
Eurographics Symposium on Geometry Processing 2016
Maks Ovsjanikov and Daniele Panozzo
(Guest Editors)

Volume 35 (2016), Number 5

Near-Isometric Level Set Tracking

Michael Tao1 Justin Solomon2 Adrian Butscher3

1University of Toronto
2Massachusetts Institute of Technology

3Autodesk Research

Abstract
Implicit representations of geometry have found applications in shape modeling, simulation, and other graphics pipelines.
These representations, however, do not provide information about the paths of individual points as shapes move and undergo
deformation. For this reason, we reconsider the problem of tracking points on level set surfaces, with the goal of designing an
algorithm that — unlike previous work — can recover rotational motion and nearly isometric deformation. We track points on
level sets of a time-varying function using approximate Killing vector fields (AKVFs), the velocity fields of near-isometric motions.
To this end, we provide suitable theoretical and discrete constructions for computing AKVFs in a narrow band surrounding an
animated level set surface. Furthermore, we propose time integrators well-suited to integrating AKVFs in time to track points. We
demonstrate the theoretical and practical advantages of our proposed algorithms on synthetic and practical tasks.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

Implicit representations of geometry are critical in many computer
graphics pipelines. Whereas animating and editing meshed geometry
can require complex topological manipulations, resampling, and
other expensive operations, implicit shapes undergo these changes
smoothly while maintaining a fixed resolution by moving over a
background grid of ambient space. This Eulerian perspective is
popular in simulating dynamic physical materials like fluids [Bri08]
and in modeling shapes out of simple primitives [Sha02, PT92] or
“blob”-like building blocks [Bli82, Max83].

Animated implicit shapes are represented as level sets of a time-
varying function. A key difference between this representation and
an animated mesh, however, is that notions of temporal coherence
are much weaker. Specifically, animated implicit surfaces do not
encode any information about the path of a single surface point over
time, needed for transporting texture coordinates, labels, and other
fine-grained detail. For example, the implicit representations of a
stationary sphere and a rotating sphere are identical.

To address this difference in expressive power, in this paper we
reconsider the problem of recovering the velocity of an implicit
surface, first introduced in [SS11]. While preserving the advantages
of computing velocities using information only from a small win-
dow of frames, we propose a new model that recovers not only
translational motion but also rotations and elastic deformation.

Our main technical tool is the use of approximate Killing vector
fields (AKVFs), introduced to the graphics community for geome-

try processing in the sequence of papers [BCBSG10, SBCBG11b,
SBCBG11a]. Killing vector fields are by definition the velocities of
isometric motions, making them a reasonable space of velocity fields
for moving and deforming implicit bodies. Since the optimization
for AKVFs attempts to recover rigid motion as much as possible,
by definition our method recovers rigid motions and has reasonable
behavior as deformations become non-rigid.

After adapting the mathematics of AKVFs to implicit geome-
try, we show how to recover these fields from animated implicit
sequences via one sparse linear solve per frame, solving a discretiza-
tion of an elliptic PDE on a narrow band of the implicit function
around the surface. No meshing is needed in our pipeline. We couple
this computation with an exponential integrator for tracking indi-
vidual particles over time, designed to recover both rotational and
translational rigid motion exactly. Furthermore, a clear distinction
of our work is that our algorithm is designed for discrete data since
the PDE formulation improves its resilience to noise.

We demonstrate AKVF-based implicit velocity computation on
benchmark tests to compare with previous work on the same prob-
lem. Our method is able to recover isometric motions as well as
localized and global distortions of animated implicit surfaces. Addi-
tionally, we show how this new model can be applied to problems
including procedurally-defined and geometrically-driven implicit
surfaces represented solely by discrete level set function data. Ex-
amples include tracking animated level sets built from primitives
and from mean curvature flow. Our method is thus applicable in
cases where it is difficult or impossible to represent the moving

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

M. Tao & J. Solomon & A. Butscher / Near-Isometric Level Set Tracking

surface in an explicit fashion. Finally, when the surface motions
result in topological changes we propose behaviors that we deem as
appropriate despite the inherent ambiguity of this scenario.

2. Related Work

Level set tracking. Tracking an interface represented as the zero-
level set of a time-varying function often requires knowledge of the
velocity of the interface. Often the velocity field can be derived as
part of the simulation pipeline: for example, in a fluid simulation,
the Navier-Stokes equations are solved for the fluid velocity and
pressure [EFFM02]; or in a geometric flow problem (such as mean
curvature flow), the velocity can be computed from the geometry
of the interface itself [OS88]. With a known velocity field, one can
compute correspondences between level sets at different times, for
example [PHKF03] which advects the backward correspondences
along with the level sets. A different approach, making indirect use
of velocities, is to seed the implicit surface with triangulated parti-
cles and use normal projection and tangential relaxation to track the
particles over time while maintaining triangle quality, e.g. [BN07].
These ideas have been applied with good success in skinning, in
which an implicit representation of an animated character’s body
drives the movement of a textured mesh, e.g. [VGB∗14].

In many cases, however, a canonically-defined interface velocity
is lacking. A common practice is to use the normal velocity of the
surface, e.g. in [WH94]. This is sufficient for tracking the inter-
face, but not for tracking particles situated on the interface since
normal motion alone can cause the distribution of particles to stray
significantly from uniform. An ad hoc tangential component of the
velocity is needed to ensure proper point correspondences between
level sets at different times.

The question of determining the tangential component of the
velocity of a moving family of level sets was first posed in [SS11].
In this work, the authors propose a local condition that can be
solved for the tangential component independently at each vertex
of the background grid. They assert that the normal vector of the
level sets should remain constant throughout the motion. Though
simple and accurate for translational motions, this condition fails to
capture rotational motions. The papers [FMM13, MUM14] attempt
to rectify this with another local condition based on more geometric
information. Respectively, the authors propose that the curvature
of the level sets should remain constant over time, and that rigid
motions are solved for exactly by considering the motion of the
center of mass and moment of inertia of the zero-level set. Though
these methods are sufficient to capture rigid motions in certain cases,
their drawbacks are that these methods may yield poor results under
non-rigid motion and it is not clear how the curvatures or moments
of inertia from one frame to the next should be related to each other.
Furthermore, [FMM13] depends on high order derivatives of the
level set function and thus is highly susceptible to noise.

Finally, the method of [DYT05] computes a function by solving
the Laplace equation on the three-dimensional surface obtained by
sweeping the level sets out in space-time and integrates its gradient
flow to find trajectories connecting points on level sets at different
times. This interesting method achieves good results but does not
guarantee that rigid motions are correctly captured over time.

Ft(x)≤ 0

Ft(x) > 0

∂Ωt

(a) Notation

Time t

∂Ωt+ε

∂Ωtx

Time t + ε

(b) Tangential ambiguity

Figure 1: Mathematical formulation. (a) Ωt is the set of x with
Ft(x)≤ 0, with boundary ∂Ωt ; here, values of Ft are colored from
blue (negative) to red (positive). (b) The constraint that x ∈ ∂Ωt
stays on the Ft(x) = 0 level set is not sufficient to determine its
position as time progresses, since it can slide tangentially.

Approximate Killing vector fields (AKVFs). AKVFs were intro-
duced in [BCBSG10] for finding continuous one-parameter families
of near-isometries of a discrete surface represented as a triangle
mesh. In [SBCBG11b], the spectrum of the Killing operator was
used to segment the mesh into primitives with similar sets of local
near-isometries. [ABCCO13, AOCBC15] find AKVFs using the
methodology of functional maps [OBCS∗12]. Closer in spirit to our
application is [SBCBG11a], where the authors find large deforma-
tions of planar shapes by integrating two-dimensional AKVFs satis-
fying user-prescribed constraints (deformations of key vertices).

