
ADMM for Earth Mover’s Distances

Justin Solomon, Raif Rustamov, Leonidas Guibas, and Adrian Butscher

This document derives the ADMM algorithm stated in “Earth Mover’s Dis-
tances on Discrete Surfaces” (SIGGRAPH 2014).

In §4.5, we reduce the problem of computing earth mover’s distances on triangulated surfaces
to the following optimization for vector c:

inf
c ∑

t
‖Btc + wt‖.

To derive an ADMM approach, we define per-triangle vectors Jt and solve the following optimiza-
tion instead:

infc,J ∑t ‖Jt‖
s.t. Jt = Btc + wt

This optimization problem has the following augmented Lagrangian:

Lβ = ∑
t

[
‖Jt‖+ y>t (Jt − Btc− wt) +

β

2
‖Jt − Btc− wt‖2

]
ADMM alternates between three steps detailed below:

J ← arg min
J

Lβ(J, c, y)

c← arg min
c

Lβ(J, c, y)

yt ← yt + β(Jt − Btc− wt)

1 J update

We can optimize Lβ over J independently for each face since the sum over t decouples in this step.
Defining J0

t = Btc + wt and henceforth in this section dropping the t subscript, we wish to solve

min
J

[
‖J‖+ y> J +

β

2
‖J − J0‖2

]
This objective is convex, and we could run generic machinery. But in fact we can solve this prob-
lem in closed form via the derivation below.

Let’s simplify the optimization objective by “completing the square:”

‖J‖+ y> J +
β

2
‖J − J0‖2 = ‖J‖+ y> J +

β

2
(‖J‖2 − 2(J0)> J) + const.

1

= ‖J‖+ β

2
‖J‖2 + (y− βJ0)> J + const.

= ‖J‖+ β

2

[
‖J‖2 +

2
β
(y− βJ0)> J

]
+ const.

= ‖J‖+ β

2

[
‖J‖2 − 2z> J

]
+ const.

= ‖J‖+ β

2
‖J − z‖2 + const.

Here, we defined z ≡ − 1
β (y− βJ0). So, we equivalently can solve the following optimization:

min
J

[
‖J‖+ β

2
‖J − z‖2

]
In this form, it is clear we can write J = az for some a ∈ R (to prove this separate J into components
orthogonal and parallel to z; the former must be zero). Then, we can write

min
a

[
|a|‖z‖+ β

2
(a− 1)2‖z‖2

]
Or, equivalently:

min
a

[
|a|+ d(a− 1)2] ,

where d = β
2‖z‖. This final simplification is solvable using elementary techniques. Clearly a ∈

[0, 1], so |a| = a. If f (a) = a + d(a− 1)2, then f ′(a) = 1 + 2d(a− 1) = 0 =⇒ a = 1− 1
2d . We have

a > 0 ⇐⇒ 1− 1
2d > 0 ⇐⇒ d > 1/2. Hence, in the end we must have:

a =

{
1− 1

2d d > 1
2

0 otherwise

2 c update

For this update step, we can write:

0 = ∇cLβ = ∑
t

[
−B>t yt − βB>t (Jt − wt) + βB>t Btc

]
Dividing by β and moving terms shows:(

∑
t

B>t Bt

)
c = ∑

t
B>t

(
yt

β
+ Jt − wt

)
This is a small matrix solve if we use the Laplace-Beltrami basis, and it can be prefactored.

2

3 Algorithm Summary

Based on the derivation above, the algorithm below minimizes the EMD energy (any time there is
a t subscript, there should be a loop over triangles t):

1. J update:

zt ← Btc + wt −
yt

β

at ←
{

1− 1
β‖zt‖ β‖zt‖ > 1

0 otherwise

Jt ← atzt

2. c update (can pre-factor the inverted matrix):

c←
(

∑
t

B>t Bt

)−1 [
∑

t
B>t

(
yt

β
+ Jt − wt

)]

3. Dual update:
yt ← yt + β(Jt − Btc− wt)

3

	J update
	c update
	Algorithm Summary

