a mode-�nding technique, however, is valid
for any � independent of its embedding, and we can

take advantage of this observation to build denoising
methods that are intrinsic to � .

More formally, our construction of h remains valid
when � 6= Rn . For instance, we can equip � = S2

with the Von Mises–Fisher kernel K � (p; q) = ep �q=�

for unit vectors p and q, used to represent isotropic
distributions on the unit sphere [36]. In this case, a
similar argument to the one above yields the mean-
shift iteration:

f (0) (x) = f (x) (12)

f (k+1) (x) =

R
� f (y )K � (x ; y )K � (f (k ) (x); f (y )) dy

k
R

� f (y )K � (x ; y )K � (f (k ) (x); f (y )) dyk
(13)

Each iterate has unit length and thus remains on
S2. This new iterative scheme is an instance of the
spherical mean shift algorithm in [9] being carried out
in parallel at each x 2 � , proving its convergence
and its qualitative similarity to the Euclidean case.
Iterations of (13) are effectively averaging unit vectors;
while this is the mathematically correct operation to
carry out according to the Von Mises–Fisher kernel,
there is some potential for numerical instability when
� is large. We have not observed such issues in the
applications we propose for reasonable choices of � ;
particular values are documented in the supplemen-
tary material.

We have concentrated above on two simple do-
mains � : subsets ofRn and the sphere S2. These are by
no means the only choices of � that yield convergent
mode-�nding schemes. [32] and [33] provide mean
shift methods when data is on analytic or Riemannian
manifolds, resp., that can be adapted to our frame-
work on � in a similar manner.

5 DISCRETIZATION

We employ a signal processing technique similar to
that in [5] to evaluate the bilateral �lter on discrete
domains � (Algorithm 1). Our method applies essen-
tially the same computations to f den

p as f num
p , so for

ease of notation during its development denote f p as
one of f num

p or f den
p .

Suppose that we choose samplesp1; : : : ; pm 2 �
and a corresponding partition of unity � 1; : : : ; � m :
� ! R such that a function g : � ! R can be
approximated as g(p) �

P
i g(p i )� i (p). Note that

under mild continuity and compactness conditions,
we can construct sequences of partitions such that the
approximation converges to g(p) as m ! 1 . This dis-
cretization is similar to the use of �nite element bases
to express functions on surfaces [37]; for instance, on
a triangle mesh, piecewise linear “hat” functions can
serve as an appropriate partition of unity.

De�ne gi (x) = f p i (x); this function can be com-
puted for all x in � by evaluating f 1 and K � as in (5)
and (6). The blurring operation (3) is then applied
to obtain ĝi (x) = T [gi ](x). For instance, if � is an
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Input : Signal to be �ltered f 1 : � ! Rn

Cross bilateral function f 2 : � ! �
Samples p1; : : : ; pm 2 �
Partition of unity � 1; : : : ; � m : � ! R

Output : Filtered signal �f : � ! Rn

�f num (x); �f den (x)  08x 2 � ; Initialization
for i = 1 to m do

gnum (x)  f 1(x)K � (f 2(x); p i ); Weight signals
gden (x)  K � (f 2(x); p i );
ĝnum (x)  T [gnum ](x); Apply blur operator
ĝden (x)  T [gden ](x);
�f num (x)  �f num (x) Collect

+ ĝnum (x)� i (f 2(x)) ;
�f den (x)  �f den (x) + ĝden (x)� i (f 2(x)) ;

end
�f (x)  �f num (x )=�f den (x ); Normalize

Algorithm 1: Generalized bilateral �ltering algo-
rithm

image then T will be a Gaussian blur, while mesh
bilateral �lters would implement T using diffusion.
Our bilateral �lter is thus approximated as:

�f (x) �
P

i ĝnum
i (x)� i (f 2(x))

P
i ĝden

i (x)� i (f 2(x))
(14)

We show several concrete applications of bilateral
�ltering simply by applying this formulation to vari-
ous domains and kernels. If K � is straightforward to
evaluate, the only time-consuming step is generating
the functions ĝi from gi ; that is, the time complexity
of this algorithm is essentially that of carrying out 2m
blurs (3).

6 PROCESSING SCALAR SIGNALS

Before introducing novel domains and signals, we
verify that our bilateral �lter applied to grayscale im-
ages reduces to the one presented in [5]. Here, we de-
�ne our signal domain as � = f 1; : : : ; wg � f 1; : : : ; hg,
a w � h grid of pixel values, and our signal range of
grayscale intensities is � = [0 ; 1]. We take our image
and intensity kernels to be K � (x ; y ) � Ws(kx � yk)
and K � (p; q) = Wc(jp � qj). It is easy to check that in
this case (4) and (2) coincide.