3. Mathematical Formulation

3.1. Moving Objects as Families of Level Sets

Consider a compact body moving either rigidly or non-rigidly
through space in a unit time interval. Let Ωt ⊆ R3 be the body
at time t and let ∂Ωt be its boundary. If we use the level set represen-
tation to describe Ωt , then we have a family of functions Ft :R3→R
for which Ωt is the sub-level set {x ∈ R3 : Ft(x) ≤ 0} and ∂Ωt is
the level set {x ∈ R3 : Ft(x) = 0}. Figure 1a illustrates our notation.

We emphasize that the choice of level set function is not unique:
e.g. for any strictly positive function gt : R3→ R+ then the product
gt ·Ft is also a level set function for Ωt . One canonical choice could
be to take Ft(x) as the signed distance function of Ωt . This function
is mostly smooth and satisfies ‖∇Ft(x)‖= 1 for almost all x ∈ R3,
but has the drawback that it is not differentiable on a non-empty
(though measure zero) set called the medial axis of ∂Ωt [OF02].
Our formulation, however, is not tied to a particular choice of level
set function nor is it sensitive to the presence of this type of non-
differentiability. The only assumptions we make are as follows. The
surface ∂Ωt is piecewise smooth and has a level set function Ft
defined in a neighborhood of ∂Ωt of uniform size. Moreover, Ft
has uniformly bounded difference quotients in space and in time.
Finally, ‖∇Ft‖> 0 except possibly at isolated points.

3.2. Changing Topology

One of the chief advantages of the level set representation for time-
varying geometry is that changes of topology can be handled seam-
lessly and without the need for complex and expensive geometry

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

M. Tao & J. Solomon & A. Butscher / Near-Isometric Level Set Tracking

Figure 2: (left) The level set function has a critical point near a
moment of topology change. (right) Tracking ambiguity.

processing operations such as temporally coherent remeshing. Appli-
cations which have leveraged this feature with great success include
modeling interface pheonomena in fluid flow (many examples can be
found in [OF02]) and topology optimization of continuum structures
in engineering (e.g. [AJT04] and [WWG03]).

The difficulty posed by changing topology, from our perspective,
is that when the topology of the zero-level set of a family functions
Ft changes, it must be the case that∇Ft vanishes somewhere on the
level set (if this were not so, we would be in contradiction to the
implicit function theorem [Mun91]), see Figure 2.

We nevertheless would like our level set tracking algorithm to
be applicable during a change in topology. We note that tracking
points on a family of level sets undergoing a change in topology is ill-
posed and highly dependent on external considerations. For instance,
Figure 2 shows an ambiguity that bedevils any attempt to track points
on a pair of merging spheres based on surface geometry alone;
however, a resolution is possible e.g. if the spheres represent water
droplets and our model includes hydrodynamic effects. Therefore
we will develop our algorithm with sufficient flexibility to be able
to handle changes of topology by allowing the user to incorporate
external tracking strategies in the space-time neighbourhood of the
locus of topology change. We address this in §5.6.

3.3. Tracking a Family of Level Sets

We would like to track the motion of an arbitrary point on the family
of surfaces ∂Ωt . What this means is that we are able to construct a
smooth family of mappings (called a flow) of the form φt : ∂Ω0→
R3 such that φt(x0) ∈ ∂Ωt for each x0 ∈ ∂Ω0 and φ0 = identity.
Therefore, for any point x0 ∈ ∂Ω0 we get a smooth trajectory defined
by x(t) := φt(x0) that tracks x0 over time.

The choice of φt is highly non-unique since it is equivalent to
finding correspondences between the surfaces at different times.
If Ωt moves rigidly, then there may be well-defined “natural” cor-
respondences. But if the motion of Ωt involves deformation, then
correspondences cease to be well-defined. Nonetheless, in many
situations we seek the “most natural” correspondences between the
surfaces. The challenge becomes how to define this notion rigor-
ously. In this paper, we propose a variational method that singles
out a unique φt for any motion of Ωt and is optimally applicable
when Ωt moves near-rigidly.

The choice of φt can not be made arbitrarily since geometric
constraints must be satisfied. The level set representation provides a
convenient way to express these. We rephrase the condition φt(x0)∈

∂Ωt ∀(x0, t) as Ft(φt(x0)) = 0 and differentiate in t. This yields

∂Ft

∂t
◦φt(x0)+∇Ft ◦φt(x0) ·

∂φt(x0)

∂t
= 0 . (1)

Here, the derivative ∂φt (x0)
∂t is the velocity vector field of the tra-

jectory x(t) := φt(x0). Since ∇Ft(x) is orthogonal to the level set
containing x, thus (1) constrains the normal component of the veloc-
ity and leaves the tangential component unconstrained. Any choice
of φt must satisfy this constraint. Conversely, it is the freedom in
the tangential component, illustrated in Figure 1b, that leads to our
inability to determine φt . In this light, our method for determining
φt amounts to making a choice of the tangential component of the
velocity while constraining the normal component via (1).

3.4. Eulerian Velocity

Since we wish to construct φt from its velocity, we proceed as
follows. Let U ⊆ R3 be a large bounded domain containing all Ωt .
Consider an extended mapping Φt : U →R3 such that the restriction
of Φt to ∂Ω0 is the desired φt . We introduce the Eulerian velocity of
this mapping, defined by Vt(x) := ∂Φt

∂t ◦Φ
−1
t (x), so that Vt(x) is the

velocity at x of the trajectory passing through x at time t. Therefore
the trajectories x(t) := Φt(x0) can be seen as solutions of the system
of ordinary differential equations (ODEs)

dx
dt

=Vt(x) and x(0) = x0 . (2)

The construction of φt can now be carried out by first specifying Vt
and then integrating (2) for Φt and restricting the result to ∂Ωt .

To have well-posed constraints in the above formulation, we must
constrain Vt everywhere in U . We make the assumption that the
extended mapping Φt preserves all level sets of the family of func-
tions Ft , and not just the zero level set; i.e. Ft(Φt(x)) = constant for
all (x, t) ∈ U × [0,1]. This is reasonable because in many practical
cases, e.g. signed distance functions or level set functions defined by
Boolean operations, the nearby level sets to the geometry of interest
move in conjunction with each other. Differentiating, we find

∂Ft

∂t
+∇Ft ·Vt = 0 . (3)

This equation constrains the normal component Vt to be

V⊥t =−∂Ft

∂t
∇Ft

‖∇Ft‖
. (4)

It remains to determine Vt in its entirety. We will explain our
proposed method for this after a brief introduction to approximate
Killing vector fields.

3.5. Approximate Killing Vector Fields

In Riemannian geometry, one characterizes the Eulerian velocity
of a rigid motion via the Killing equation, named after the mathe-
matician W. Killing (1847–1923) [dC92]. This is done as follows.
We define the linear partial differential operator P : Vector fields→
Symmetric matrix fields known as the Killing operator by

P(V) := DV +
[
DV
]>

.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

M. Tao & J. Solomon & A. Butscher / Near-Isometric Level Set Tracking

A vector field V satisfies the Killing equation when P(V) = 0, and
then it is called a Killing vector field. The connection to rigid motions
is given by the following result.