Now, suppose we divide � = [0 ; 1] into m equally-
spaced samples p1; : : : ; pm of width 1=m � 1. De�ne
� i : [0; 1] ! R to be the piecewise linear hat function
centered at pi with width 2=m � 1. Then, (14) coincides
with the “signal processing approximation” in [5].
The approximation is indistinguishable from the exact
bilateral on most images for m as low as 20, and it can
be carried out using down/up-sampling or methods
like [38], [39] for T in (3).

Generalizing somewhat, suppose we take � to be a
mesh with vertices V , edges E, and triangular faces
F . We represent scalar functions on � as vectors
v 2 RjV j and construct a “cotangent Laplacian” matrix

L 2 RjV j�j V j with diagonal mass matrix A 2 RjV j�j V j

imitating the Laplacian operator on the smooth sur-
face approximated by � [40]. We compute T (v ) using
heat �ow using a single implicit time step T (v ) �
(I + � tA � 1L) � 1v . Multiple time steps or a higher-
order discretization yield closer approximations, but
the damping effect of a single implicit step has few
perceptual differences and is faster to carry out; fur-
thermore, it can be viewed as an isotropic instance
of the screened Poisson equation [41], which may
suggest future research directions making bilateral
�ltering faster or more anisotropic. Since we apply
T several times, we pre-factor time time step matrix
using the sparse LU method in [42]. We keep � = [0 ; 1]
with Gaussian kernel K � (x; y) = e�j x � y j2 =� 2

.

(a) (b) (c) (d)

Fig. 3. A noisy function (a) smoothed using Lapla-
cian diffusion (b), the generalized bilateral, (c), and
the mean shift (d). Diffusion does not preserve signal
edges, the bilateral removes most of the noise while
preserving edges, and the mean shift provides strong
denoising.

If we take f 1 = f 2 � f : � ! R, the generalized
bilateral blurs f while preserving its discontinuities.
Figure 3 shows the output of this method and the
iterative mean shift on a noisy texture. Unlike the
image bilateral and mesh methods relying on planar
projection or parameterization, this bilateral respects
the metric of � regardless of the width of K � .

(a) (b) (c)

Fig. 4. Kernel of the normal cross bilateral (a). In-
creasing the reach of K � widens the kernel (b), while
increasing that of K � allows the kernel to continue over
sharp edges (c).

7 MESH DENOISING

We can extend the method in Section 6 by considering
cross bilaterals for which � is not [0; 1]. Most impor-
tantly, suppose � = S2, the unit sphere, and take f 2 to
be the signal N : F ! S2 given by unit face normals.
Our signal now is on mesh facesrather than vertices
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to avoid ambiguous normals along sharp edges. So,
we replace L from Section 6 with the dual 0-form
Laplacian d ? d? from discrete exterior calculus [43].
Figure 4 illustrates the bilateral kernel K � K � in this
context.

(a) (b)

(c)

Fig. 6. Mean-square reconstruction error of Von
Mises–Fisher kernels of assorted sizes � using varying
numbers of sample points and (a) piecewise-linear
interpolation or (b) meshless interpolation; (c) approx-
imations of the unit sphere for (a) with 4, 26, and 98
samples, resp.

A partition of unity on S2 is obtained using a
regular polyhedron inscribed within S2; each � i cor-
responds to a piecewise linear hat function centered
at a vertex of the polyhedron projected to S2. An
alternative more ef�cient and smoother partition of
unity paralleling meshless integration is to use Von
Mises–Fisher kernels centered at sample points on the
unit sphere normalized to sum to 1; we choose the
width of the kernels to be half the average distance
from each sample to its closest neighbor. We �nd little
qualitative difference between these approaches and
show experiments determining suf�cient sampling
rates for different kernel sizes in Figure 6. Applica-
tions of this �lter to scalar functions on � are shown
in Figure 5; values are not combined over sharp edges
since the normal N has a discontinuity there.

If we �lter N : � ! S2 itself, we obtain a denoised
normal �eld over � ; this step evaluates the normal
vector bilateral proposed in [1], although their method
resorts to a somewhat severe approximation effective
for small blending radii. As in [1] and others, we
subsequently adjust � to match the denoised normals
using the method in [7]. While [7] is presented in
discrete terms, it simply is solving a Poisson-type
equation to recover a nearby surface with the adjusted
normals; it is designed not to induce shrinkage and
other artifacts. Figure 7 compares denoising results of
the normal bilateral and mean shift �lters with those
of some previous methods; of course, the choice of
reconstruction methods is independent of our �lter
and can be replaced if desired.

8 ADDITIONAL APPLICATIONS

Here we provide some applications of our method
outside of mesh processing. These show its broad

Fig. 8. Closer views of some examples from Figure 7
with increased contrast (Figure 7 is rendered with per-
face Lambertian shading for simplicity).

variety of applications for smoothing and other signal
processing tasks.

8.1 Oriented Point Clouds

Algorithms like [45] for surface reconstruction rely
on orientedpoint clouds, which contain both sample
points and their normals, to generate meshes; the
normals help decipher tangent directions, orientation,
and connectivity. Methods for obtaining or computing
orientations often yield noisy normals at best, which,
combined with already noisy point clouds, can lead
to topological and geometric reconstruction errors that
can be dif�cult to correct a posteriori.

Fortunately, [46] introduces a Laplacian for signals
on point clouds with provable convergence. Laplacian
heat diffusion along with the bilateral term ensures
that edges are preserved and that surface topology
is respected while combining “nearby” normals. Fig-
ure 9 shows examples of reconstruction using [45]
with and without bilateral normal �ltering on point
clouds from [47].

8.2 Bilateral and Mean Shift on Other Signals

The �lters we discuss above are by no means the only
ones that �t in our framework. Additional domains
and signals to which we could apply Algorithm 1
include:

� Textures equipped with a blurring operator from
MIP maps or a Laplacian pulled back from the
mesh

� Signals on polygonal meshes using the Laplacian
from [48] for diffusion

� Point clouds with skeletons as in [49], so points
are combined when they are close on the skeleton
and with respect to point cloud Laplacian heat
�ow
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(a) (b) (c)

Fig. 5. Noisy mean curvature values obtained from a one-ring computation (a), Laplacian diffusion-smoothed
mean curvatures (b), and bilateral-�ltered mean curvatures (c).

Fig. 10. Local normal histograms describing the dis-
tribution of normals near a given face, color-coded on
the unit sphere; histograms are shown at a random set
of faces.

� Quadric surface approximations as in some
works in Table 1, with cross bilateral signals
suggested here or in the original papers

� Graphs with discrete Laplacian diffusion
� Range images with RGB or normals for the cross

bilateral
� Volumetric signals with heat �ow using f 1 as a

density
� Simplicial complexes with combinatorial Lapla-

cian �ow

Many of these applications are outside computer
graphics; others may not bene�t as much from a
bilateral �lter as from related techniques suggested by
our method, like that for computing local histograms
below.

8.3 Local Histograms

[34] suggests that the histogram hx (p) in (8) has value
for understanding signals on images; in particular,
they use this function to understand the distribution
of intensities in some smoothly-weighted neighbor-
hood of each pixel. An identical formulation applies
to our more general setting. In particular, evalua-
tion of h(p i ; x) 8x 2 � occurs while computing the
samples in the denominator in Algorithm 1. Thus,
we can ef�ciently extract local histograms of signals
f : � ! � using the same partition of unity approach.
This allows for the direct evaluation of the �lters
in [34] applied to scalar functions on surfaces and
other domains.

The method at our level of generality, however,
can be applied to a much wider array of signals. For
example, once again taking f : � ! � = S2 to be
the normal vector signal on � , the histogram hx (p)
at a �xed x 2 � now represents the distribution over
S2 of normal vectors to � near x. This distribution
can be viewed (after suitable rotation) as a version of
the SHOT descriptor introduced in [50] with smoothly
varying, intrinsic heat kernel weights on � rather
than extrinsic distance weights, with straightforward
regularization control by changing blurring radii on
� and � . Figure 10 shows some examples of normal
vector histograms computed using this technique.
These images show that our histograms of normals are
equally informative to the SHOT descriptor; viewed
as probability distributions on the unit sphere, these
histograms also suggest the possibility of applying
�ltering techniques such as [51] to meshed domains.

8.4 Feature-Preserving Filters

We have gone a long way toward pushing the bilateral
�lter to a maximal of generality. One additional av-
enue for �exibility, however, is in the choice of kernels
K � and K � .