Theorem 1. Let Rt : R3→ R3 be a family of rigid motions of R3

of the form Rt(x) :=Otx+ pt where Ot ∈ SO(3) is an orthogonal
matrix with unit determinant (the rotational part of Rt) and pt ∈ R3

is a vector (the translational part of Rt). Then its Eulerian velocity at
any time t is a Killing vector field. Conversely, suppose V : R3→R3

is a Killing vector field. Then, there is an antisymmetric matrix
A ∈ R3×3 and a vector b ∈ R3 so that V (x) = Ax+ b. Moreover,
any sufficiently smooth family of solutions of this equation is the
Eulerian velocity of a family of rigid motions.

We now define an approximate Killing vector field (AKVF) as a
least-squares solution of the Killing equation subject to zero or more
application-dependent constraints. In the absence of constraints, the
resulting vector fields satisfy the Killing equation exactly and thus
generate rigid motions. In the presence of constraints, the resulting
vector fields are as close as possible to being generators of rigid
motions. For example, in [BCBSG10, SBCBG11b] the constraints
were geometric and arose indirectly because the authors formulated
their AKVF problem on a curved surface; whereas in [SBCBG11a],
the constraints were prescribed externally by the user.

3.6. AKVFs for Level Set Tracking

Finally we are able to state our method for determining the velocity
Vt . We require Vt to be an AKVF as defined above with the con-
straint (3) on the normal component of Vt . In this way, we produce
vector fields that are as close to generating rigid motions as possible,
subject to the level set tracking condition.

Definition 2. Let U be a bounded domain in R3 with smooth bound-
ary containing a moving zero-level set generated by the family of
functions Ft : U → R. Then we define the velocity vector field for
tracking these level sets as the AKVF

Vt := arg min
V∈H1

∫
U
‖P(V)‖2

s.t.
∂Ft(x)

∂t
+∇Ft(x) ·V (x) = 0 ∀x ∈ U

 ∀ t ∈ [0,1] (5)

where we minimize over H1 := H1(U ,R3), the set of L2-integrable
vector fields on U with L2-integrable weak first derivatives.
Note. An important caveat is that we require ∇Ft(x) 6= 0 for all
x ∈ U to ensure that the constraints are non-degenerate. This is of
course a very restrictive requirement to guarantee in practice (e.g.
any differentiable level set function for Ωt must have at least one
critical point corresponding to the global minimum). However, we
will see below (§3.10) that it is possible to slightly reformulate the
optimization problem (5) in such a way that this requirement is
obviated. In the mean time, we proceed as if this were the case.
Note. In Definition 2 we use the Frobenius norm ‖P(V)‖2 :=
Tr
(
P(V)[P(V)]>

)
. This could be replaced with a more general

quadratic of the form Tr
(
P(V)M1[P(V)]>M2

)
, where M1,M2 ∈

R3×3 could incorporate anisotropy or re-weighting, for instance.
We do not exploit this freedom here, though it does suggest an
interesting direction for future work.

3.7. Constraint Handling

We handle the constraints using a reduced formulation. That is, we
incorporate the constraints directly into the space of admissible
vector fields by writing Vt = V⊥t +V‖t where V⊥t is normal to the
level sets of Ft and is given by (4), while V‖t is parallel to the level
sets of Ft and is determined by solving

V‖t := arg min
V∈H1

‖

∫
U
‖P(V⊥t +V)‖2 ∀ t ∈ [0,1] (6)

where H1
‖ is the set of admissible vector fields satisfying ∇Ft(x) ·

V (x) = 0 for all x ∈ U . This problem is unconstrained since we can
derive a basis of tangent vectors satisfying this equation at each x.

Note. The requirement ∇Ft(x) 6= 0 is now explicit since ‖∇Ft‖
appears in the denominator of the expression defining V⊥t .

3.8. Properties of AKVFs

Convexity. The operator P is a linear, first-order partial differential
operator and the norm ‖ · ‖2 is positive definite and quadratic. The
constraints are linear. Thus, the optimization objective in (6) is a
convex quadratic function bounded below by zero. By standard
results in the calculus of variations, a minimizer exists in the space
of vector fields H1(U ,R3) [JLJ98].

Ellipticity. We show in the supplementary material that minimizers
of (5) and (6) satisfy a partial differential equation (PDE):

P∗P(V)+λ∇Ft = 0 in U

∇Ft ·V =−∂Ft

∂t
in U

N∂U ·P(V) = 0 on ∂U .

(7)

Here, P∗ is the matrix divergence, given component-wise by
[P∗(M)]i := ∑ j

∂Mi j
∂x j where Mi j are the components of M and N∂U is

the outward unit normal vector field of ∂U . This is a system of linear
partial differential and algebraic equations for V and a Lagrange
multiplier function λ : U → R.

The second-order, linear partial differential operator P∗P(V) :=
div
(
DV +[DV]>

)
is a particularly well-behaved elliptic operator

[CW98]. We can think of P∗P as a vectorial analog of the well-
known Laplace operator. In fact, if V j are the components of V then
the components P∗P(V) are

[P∗P(V)]i =−∆V i− ∂

∂xi div(V),

where ∆ is the Laplace operator. Thus the solutions of (7) enjoy
some properties of solutions of the Laplace equation (though notably
not all, e.g. the maximum principle does not hold). In particular,
we can expect solutions of (7) to enjoy a smoothing property. For
instance, we expect reasonable output when Ft is only continuous
with uniformly bounded difference quotients.

Null space. We now identify the null space of (7). Suppose V,λ
are such that the right hand side of (7) vanishes. Integrating the
inner product of the first equation with V by parts over U shows∫
U ‖P(V)‖2 = 0 using the boundary condition. Thus P(V)≡ 0 ev-

erywhere in U ; in other words, V is a Killing vector field. This in

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

M. Tao & J. Solomon & A. Butscher / Near-Isometric Level Set Tracking

turn shows that λ = 0 whenever ∇Ft is non-zero (which will turn
out to be everywhere in U according to the small reformulation we
will make in §3.10). Finally, the constraint∇Ft ·V ≡ 0 shows that
this Killing vector field is everywhere tangent to the level sets of Ft .

Therefore the null space of (7) is non-trivial only for special
domains and level set functions — those for which there exists a
Killing vector field that is tangent to all level sets. The only examples
satisfying this condition are shapes possessing rotational symmetries
such as a ball or the interior of a compact surface of revolution
(compact shapes with translational symmetries do not exist).

Theorem 3. The minimization problem (6) possesses a unique so-
lution unless Ωt possesses a rotational symmetry and we represent
Ωt by a level set function that is invariant under this symmetry.

We note that the limitation expressed in this theorem is a rare
event in practice. The failure to compute a reasonable vector field in
this case is ultimately due to the fundamental limitation that implicit
surfaces do not carry information about points on the surface (i.e. the
inability to distinguish a stationary sphere from a rotating sphere).
We discuss how our algorithm addresses this issue in §5.3.

2D versus 3D. AKVFs can be defined equally well for a family
of moving domains in R2 specified as the zero sub-level sets of
functions Ft : R2 → R. Some examples and applications that we
will present in the sequel are in 2D; the relevant mathematics and
computational framework are essentially the same as in 3D.

3.9. Behavior With Respect to Rigid Motions

An important feature of the problem (5) is that it exactly captures
rigid motions. See the supplementary material for proof.

Theorem 4. Suppose an object moves rigidly, i.e. Ωt := Rt(Ω) for
some time-varying family of rigid motions and reference geometry
Ω, and we describe this motion using the level set function Ft := F ◦
R−1

t where F is a level set function for Ω. Then the Eulerian velocity
Vt := dRt

dt ◦R−1
t solves the constrained minimization problem (5).