The most obvious potential change in K � or K �

might be in the choice of smoothing kernels. We im-
plicitly have made use of this �exibility by suggesting
that a single implicit time step of the heat equation
suf�ces for bilateral �ltering on meshes. In practice,
we �nd that any reasonable choice of smoothing
kernel behaves in a qualitatively similar fashion for
most bilateral and mean shift applications.

Even more generally, heat �ow is a member of a
huge class of linear operators used in mesh process-
ing. Band-pass, high-pass, unsharp mask, and other
�lters can be applied to signals on a surface using
analogs of Fourier theory and a discretization of the
Laplacian. Even if these �lters are described using
some sort of local operation, their linearity implies
the existence of an operator matrix containing kernel
values K � : RjV j � RjV j ! R; the theory of Schwartz
kernels can be used to prove a similar statement in the
continuous limit [52]. The bilateral simply reweights
these linear kernels to respect signal edges.

Although fully exploring the domain of feature-
preserving mesh operations is worthy of a larger
study, Figure 11 shows examples of the application of
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(a) (b) 0.296(d) 0.164(f) 0.212(g) 0.241 (b) 0.114(c) 0.109(d) 0.104 (e) (f) 0.105(g) 0.110

(a) (b) 0.111 (d) 0.074 (e) (f) 0.094 (g) 0.087

(a) (b) 0.022 (c) 0.019 (d) 0.013 (e) (f) 0.021 (g) 0.012

(a) (b) 0.243 (c) 0.156 (d) 0.109 (e) (f) 0.171 (g) 0.120

(a) (b) 0.257 (c) 0.060 (d) 0.069 (g) 0.236 (a) (d)

(a) (b) 0.281 (c) 0.174 (d) 0.121 (e) (g) 0.166

(a) (b) 0.120(c) 0.119(d) 0.111 (e) (f) 0.163(g) 0.139 (b) 0.318(d) 0.174(f) 0.213(g) 0.232

(a) (b) 0.024 (d) 0.011 (h) 0.010 (a) (b) 0.163(d) 0.087 (h)

Fig. 7. Noise is added to (a) to generate test case (b). We smooth using our bilateral (c) and mean shift (d)
�lters and provide comparisons with [18] (e), [2] (f), [1] (g), and [3] (h). Perceptual STED distance [44] from
original non-noisy surface is shown underneath when computable and relevant. Noise is generated by randomly
displacing mesh vertices under a uniform distribution, except for the bottom row, which uses tests from [3]. Data
for Figure 9 is from real-world scans; here we opt to generate synthetic noise to enable use of the STED metric.
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(a) (b) (c) (d) (e)

Fig. 9. Surface reconstruction from the oriented point cloud (a; rendered using normal vectors for lighting with
hue chosen by position), with original normals (b; bust case fails), bilaterally-smoothed normals (c), and mean-
shifted normals (d). Bilateral and mean shift �ltering create considerably better reconstruction results; even in the
dif�cult case of the �re extinguisher cloud, mean shift �lter is able to generate normals that separate the handle
from the body of the extinguisher (e).

(a) (b)

Fig. 11. Examples of non-blurring bilateral �lters to
achieve interesting edge-preserving shape deforma-
tions.

our bilateral where the kernel K � has been replaced
with the kernels of other linear operators. In particu-
lar, we use the unsharp mask for K � while keeping
K � Gaussian in mesh normals. The resulting �lter is
applied to mean curvature normals, yielding meshes
with exaggerated curvature while avoiding artifacts
like ringing near sharp corners.

9 DISCUSSION

We have written an implementation of our algorithm
in C++, taking advantage of templates to encode
Algorithm 1 in full generality; we use OpenMP direc-
tives to achieve parallel evaluation of the blurs needed
for each sample p i . On a four-core 2.40 GHz Intel
Xeon machine, this naïve implementation can apply
bilateral �lters to mesh normals on 12946 faces in 2.72
seconds using 42 sample points on S2. Subsequent
iterations for the mean shift are even faster, since they
can reuse the same prefactored heat �ow matrix; this
method converges in as few as �ve to ten iterations.

Faster run times could be achieved with an opti-
mized implementation and faster linear solvers. Our
runtime is limited by the time it takes to blur 2m
signals using K � , so fewer samples p i 2 S2 make
for better timings; we can cut our number of samples
to half of the ones listed here with reasonable effect
but slight visible artifact in exchange for a faster �lter.

Figure 7 compares against recent work on mesh
smoothing; larger image of representative examples
are shown in Figure 8. We apply uniform noise of
varying sizes to mesh vertices and then apply our
and other smoothing methods to recover the origi-
nal shape. We show the perceptual “STED” distance

between the �ltered signals and the original [44],
[53]. In general, we �nd that our algorithm behaves
comparably with state-of-the-art, yielding small STED
distances to the original meshes even when compared
to the results of more specialized papers.

9.1 Limitations

While the theoretical and practical properties of our
generalized bilateral �lter make it an obvious choice
in a variety of circumstances, it is important to note
tasks for which our construction is not as well-suited.
In particular, we require � to be compact (possibly
with boundary) and to admit a partition of unity;
this assumption is fairly weak for signals such as
mesh normals, which live on S2, but makes it dif�cult
to consider signals like the tangent plane projections
in [18] that can take values within a large part of Rn .

One property exhibited by mesh smoothing algo-
rithms making use of geometric �ows rather than in-
tegral operators like the bilateral is that they somehow
“directly” �lter the geometry rather than treating it
as a signal. In fact, our method as-is actually can deal
with geometry in at least two ways. First, as proposed
in Section 7, we can use normals to process geometry
indirectly. This approach has the advantage that edges
in the geometry become discontinuities in the signal,
whereas xyz positions on a mesh are continuous
everywhere. Given the reconstruction method in [7],
one can view the normal signal as an alternative non-
Euclidean expression of geometry that can be pro-
cessed like any other embedding. Second, our bilateral
could be applied directly to xyz positions as the signal
on � using normals on � = S2. This alternative better
mimics �ows, but we found it less effective than
normal processing and omitted the results. Normal
processing has been shown repeatedly to be a highly-
effective denoising technique, so we are hardly the
�rst to come to this conclusion [24], [7], [1]. We leave
the interpretation of our �lter as an anisotropic �ow
as in [54] for images for future research.

A related issue that will require additional study is
the effect of the reconstruction in [7] on the conver-
gence properties of our normal-based mesh process-
ing technique. Nonetheless, consistency for signals



10

on �xed irregular domains is a valuable feature of
our method, and one that is not guaranteed by any
existing method.

10 CONCLUSION

The sheer number of attempts to discretize bilateral
�ltering on non-image domains illustrated in Table 1
demonstrates the elusiveness and importance of a
generalized bilateral �lter. Expressions for the bilat-
eral, whether for images as in (2) or in the more
general sense as in (4), are easy to state and under-
stand and have only a few intuitive parameters. The
bilateral's behavior is well-understood and forms the
basis for more complex methods such as the mean
shift. It has withstood the test of time and remains
a foundational tool used to construct state-of-the-
art algorithms in diverse parts of image processing,
vision, and graphics.

Our new discretization makes the process of de�n-
ing a bilateral �lter on a given domain and sig-
nal straightforward. Feature-preserving �lters can be
achieved on arbitrary domains simply by choosing
domains � ; � and kernels K � ; K � , with the assump-
tion that � can be sampled reasonably. This process
has an easily-understood continuous limit (4) and can
even be extended to tasks like histogram computation
and shape editing. The speed of the �lter simply
depends on the number of samples in � and the time
it takes to apply K � , the latter of which often boils
down to a simple pre-factored linear solve.

While we have illustrated only a few applications of
our method within the domain of geometry process-
ing, we hope that its simplicity and effectiveness will
lead to its application in other settings. For instance,
in image processing, some results show that distances
between signatures for commonly-used cross bilateral
signals may not be measured using the Euclidean met-
ric but rather along some underlying manifold [55],
[56]; this type of relationship can be encoded in our
framework by de�ning � to be a part of the image
plane and � to be the cross bilateral manifold in
question. As another example, local histograms may
be useful for understanding structure and local infor-
mation in graphs, using Laplacian heat �ow to eval-
uate proximity. These broad applications and many
others are no harder to implement or understand than
the ones we have suggested in this paper, and they
begin to reveal the exciting potential implications of
a reliable generalized bilateral �ltering technique.

ACKNOWLEDGMENTS

The authors would like to thank Andrew Adams,
Leonidas Guibas, Abe Davis, Michael Kass, Andy
Nguyen, and others for discussing ideas from the
paper at various stages of its creation.

REFERENCES

[1] Y. Zheng, H. Fu, O. K.-C. Au, and C.-L. Tai, “Bilateral Normal
Filtering for Mesh Denoising,” IEEE Trans. Vis. Comp. Graph.,
vol. 17, no. 10, pp. 1521–1530, 2011.