3.10. Narrow Band Reformulation

It is necessary to pose the optimization problem for the vector field
Vt in a domain U that strictly contains ∂Ωt in order to achieve a
formulation governed by the well-posed elliptic partial differential
equation 7. However, there is nothing in our formulation so far
that specifies the size of U , which we are therefore free to choose
as convenient. Since we are really only interested in tracking the
zero-level set ∂Ωt , it makes sense from a numerical perspective to
perform calculations only on a narrow band around ∂Ωt . Moreover,
since points where∇Ft(x) = 0 cause the constraints to degenerate,
these should be excluded as well. Recall that we have made the
reasonable assumption that∇Ft has only isolated zeros.

Therefore a small reformulation of (6) yields greater efficiency
and applicability. Rather than posing the optimizations for each t in
the same large domain U , we need only pose the problem at time t
in the narrow-band domain Uε(t) :=U1∩U2 where

U1 := {x ∈ R3 : dist(x,∂Ωt)< ε}

U2 := {x ∈ R3 : ‖x− x̄‖> ε̄ ∀x̄ s.t.∇Ft(x̄) = 0}

and dist(x,∂Ωt) is the distance of x ∈ R3 to ∂Ωt , while ε, ε̄
are small parameters specified a priori. We also only integrate

∂Ω t

Ω t

ε

Vt

Uε(t)

Figure 3: Narrow band

the ODE (2) for trajectories that begin
on ∂Ω0 and remain in the narrow bands
over time. We should point out that
the narrow-band approach is common
in applications concerning level sets,
e.g. [AS99], and can make use of spe-
cialized data structures, e.g. [Mus13].

Note. In practice, we find that choosing ε as a small fraction of the
diameter of ∂Ωt and ε̄ as a small fraction of ε are effective choices
for a wide range of shapes. In §5.3 we demonstrate the insensitivity
of our results to the width of the narrow band.

4. Discretization

4.1. Discrete AKVFs

Problem (6) admits a straightforward discretization via finite ele-
ments. In the end, this yields a linear system of equations for the
expansion coefficients of V . The details are as follows; we fix a
particular time t and suppress the t-subscript for brevity.

Figure 4: Tetrahedra.

Discretization of the domain. Sup-
pose that the geometry of interest is
contained within a background reg-
ular tetrahedral mesh T with ver-
tices x1, . . . ,xN , obtained by subdivid-
ing each cell of a cubical grid into 6
tetrahedra (i.e. the Freudenthal subdivi-
sion [Fre42] in Figure 4). We assume
that values of the level set function are given at the vertices and the
space and time derivatives are also given there either by centered
finite differences or via analytical formulas. We define a discrete
narrow band of widths ε and ε̄ for ∂Ω as the union of tetrahedra

Uε :=
⋃{

[y1,y2,y3,y4] ∈ T : dist(yi,∂Ω)≤ ε ∀ i
}
\Cε̄

where Cε̄ is the set of tetrahedra whose vertices are within ε̄ of the
discrete critical points of F . We compute the distance function to
∂Ω using the fast marching method as described in [Set99].

Discretization of vector fields. We work with piecewise-linear
vector fields on Uε. A basis consists of the vector fields ξies for
i = 1, . . . ,N and s = 1,2,3 where es is the sth standard basis vector
and ξi is the piece-wise linear function satisfying ξi(x j) = δi j.

Incorporating the constraints. Write V :=∑i ∑
3
s=1 visξies. We im-

pose the constraint (5) at each vertex; therefore vis must satisfy

3

∑
s=1

vis
∂F
∂xs (xi)+

∂F
∂t

(xi) = 0 ∀ xi . (8)

By construction of the narrow band, at least one of the spatial
derivatives is nonzero so these 1×3 systems are solvable. Thus

vis :=
2

∑
s′=1

ais′ziss′ +wis (9)

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

M. Tao & J. Solomon & A. Butscher / Near-Isometric Level Set Tracking

where ai1,ai2 ∈ R are real coefficients that will become the new
unknowns and ziss′ ∈ R are chosen to satisfy ∑

3
s=1 ziss′

∂F
∂xs (xi) = 0

for s′ = 1,2 (thus ∑
3
s=1 ziss′es are chosen to be tangent to the level

set at xi) and finally, wis ∈R is the normal component of the velocity

wis :=− ∂F
∂xs (xi)

∂F
∂t

(xi)/‖∇F(xi)‖2 . (10)

Discretization of the reduced system. In the supplementary ma-
terial, we derive the discrete optimality conditions relating the un-
known tangential components ais and the normal component (10).
In summary, this derivation shows that we require the following
objects computable from the input data and background mesh:

• The components of a stiffness matrix

Kijst := ∑
T∈R(i, j)

2A(i,T)A(j,T)
9Vol(T)

(
ns(i,T)nt(j,T)+δst

)
(11)

where R(i, j) is the one-ring of tetrahedra containing edge [xi,x j]
and n(i,T) is the inward-pointing unit vector normal to the face
opposite vertex i of tetrahedron T with area A(i,T).

• A vector w ∈ R3N written as w := (w>1 ,w>2 ,w>3)> and w>s =
(w1s, . . . ,wNs) is computed per-vertex using (10).

Then we define block matrices Z ∈ R3N×2N and K ∈ R3N×3N as

Z :=

Z11 Z12
Z21 Z22
Z31 Z32

 and K :=

K11 K12 K13
K>12 K22 K23
K>13 K>23 K33

where Zss′ := diag([ziss′]) ∈ RN×N and the components of the ma-
trices Kst ∈ RN×N are just Kijst . The matrix Z is block-diagonal,
while (11) shows that K is sparse with Kijst 6= 0 when (i, j) is an
edge in T . Finally, we solve

Z>KZa+Z>Kw = 0, (12)

where a := (a>1 ,a>2)> with a>s′ := (a1s′ , . . . ,aNs′) is the unknown
in R2N . We use the conjugate gradient algorithm to solve (12).

Discrete Killing vector fields. We have seen that Killing vector
fields are affine vector fields of the form V (x) := Ax+ b where A
is an antisymmetric matrix and b is a vector. An affine vector field
is equal to its piecewise linear interpolation. Since we have used
piecewise linear shape functions for the discretization of the stiffness
matrix above, we can therefore assert that the discretized Killing
vector fields belong to the null space of the discrete stiffness matrix.
Consequently, an analogue of Theorem 4 holds and the discrete
constrained optimization problem can reproduce rigid motions up
to error in the time discretization of the level set function.

4.2. Discrete Vector Field Integration

The solution of the discrete system described in the previous section,
applied at each time t, yields a family of piecewise linear vector
fields Vt , each defined on a narrow band Uε(t). We now describe a
method for integrating the ODE (2) for trajectories starting near ∂Ω0
in the narrow band Uε(0). We will use a forward time integration
method. We would like to ensure, however, that if Vt generates a
family of rigid motions then the integrated trajectories are exactly
correct. In [SBCBG11a], this was accomplished by choosing the

trajectories to be logarithmic spirals. But there is no analogue of
these trajectories in three dimensions, so we proceed differently: we
use a first-order Euler exponential integrator [HLW06].