[2] K. Hildebrandt and K. Polthier, “Anisotropic �ltering of non-
linear surface features,” Comp. Graph. Forum, vol. 23, pp. 391–
400, 2004.

[3] H. Fan, Y. Yu, and Q. Peng, “Robust Feature-Preserving
Mesh Denoising Based on Consistent Subneighborhoods,”
IEEE Trans. Vis. Comp. Graph., vol. 16, no. 2, pp. 312–324, 2010.

[4] C. Tomasi and R. Manduchi, “Bilateral �ltering for gray and
color images,” in Int. Conf. Comp. Vis., 1998, pp. 839–846.

[5] S. Paris and F. Durand, “A Fast Approximation of the Bilateral
Filter using a Signal Processing Approach,” in Proc. European
Conf. Comp. Vis., 2006, pp. 568–580.

[6] S. Fleishman, I. Drori, and D. Cohen-Or, “Bilateral mesh
denoising,” ACM Trans. Graph., vol. 22, pp. 950–953, 2003.

[7] X. Sun, P. Rosin, R. Martin, and F. Langbein, “Fast and
Effective Feature-Preserving Mesh Denoising,” IEEE Trans. Vis.
Comp. Graph., vol. 13, no. 5, pp. 925–938, 2007.

[8] D. Comaniciu and P. Meer, “Mean shift: a robust approach
toward feature space analysis,” IEEE Trans. Pattern Anal. &
Mach. Intel., vol. 24, no. 5, pp. 603–619, 2002.

[9] T. Kobayashi and N. Otsu, “Von Mises-Fisher Mean Shift for
Clustering on a Hypersphere,” in Int. Conf. Pattern Rec., 2010,
pp. 2130–2133.

[10] J. Van de Weijer and R. Van den Boomgaard, “Local mode
�ltering,” in Comp. Vis. and Pattern Rec., vol. 2, 2001, pp.
428–433.

[11] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy, Polygon
Mesh Processing. AK Peters, 2010.

[12] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe,
and K. Toyama, “Digital photography with �ash and no-�ash
image pairs,” ACM Trans. Graph., vol. 23, pp. 664–672, 2004.

[13] E. Eisemann and F. Durand, “Flash photography enhancement
via intrinsic relighting,” ACM Trans. Graph., vol. 23, no. 3, pp.
673–678, Aug. 2004.

[14] A. Adams, N. Gelfand, J. Dolson, and M. Levoy, “Gaus-
sian KD-trees for fast high-dimensional �ltering,” ACM Trans.
Graph., vol. 28, pp. 21:1–21:12, 2009.

[15] A. Adams, J. Baek, and M. A. Davis, “Fast high-dimensional
�ltering using the permutohedral lattice,” in Comp. Graph.
Forum, vol. 29, 2010, pp. 753–762.

[16] A. Miropolsky and A. Fischer, “Reconstruction with 3D ge-
ometric bilateral �lter,” in Symp. Solid Modeling and App.
Eurographics Association, 2004, pp. 225–229.

[17] M. Eigensatz, R. W. Sumner, and M. Pauly, “Curvature-
Domain Shape Processing,” Comp. Graph. Forum, vol. 27, no. 2,
pp. 241–250, 2008.

[18] T. R. Jones, F. Durand, and M. Desbrun, “Non-iterative,
feature-preserving mesh smoothing,” ACM Trans. Graph.,
vol. 22, pp. 943–949, 2003.

[19] G.-F. Hu, Q.-S. Peng, and A. R. Forrest, “Robust mesh smooth-
ing,” J. Comp. Sci. Technol., vol. 19, pp. 521–528, 2004.

[20] T. Jones, F. Durand, and M. Zwicker, “Normal improvement
for point rendering,” Comp. Graph. and App., vol. 24, no. 4, pp.
53–56, 2004.

[21] F. Duguet, F. Durand, and G. Dettrakis, “Robust Higher-Order
Filtering of Points,” INRIA, Tech. Rep. RR-5165, Apr. 2004.

[22] Q. Hou, L. Bai, and Y. Wang, “Mesh Smoothing via Adaptive
Bilateral Filtering,” in ICCS, vol. 3515, 2005, pp. 273–280.

[23] T. Shimizu, H. Date, S. Kanai, and T. Kishinami, “A New
Bilateral Mesh Smoothing Method by Recognizing Features,”
in Proc. Comp. Aided Design and Comp. Graph., 2005, pp. 281–
286.