To be precise, we discretize the time interval [0,1] into M time
steps of size ∆t := 1/M and let tm := m∆t. We approximate the
ODE (2) for the trajectory starting at x0 ∈ Uε(0) by a piecewise
continuous sequence of arcs of the form t 7→ xm(t) for t ∈ [0,∆t] and
m = 1, . . . ,M− 1. The equation for the (m+ 1)st arc derives from
the first-order Taylor expansion of (2) at (xm(∆t), tm), namely

dxm+1
dt

=Vm + V̇m(t− tm)+Am(xm+1− pm)

xm+1(0) = pm

(13)

where

pm := xm(∆t)

Am := [DVtm(pm)]
antisym

Vm :=Vtm(pm)

V̇m := ∂Vt (pm)
∂t

∣∣∣
t=tm

.

In our implementation, we compute DVm and V̇m using centered
finite differences. Note that we have replaced the full derivative DVm
appearing in the first-order Taylor expansion with its antisymmetric
part Am. Since Vm is an AKVF for which the symmetric part P(Vm)
is small in the least-squares sense by definition, and since we expect
the motion we are tracking not to depart too significantly from rigid,
then we expect Am to be a good approximation of DVm.

We can find an explicit solution for (13) based on the Rodrigues
Formula for the exponential of an antisymmetric matrix. Let ωm =
1
2‖Am‖Fro. Then after some work,

xm+1(t) =

{
pm + tVm + t2

2 V̇m if ωm = 0
pm +E1m(t) ·Vm +E2m(t) · V̇m if ωm 6= 0

(14)

where the 3×3 matrices E1m(t) and E2m(t) are:

E1m(t) := tId+
1− cos(ωmt)

ω2
m

Am +
tωm− sin(ωmt)

ω3
m

A2
m

E2m(t) :=
t2

2
Id+

tωm− sin(ωmt)
ω3

m
Am +

1
2 t2

ω
2
m−1+ cos(ωmt)

ω4
m

A2
m .

Note that if ωm→ 0 then the second option of (14) reduces to the
first option, which is a standard Euler step. We conclude this section
with an important result, showing that our integrator reproduces
uniform rigid motions exactly.

Theorem 5. Let Rt :R3→R3 be a one-parameter family of uniform
rigid motions. Then the trajectories generated by equations (14) and
the trajectories x 7→ Rt(x) are identical.

Proof. Let Vt(x) := ∂Rt
∂t ◦ R−1

t (x) be the Eulerian velocity of Rt .
Since Rt is a uniform rigid motion, Vt(x) is affine in both x and t.
Thus it equals its first-order Taylor expansion at each (x, t).

4.3. Stabilization

To prevent particles from drifting from the zero level set after each
integration step, we project particles back to ∂Ωt by applying

x← x− Ft(x)∇Ft(x)
‖∇Ft(x)‖2 .

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

M. Tao & J. Solomon & A. Butscher / Near-Isometric Level Set Tracking

Translation Translation Non-coaxial

Rotation Rotation Coaxial

Figure 5: AKVFs and tracked particles on a rigidly moving ellipse
in 2D and 3D. Our method recovers these rigid motions exactly.

This formula derives from the first-order Taylor expansion of nearest-
point projection. One iteration suffices for our purposes since the
deviation from the zero level set is always small. Note that since
we have excluded points where ‖∇Ft‖ vanishes from the narrow
band, the projection above is always well-defined. But we should
thus expect instabilities during topology change; see §5.6.

5. Results and Applications

All our test cases are either subsets of the unit square [0,1]2 in
2D sampled at various resolutions (usually 200×200) or the unit
cube [0,1]3 sampled at various resolutions (usually 75×75×75).
These are narrow-band level sets of width ε = 3/64 unless other-
wise indicated. We compute derivatives either using analytically
defined level set functions or via finite differences. Since the former
are more common, we only point out the latter below; in any case,
we demonstrate in §5.4 that our results are robust to discretization.
Our implementation is in Python with numpy; visualizations are
generated with matplotlib in 2D and mayavi in 3D. We com-
pute signed distance functions using the fast marching method from
scikit-fmm.

5.1. Linear Rigid and Non-Rigid Motions

Rigid motions. A key benefit of our algorithm is that it captures
rigid motion exactly. Figure 5 shows the first and last frames in
50-frame sequence of an ellipse undergoing assorted rigid motions.
In 2D we superpose the initial and final zero-level sets in the first
frame, along with the computed AKVF and the trajectories of a few
particles placed on the initial zero-level set. In 3D we show the zero-
level sets in different colors (blue=first and purple=last), as well
as the computed AKVF in the first frame and particle trajectories.
In all cases, our algorithm reproduces the rigid motion exactly to
within solver tolerance. The rotation with non-coaxial translation

Translating ellipse Rotating ellipse Rotating blobs

Figure 6: Comparison with [SS11] for rigid motions in 2D and 3D.
Red curves are ground truth motions, reproduced by our algorithm.
Green curves are motions produced by [SS11].

D
ila

tio
n

Sh
ea

r

Figure 7: AKVFs and tracked particles for linear non-rigid motions
of an ellipse in 2D and 3D, showing tracked paths (red) and linear
motion paths (green). In the 3D case we show a small set of particle
trajectories (left) and the initial and final positions of a sampling of
particles colored by their x-coordinate in the initial frame (right).

example is notable because its vector field varies in time and space,
thus making full use of our integrator’s capabilities. Although these
results use analytical derivatives, their accuracy is retained when we
use finite-difference derivatives, shown in §5.4.

Figure 6 compares with analogous results using [SS11]. Since
this method’s formulation does not account for rotation, its accu-
racy suffers predictably on motions with a rotational component. In
particular, combining rotation and coaxial translation causes con-
siderable difficulty. We did not compare with [FMM13], because
unlike [SS11] it is highly unsuitable for level set data with discrete
derivatives due to higher-order differentiation. But even if we used
this method with analytical derivatives, its curvature-based tracking
model is ill-suited to tracking surfaces that deform over time, as
small non-rigid deformations can have large changes in curvature.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

http://matplotlib.org
http://code.enthought.com/projects/mayavi/
https://pypi.python.org/pypi/scikit-fmm/0.0.7

M. Tao & J. Solomon & A. Butscher / Near-Isometric Level Set Tracking

Linear non-rigid motions. We perform two experiments with lin-
ear motion of the form Ft(x) := exp(At) · x where A is a constant
but not antisymmetric matrix (so exp(At) is no longer a rotation).
Examples include shears and dilations. We expect the computed
AKVFs and tracking results to exhibit simple departures from the
linear motions in question, as these motions are non-rigid. In each
case we show the first and last frames in a 50-frame sequence.

Figure 7 shows AKVFs and tracking for an ellipse undergoing
shearing or dilation using the same visualization as for Figure 5
(in 3D we added a translational component to cause the ellipses
to pull apart for greater clarity). Tracked paths are shown in red
while paths corresponding to the linear motions are shown in green;
well-bounded discrepancies between these paths are clearly visible.
In the 3D case we track a collection of colored particles generated by
farthest point sampling to demonstrate that the particle distribution
behaves reasonably over time. We observe that [SS11] has equivalent
behavior in these cases.

Figure 8 examines the effect of shearing and dilation for a 50-
frame sequence of level sets represented by the signed distance
function sampled on an 80×80×80 background grid. We compute
derivatives via finite differences. We show the AKVF in the first
frame and an alternate visualization of tracking results. That is, we
track vertices of a textured mesh at t = 0 to render the moving model
in several frames. The last column shows error as deviation from the
linear motion undergone by the vertex positions in the last frame.
Our technique tracks the rotating model accurately and produces
reasonable tracking results for dilation and shearing.

The “squash” test, wherein the cow is compressed horizontally
against the side of the grid, illustrates drawbacks of our method.
First, once the model is compressed enough, the grid resolution is
insufficient to track sharp features like the horns or to distinguish
between the legs. Second, when the level set approaches the grid
boundary, the neighborhood Uε(t) must be relatively thin. Even
so, our algorithm tracks large-scale deformation of the cow, with
some artifacts where motion could not be resolved. We do not
include comparisons in this experiment to [SS11], as we were unable
to produce reasonable results using a relatively complex signed
distance function sampled on a grid rather than known analytically.

5.2. Non-rigid deformations

Figure 9: Pullback

We show the results of two experi-
ments in which we track non-linear,
non-rigid, procedurally-generated defor-
mations. Figure 10 shows AKVFs and
tracked paths for a shape moving and de-
forming through 50 frames. In this exam-
ple, an implicit surface moves vertically
while rotating and bulging out and in; the
level set function is a sum of three Gaussians with moving centers
and constant variances. Points are successfully tracked through this
challenging sequence. Since the shape returns to its original config-
uration modulo 120◦ rotation and vertical shift, we have a notion of
“ground truth”; from this perspective, the tracked points exhibit 0.5%
error on average from their expected positions. The inset Figure 9
shows tracked trajectories pulled back to the initial frame in green
and the original particle locations in white.

Figure 11 shows AKVFs and tracked paths for an articulated
bar as it bends about non-coplanar axes at two joints. The bar is
represented as a sequence of signed distance functions and we use
finite-difference derivatives. Points remain at the expected locations
even as it bends and deforms in the joint regions. Due to the degree
of deformation in the joints, it is not clear how to pull back many of
the particles to the initial frame; thus we do not show an analogue
of Figure 9. Visually, however, the results are reasonable.

Finally, in Figure 12 we track a large collection of particles on
each of the two shapes above and visualize them using the technique
of Figure 7 (far right) in order to show that the particle distribution
behaves reasonably throughout the deformation.

5.3. Geometric Robustness

Narrow band size. Figure 13 shows an experiment illustrating our
method’s insensitivity to the choice of narrow band size ε. For clarity
of visualization we show the experiment in 2D but observe similar
robustness in 3D. We show vector fields and tracked points at three
frames of a 50-frame sequence of motions of a two-dimensional im-
plicit shape undergoing pinching and rotation with varying choices
of ε. The computed vector field Vt is nearly identical near the level
set ∂Ωt in each example, and the positions of the tracked points
agree up to several digits of precision. We only observe significant
degradation below ε = 1/128 or a diameter less than 2 grid cells.

The choice of level set function. Figure 14 shows an experiment
where we test the dependence of our method on the choice of level
set function used to describe the evolving geometry. For clarity of
visualization we show the experiment in 2D but observe similar
robustness in 3D. We show level sets, vector fields and tracked
points for the motion in the first and last frame of a 25-frame se-
quence of an implicit shape undergoing pinching only. The level
set functions are: the function Ft equal to a sum of Gaussians; the
function F1,t(x) := p(Ft(x)) where p(z) := z3+ 3

2 z; and the function
F2,t(x) := g(x)Ft(x) where g(x) := 1

10 +‖x‖
2.

The function F1,t simply rescales the values of Ft and thus all
level sets continue to exhibit similar deformations. Consequently, we
observe that the tracking accuracy of F1,t relative to Ft is extremely
high. However, the function F2,t has the same zero-level set as Ft
but its nonzero-level sets exhibit different deformations in each
frame. The tracking accuracy is correspondingly reduced, though in
absolute terms the results are stable and reasonable.

To address the question of which level set function is best, we note
that a canonical choice is always available, i.e. the signed distance
function. Furthermore, we recall that the problem of tracking a non-
rigidly deforming family of implicit surfaces is ill-posed and thus
one expects the need for additional input in order to resolve all am-
biguities. It is an interesting direction of future research to optimize
the choice of level set function towards specific applications.

Discontinuous derivatives. Figure 15 shows an experiment where
we test the accuracy of our method when the derivatives of the level
set function possess discontinuities. This is an important case be-
cause the signed distance function of a shape is non-differentiable on
the medial axis. But we expect this not to be a critical issue because

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

M. Tao & J. Solomon & A. Butscher / Near-Isometric Level Set Tracking
R

ot
at

io
n

D
ila

tio
n/

sh
ea

r
Sq

ua
sh

V at t = 0 Tracked frames (sampled evenly from 50-frame sequence) Final frame error

0% 8.4%

Figure 8: We apply three large, extrinsic motions to a textured mesh and track its vertices over time. We show an example of the vector field V
on slice Uε(t), example frames of the tracked mesh, and displacement error between the tracked mesh and the linear motion in the final frame.
(Cow model courtesy K. Crane.)

Side

TopPaths

+t

Figure 10: (left) Paths of points on an implicit surface moving
vertically, rotating, and deforming; colors represent the surfaces at
frames 0, 25, and 50. (right) AKVFs for the motion, from two views.

our algorithm computes vector fields by solving an elliptic PDE and
thus enjoys the benefits of its smoothing properties. Indeed, our ap-
proach is theoretically guaranteed to be stable if the input possesses
the smoothness of a signed distance function. This is confirmed by
our experiments: the left panel of Figure 15 is coloured with the time
derivative of the signed distance function of a rotating square and
we also show its gradient vector field (the discontinuities are clearly
visible). In the right panel, we show the final frame of the motion of
the square rotating through 45◦ in a 50-frame sequence. The AKVF
and tracking results are as we expect, though with less accuracy
than for the smooth examples we have computed, which we attribute
to the inadequacy of the grid resolution and the finite-difference

Figure 11: (left) AKVFs for frames 0, 25 and 50 in an animated
sequence of an articulated bar; (right) tracked paths of several points
on the bar through the animation. Our algorithm generates expected
trajectories even though the bar deforms non-rigidly.

stencils to properly capture the discontinuities of the rotating signed
distance function. Note that most other methods would suffer from
this same issue; but our method gains robustness from computing
the AKVF in a neighbourhood of the implicit surface.

Symmetries. Finally, our implementation does not suffer unduly
from the exceptional scenario expressed in Theorem 3 leading to an
underdetermined linear system. In part, this is because this rarely
occurs in practice. But when it does occur, e.g. in the first frame of
the articulated bar sequence shown in Figure 11 where the bar has a
cylindrical symmetry, the conjugate gradient algorithm chooses the

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

M. Tao & J. Solomon & A. Butscher / Near-Isometric Level Set Tracking

Figure 12: (left) Tracked particles for the sequence in Figure 10. A
rotating camera position keeps the same lobe in view. (right) Tracked
particles for the sequence in Figure 11. In both cases, particles are
colored by their x-coordinate in the first frame.

t=
0.

0
t=

0.
5

t=
1.

0

ε = 1/32 ε = 1/16 ε = 1/8 ε = 1/4

Erel =5.3×10−7 Erel =1.5×10−7 Erel =4.2×10−8

Figure 13: AKVFs tracking a global non-rigid motion of a two-
dimensional shape, with varying choices of ε given as a fraction of
the width of the background grid. Each experiment is marked with
average tracking error for the green points relative to the tracking
result using the thickest band on the right.

least-norm solution. Geometrically, this corresponds to assuming
that the component of the motion in the direction of the infinitesimal
cylindrical symmetry vanishes. But this may not be the case, e.g.
if the bar in were rotating about its axis in the first frame. In order
to capture this type of motion, a more robust solution might be to
consider the AKVFs in multiple timesteps to ensure that temporal
continuity is preserved. We leave this as future work.