[24] K.-W. Lee and W.-P. Wang, “Feature-Preserving Mesh Denois-
ing via Bilateral Normal Filtering,” in Proc. Comp. Aided Design
and Comp. Graph, 2005, pp. 275–280.

[25] C. Wang, “Bilateral recovering of sharp edges on feature-
insensitive sampled meshes,” IEEE Trans. Vis. Comp. Graph.,
vol. 12, no. 4, pp. 629–639, 2006.

[26] A. E. Johnson and M. Hebert, “Using Spin Images for Ef�cient
Object Recognition in Cluttered 3D Scenes,” IEEE Trans.
Pattern Anal. & Mach. Intel., vol. 21, pp. 433–449, 1999.



11

[27] M. Nociar and A. Ferko, “Feature-preserving mesh denoising
via attenuated bilateral normal �ltering and quadrics,” in Proc.
Spring Conf. on Comp. Graph., 2010, pp. 149–156.

[28] G. Vialaneix and T. Boubekeur, “SBL Mesh Filter: A Fast Sep-
arable Approximation of Bilateral Mesh Filtering,” in Vision,
Modeling and Visualization, 2011.

[29] S. Paris and F. Durand, “A Topological Approach to Hierarchi-
cal Segmentation using Mean Shift,” in Comp. Vis. and Pattern
Rec., June 2007, pp. 1–8.

[30] H. Yamauchi, S. Lee, Y. Lee, Y. Ohtake, A. Belyaev, and H.-
P. Seidel, “Feature Sensitive Mesh Segmentation with Mean
Shift,” in Proc. Shape Modeling and App., 2005, pp. 238–245.

[31] A. Shamir, L. Shapira, and D. Cohen-Or, “Mesh analysis using
geodesic mean-shift,” Vis. Comp., vol. 22, pp. 99–108, 2006.

[32] R. Subbarao and P. Meer, “Nonlinear Mean Shift for Clustering
over Analytic Manifolds,” in Comp. Vis. and Pattern Rec., 2006,
pp. 1168–1175.

[33] ——, “Nonlinear Mean Shift over Riemannian Manifolds,” Int.
J. Comp. Vis., vol. 84, pp. 1–20, August 2009.

[34] M. Kass and J. Solomon, “Smoothed Local Histogram Filters,”
ACM Trans. Graph., vol. 29, no. 4, pp. 100:1–100:10, 2010.

[35] X. Li, Z. Hu, and F. Wu, “A note on the convergence of the
mean shift,” Pattern Recognition, vol. 40, no. 6, pp. 1756–1762,
2007.

[36] R. Fisher, “Dispersion on a Sphere,” Proc. Royal Society of
London, vol. 217, no. 1130, pp. 295–305, 1953.

[37] C. Johnson, Numerical Solution of Partial Differential Equations
by the Finite Element Method. Dover, 2012.

[38] P. Burt and E. Adelson, “The Laplacian Pyramid as a Compact
Image Code,” IEEE Trans. Comm., vol. 31, no. 4, pp. 532–540,
1983.

[39] R. Deriche, “Recursively Implementing the Gaussian and its
Derivatives,” INRIA, Tech. Rep. 1893, 1993.

[40] R. MacNeal, “The solution of partial differential equations
by means of electrical networks,” Ph.D. dissertation, Caltech,
1949.

[41] M. Chuang and M. Kazhdan, “Interactive and anisotropic
geometry processing using the screened Poisson equation,”
ACM Trans. Graph., vol. 30, no. 4, pp. 57:1–57:10, Jul. 2011.

[42] T. Davis, “Algorithm 832: UMFPACK V4.3—an unsymmetric-
pattern multifrontal method,” ACM Trans. Math. Softw., vol. 30,
pp. 196–199, June 2004.

[43] A. Hirani, “Discrete Exterior Calculus,” Ph.D. dissertation,
Caltech, 2003.

[44] L. Váša and V. Skala, “A Perception Correlated Comparison
Method for Dynamic Meshes,” IEEE Trans. Vis. Comp. Graph.,
vol. 17, no. 2, pp. 220–230, Feb. 2011.

[45] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson Surface
Reconstruction,” in Proc. Symp. Geom. Proc., 2006, pp. 61–70.