5.4. Numerical Tests

Discretization. Table 1 tests sensitivity of the AKVF computation
to discretization of time and space. Here, we compute AKVFs for
rigid motions of an ellipsoid; this simple sequence has the advan-

Spacing Rot. Rot.+Trans.
503 1.99×10−3 4.18×10−3

603 1.69×10−3 3.57×10−3

703 1.49×10−3 3.15×10−3

803 1.33×10−3 2.82×10−3

903 1.21×10−3 2.57×10−3

∆t Rot. Rot.+Trans.
.100 7.44×10−3 1.58×10−2

.050 3.31×10−3 7.05×10−3

.030 2.13×10−3 4.53×10−3

.025 1.57×10−3 3.34×10−3

.020 1.24×10−3 2.64×10−3

Grid resolution Time resolution

Table 1: Sensitivity to discretization in space (left) and time (right)
for rigid motions; entries are in units of mean square relative error in
the distance between tracked and ground-truth particle trajectories.

tage that the ground-truth AKVF is known in closed form. First, we
discretize the grid x ∈ [0,1]3 using varying densities and compute
gradients of the level set function from samples, with closed-form
derivatives in time. Second, we discretize time t ∈ [0,1] using dif-
ferent time steps ∆t, with finite differences for time derivatives and
closed-form spatial gradients. Each table entry shows mean-square
error of the AKVF over the narrow-band. The spatial discretization
test averages this value over 10 frames, and the time discretization
test averages this value over one unit of time. Overall, we see that
errors are in the 0.5% range, even coarse discretizations yield < 2%
error, and that these values improve as the discretization is refined.

Timing. The supplementary document shows detailed timing in-
formation. The most expensive steps are assembling the stiffness
matrix for the narrow band at a given time; and solving the equation
(12). Generally, the total processor time per time step scales roughly
linearly with the number of vertices in the narrow band and equals
0.1 seconds (2D) and 2.5 seconds (3D) at the resolutions we typ-
ically consider. The reason for the large discrepancy is due to the
difference in sparsity of the stiffness matrices.

5.5. Tracking Implicit Surface Deformations

In this section we consider surface deformations obtained from geo-
metric flows, meaning that the animated level set data is generated
algorithmically once the initial surface is given.

Implicit surface interpolation. Figure 16 shows an example of
AKVFs and particle tracking for a shape interpolation example
appearing in [SDGP∗15], which algorithmically generates indica-
tor functions for the intermediate shapes based on optimal mass
transport. The shape interpolation method in that paper is highly
non-rigid, yet our method stably tracks particles while maintaining
a smooth distribution. We extract signed distance functions numer-
ically from the shape indicator functions using the fast marching
algorithm and compute their derivatives via finite differences. We
use these in our AKVF computations.

Mean curvature flow. As a second example of AKVF tracking
of shapes defined using fully-implicit grid-based algorithms, Fig-
ure 17 shows AKVFs and tracked points for a surface undergoing
volume-preserving mean curvature flow, using the level set algo-
rithm presented in [Sme03] which generates the level set functions
for the intermediate shapes by solving a discretized Hamilton-Jacobi
equation. Once again, the tracked points smoothly move from one
frame to the next and maintain their distribution, despite the fact
that the shape deforms highly non-rigidly.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

M. Tao & J. Solomon & A. Butscher / Near-Isometric Level Set Tracking
t=

0
t=

1 /
4

Ft p◦Ft g ·Ft Erel = 2.00×10−6 Erel = 5.66×10−2

Figure 14: Tracking different level set functions for the same evolving geometry. Level sets at two frames are shown for a 2D non-rigid
deformation sequence; the basic sequence (column 1) is modified by composing with a polynomial (column 2) and scaling by a function
(column 3). The remaining columns show corresponding tracked points and AKVFs as well as tracking error relative to the basic sequence.

Figure 15: (left) Time derivative and gradient of the signed distance
function of the square. (right) Tracking results and vector fields at
the final frame for a square rotating through 45◦.

5.6. Adaptations for Changing Topology

We present strategies for dealing with ambiguities that occur when
a deforming level set function undergoes a change of topology, as
discussed in §3.2 and §4.3. Based on geometric cues alone, parti-
cles in a neighborhood where such a change is taking place have
no information regarding which component of the interface they
should follow. The desired behavior of these particles is application
dependent and so we present two approaches that can be taken.

The geometry in Figure 18 illustrates our approaches. We consider
two blobs in 2D merging and separating, which we show on the
left side of each panel together with AKVFs and particle locations.
The right side of each panel shows the space-time surface swept out
be the geometry as time advances (the vertical direction represents
time); the time slices of interest are indicated by the presence of
particles. Note the AKVFs are well-behaved and reasonable.

In the left panel of Figure 18, we observe a failure of the projec-
tion strategy as one particle gets stranded in the hole created around
the point where∇Ft vanishes as it touches the level set. This particle
simply stops moving — and thus detaches from the geometry. One
approach is thus to permanently delete such particles when these
degeneracies occur. This is appropriate when two implicit surfaces
merge and surface area is permanently removed. On the other hand,

if the topological changes under consideration are temporary, it may
be desirable to recover particles when the topology change is un-
done. In this situation we propose to maintain a simple mass-spring
system, similar to [SS11] so that particles naturally gravitate back
to their original surfaces. Having such a mesh is also convenient
for re-establishing the original particle density, as particles tend to
clump when undergoing very far from rigid deformations typical of
most topology changes. We show this in the right panel of Figure 18.

6. Discussion and Conclusion

Even the simple tests at the beginning of §5 are sufficient to show the
advantages of our technique over existing work. Primarily, AKVFs
are ideally suited to capturing all classes of rigid motion rather than
translational motion, and furthermore as surfaces deform elastically
our method continues to provide a reasonable and intuitive model
for tracking points. Although our algorithm requires the solution of
a PDE rather than application of a per-point formula, in practice this
step provides resilience to noisy and sampled level set functions that
may not be known in closed-form.

Additional extensions of this technique can improve its efficiency
or stability. For instance, the choice of the parameter ε could be
carried out automatically and varied along the domain depending on
the band size needed to resolve surface features and motion. An even
more sophisticated implementation might employ an adaptive octree-
style data structure that adds degrees of freedom to our systems of
equations only in areas of the domain where more detail is needed
for accurate tracking. Multigrid methods and/or preconditioned
iterative solvers may also assist in solving the system of equations
for AKVFs on a grid more efficiently.

Even without these improvements, AKVF-based tracking remains
an efficient and accurate alternative to existing techniques for deter-
mining the velocity of an implicit surface that can be easily incorpo-
rated into existing pipelines for implicitly defined geometries.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

M. Tao & J. Solomon & A. Butscher / Near-Isometric Level Set Tracking

Frame 1 Frame 3 Frame 6 Frame 9 Frame 12 Frame 15 Frame 17

Figure 16: AKVFs (top), tracked particles (middle), and tracked texture (bottom) for the implicit shape interpolation example from [SDGP∗15].

Frame 0 Frame 1 Frame 4 Frame 7 Frame 13 Frame 19

Figure 17: AKVFs (top) and tracked particles (bottom) for a shape undergoing implicit volume-preserving mean curvature flow from [Sme03].

Figure 18: Strategies for tracking points. (left) Merging blobs and a lost particle. (right) Mesh strategy. See discussion in §5.6.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

M. Tao & J. Solomon & A. Butscher / Near-Isometric Level Set Tracking

Acknowledgements. J. Solomon acknowledges the support of the
NSF Mathematical Sciences Postdoctoral Research Fellowship
(award number 1502435). We thank R. Schmidt and J. Stam of
Autodesk Research for insightful conversations. Additionally we
thank E. Fiume of the University of Toronto for his support and
insight.

References
[ABCCO13] AZENCOT O., BEN-CHEN M., CHAZAL F., OVSJANIKOV

M.: An operator approach to tangent vector field processing. In Computer
Graphics Forum (2013), vol. 32, Wiley Online Library, pp. 73–82. 2

[AJT04] ALLAIRE G., JOUVE F., TOADER A.-M.: Structural optimiza-
tion using sensitivity analysis and a level-set method. Journal of compu-
tational physics 194, 1 (2004), 363–393. 3

[AOCBC15] AZENCOT O., OVSJANIKOV M., CHAZAL F., BEN-CHEN
M.: Discrete derivatives of vector fields on surfaces–an operator approach.
ACM Transactions on Graphics (TOG) 34, 3 (2015), 29. 2

[AS99] ADALSTEINSSON D., SETHIAN J. A.: The fast construction
of extension velocities in level set methods. Journal of Computational
Physics 148, 1 (1999), 2–22. 5

[BCBSG10] BEN-CHEN M., BUTSCHER A., SOLOMON J., GUIBAS L.:
On discrete Killing vector fields and patterns on surfaces. In Computer
Graphics Forum (2010), vol. 29, Wiley Online Library, pp. 1701–1711. 1,
2, 4

[Bli82] BLINN J. F.: A generalization of algebraic surface drawing. ACM
Trans. Graph. 1, 3 (July 1982), 235–256. 1

[BN07] BOUTHORS A., NESME M.: Twinned meshes for dynamic trian-
gulation of implicit surfaces. In Proceedings of Graphics Interface 2007
(2007), ACM, pp. 3–9. 2

[Bri08] BRIDSON R.: Fluid Simulation for Computer Graphics. Taylor &
Francis, 2008. 1

[CW98] CHEN Y.-Z., WU L.-C.: Second order elliptic equations and
elliptic systems, vol. 174. American Mathematical Soc., 1998. 4

[dC92] DO CARMO M.: Differential Geometry. Prentice-Hall, 1992. 3

[DYT05] DINH H. Q., YEZZI A., TURK G.: Texture transfer during
shape transformation. ACM Transactions on Graphics (TOG) 24, 2
(2005), 289–310. 2

[EFFM02] ENRIGHT D., FEDKIW R., FERZIGER J., MITCHELL I.: A
hybrid particle level set method for improved interface capturing. Journal
of Computational physics 183, 1 (2002), 83–116. 2

[FMM13] FUJISAWA M., MANDACHI Y., MIURA K. T.: Calculation
of velocity on an implicit surface by curvature invariance. Journal of
Information Processing 21, 4 (2013), 674–680. 2, 7

[Fre42] FREUDENTHAL H.: Simplizialzerlegung von beschränkter flach-
heit. Ann. of Math. 43 (1942), 580–582. 5

[HLW06] HAIRER E., LUBICH C., WANNER G.: Geometric numeri-
cal integration: structure-preserving algorithms for ordinary differential
equations, vol. 31. Springer Science & Business Media, 2006. 6

[JLJ98] JOST J., LI-JOST X.: Calculus of variations, vol. 64. Cambridge
University Press, 1998. 4

[Max83] MAX N.: Computer representation of molecular surfaces. IEEE
Comput. Graph. Appl. 3, 5 (1983), 21–29. 1

[MUM14] MANDACHI Y., USUKI S., MIURA K. T.: Velocity calculation
of 2d geometric objects by use of surface interpolation in 3d. Journal of
Advanced Mechanical Design, Systems, and Manufacturing 8, 2 (2014),
JAMDSM0012–JAMDSM0012. 2

[Mun91] MUNKRES J.: Analysis on manifolds, ser. Advanced Book Clas-
sics. Addison-Wesley Pub. Co., Advanced Book Program, 1991. 3

[Mus13] MUSETH K.: Vdb: High-resolution sparse volumes with dynamic
topology. ACM Transactions on Graphics (TOG) 32, 3 (2013), 27. 5

[OBCS∗12] OVSJANIKOV M., BEN-CHEN M., SOLOMON J.,
BUTSCHER A., GUIBAS L.: Functional maps: a flexible repre-
sentation of maps between shapes. ACM Transactions on Graphics
(TOG) 31, 4 (2012), 30. 2

[OF02] OSHER S., FEDKIW R.: Level Set Methods and Dynamic Implicit
Surfaces. Applied Mathematical Sciences. Springer, 2002. 2, 3

[OS88] OSHER S., SETHIAN J. A.: Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton-Jacobi formulations.
Journal of computational physics 79, 1 (1988), 12–49. 2

[PHKF03] PONS J.-P., HERMOSILLO G., KERIVEN R., FAUGERAS O.:
How to deal with point correspondences and tangential velocities in the
level set framework. In Computer Vision, 2003. Proceedings. Ninth IEEE
International Conference on (2003), IEEE, pp. 894–899. 2

[PT92] PAYNE B. A., TOGA A. W.: Distance field manipulation of surface
models. IEEE Comput. Graph. Appl. 12, 1 (Jan. 1992), 65–71. 1

[SBCBG11a] SOLOMON J., BEN-CHEN M., BUTSCHER A., GUIBAS L.:
As-Killing-as-possible vector fields for planar deformation. In Computer
Graphics Forum (2011), vol. 30, Wiley Online Library, pp. 1543–1552. 1,
2, 4, 6

[SBCBG11b] SOLOMON J., BEN-CHEN M., BUTSCHER A., GUIBAS
L.: Discovery of intrinsic primitives on triangle meshes. In Computer
Graphics Forum (2011), vol. 30, Wiley Online Library, pp. 365–374. 1, 2,
4

[SDGP∗15] SOLOMON J., DE GOES F., PEYRÉ G., CUTURI M.,
BUTSCHER A., NGUYEN A., DU T., GUIBAS L.: Convolutional Wasser-
stein distances: Efficient optimal transportation on geometric domains.
ACM Transactions on Graphics (TOG) 34, 4 (2015), 66. 10, 12

[Set99] SETHIAN J. A.: Level set methods and fast marching methods:
evolving interfaces in computational geometry, fluid mechanics, computer
vision, and materials science, vol. 3. Cambridge university press, 1999. 5

[Sha02] SHAPIRO V.: Solid modeling. In Handbook of Computer Aided
Geometric Design, Farin G., Hoschek J., Kim M., (Eds.). Elsevier, 2002.
1

[Sme03] SMEREKA P.: Semi-implicit level set methods for curvature and
surface diffusion motion. Journal of Scientific Computing 19, 1 (2003),
439–456. 10, 12

[SS11] STAM J., SCHMIDT R.: On the velocity of an implicit surface.
ACM Transactions on Graphics (TOG) 30, 3 (2011), 21. 1, 2, 7, 8, 11

[VGB∗14] VAILLANT R., GUENNEBAUD G., BARTHE L., WYVILL B.,
CANI M.-P.: Robust iso-surface tracking for interactive character skin-
ning. ACM Transactions on Graphics (TOG) 33, 6 (2014), 189. 2

[WH94] WITKIN A. P., HECKBERT P. S.: Using particles to sample and
control implicit surfaces. In Proceedings of the 21st annual conference on
Computer graphics and interactive techniques (1994), ACM, pp. 269–277.
2

[WWG03] WANG M. Y., WANG X., GUO D.: A level set method for
structural topology optimization. Computer methods in applied mechanics
and engineering 192, 1 (2003), 227–246. 3

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