[46] M. Belkin, J. Sun, and Y. Wang, “Constructing Laplace Opera-
tor from Point Clouds in Rd ,” in Proc. Symp. Disc. Alg., 2009,
pp. 1031–1040.

[47] M. Reinhardt, S. Dach, M. Backasch, H. Ben Amor, B. Jung,
C. Schlegel, and T. Schröder. (2011, September) 3D Scan 2.0.
[Online]. Available: http://vr.tu-freiberg.de/scivi/

[48] M. Alexa and M. Wardetzky, “Discrete Laplacians on general
polygonal meshes,” ACM Trans. Graph., vol. 30, pp. 102:1–
102:10, Aug. 2011.

[49] J. Cao, A. Tagliasacchi, M. Olson, H. Zhang, and Z. Su, “Point
Cloud Skeletons via Laplacian Based Contraction,” in Shape
Modeling Int., June 2010, pp. 187–197.

[50] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of
histograms for local surface description,” in Proc. European
Conf. Comp. Vis., 2010, pp. 356–369.

[51] M. Hadwiger, R. Sicat, J. Beyer, J. Krüger, and T. Möller,
“Sparse PDF maps for non-linear multi-resolution image op-
erations,” ACM Trans. Graph., vol. 31, no. 6, pp. 133:1–133:12,
Nov. 2012.

[52] L. Hörmander, The analysis of linear partial differential operators:
Distribution theory and Fourier analysis. Springer-Verlag, 1990.

[53] L. Váša and O. Pet�rík, “Optimising Perceived Distortion in
Lossy Encoding of Dynamic Meshes,” Comp. Graph. Forum,
vol. 30, no. 5, pp. 1439–1449, 2011.

[54] D. Barash, “Fundamental relationship between bilateral �lter-
ing, adaptive smoothing, and the nonlinear diffusion equa-

tion,” IEEE Trans. Pattern Anal. & Mach. Intel., vol. 24,
no. 6, pp. 844–847, jun 2002.

[55] G. Carlsson, T. Ishkhanov, V. Silva, and A. Zomorodian, “On
the Local Behavior of Spaces of Natural Images,” Int. J. Com-
put. Vision, vol. 76, pp. 1–12, January 2008.

[56] G. Peyré, “Manifold models for signals and images,” Comp.
Vis. and Image Understanding, vol. 113, no. 2, pp. 249–260, Feb.
2009.

Justin Solomon is a PhD candidate in
the Geometric Computing Group of Stanford
University's Department of Computer Sci-
ence. He also received a BS in Mathematics
and Computer Science (2010) and an MS
in Computer Science (2012) at Stanford. His
areas of study include geometry processing,
computer graphics, and numerical methods
with a focus on understanding geometric
data. He is supported by the Hertz, NDSEG,
and NSF graduate fellowships.

Keenan Crane is a PhD student in the De-
partment of Computing and Mathematical
Sciences at Caltech. He received a BS in
Computer Science from the University of Illi-
nois at Urbana Champaign in 2006. He is
the recipient of a Google PhD Fellowship and
a National Science Foundation Mathematical
Sciences Postdoctoral Research Fellowship.
His current research focuses on discrete dif-
ferential geometry with applications in digital
geometry processing.

Adrian Butscher is a senior research sci-
entist with the Max Planck Institute for Com-
puter Science. He received his PhD in math-
ematics at Stanford University in 2000. His
current research interests include discrete
and continuous differential geometry with ap-
plications in digital geometry processing.

Chris Wojtan received his B.S. in Computer
Science in 2004 from the University of Illinois
in Urbana Champaign and his Ph.D. in Com-
puter Graphics from the Georgia Institute
of Technology in 2010. He was awarded a
National Science Foundation Graduate Re-
search Fellowship, the Georgia Tech Sigma
Xi Best Ph.D. Thesis Award, and the Mi-
crosoft Visual Computing Award. Chris is
currently an Assistant Professor at the Insti-
tute of Science and Technology Austria (IST

Austria), and his research interests are physically-based animation
and geometry processing.


	Introduction
	Contributions

	Background
	Scalar Bilateral Filtering
	Mesh Bilateral Filtering
	Mean Shift Filtering

	Generalized Bilateral Filtering
	Generalized Mean Shift Filtering
	Discretization
	Processing Scalar Signals
	Mesh Denoising
	Additional Applications
	Oriented Point Clouds
	Bilateral and Mean Shift on Other Signals
	Local Histograms
	Feature-Preserving Filters

	Discussion
	Limitations

	Conclusion
	References

