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Abstract

Shock filters and related tools, like coherence-
enhancing filters, are popular methods for denoising
and creating artistic effects. They iteratively apply mor-
phological operators with a constant structuring ele-
ment. We propose in this article to improve the orig-
inal shock filtering scheme using smoothed local his-
tograms. Our method exhibits better performance and
control of the erosion and dilation operators and serves
as an easily-controlled and fast denoising algorithm,
in comparison with other shock filters in the litera-
ture. We also show application of our method for water-
colorization and medical image segmentation.

1. Introduction

Shock filters are morphological image enhance-
ment techniques based on partial differential equations
(PDEs), which locally “shock” an image by erosion
and dilation to create ruptures between local maxima
and minima. As the original shock filter introduced
in [6] is unable to remove some basic types of noise,
like uniform “salt and pepper” noise, Gaussian noise,
etc., many authors have proposed improvements to this
scheme using various diffusion processes. For exam-
ple, [1] uses a smoothed Laplacian term while [3] regu-
larizes the shock filter in the complex domain.

Another major property of the shock filter is its en-
hancement of flow-like patterns, like a fingerprints, a
lion’s mane, or long hair. This principle was investi-
gated in [10], which proposed the coherence-enhancing
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shock filter. Iterative applications of this filter provide
interesting image abstractions [5].

More generally, numerous filters exist in the litera-
ture for denoising and stylization. A wide variety of
them may be re-interpreted in terms of local histograms,
including the median filter, the bilateral filter [7], the lo-
cal mode filter [8], etc. Kass and Solomon [4] propose
an elegant formulation and fast algorithms to evaluate
these filters with smoothed local histograms. They also
show that many algorithms may fail to remove noise in
case of high image alterations. Their median, however,
succeeds at this task, because they employ isotropic and
smoothly-varying weights.

Another contribution of [4] is a generalization of the
median filter to the formulation of smoothed morpho-
logical filters. They are able to parametrize these oper-
ations, smoothly changing from erosion to median fil-
tering to dilation using a single percentage value. A 5%
erosion or a 85% dilation are therefore possible, with
the smoothed median filter at the 50% mark in between.

In this article, we introduce a fast smoothed shock
filter using the smoothed local histograms formaliza-
tion and discretization from [4] to produce parametrized
erosions and dilations. Our improvement smooths ho-
mogeneous regions while preserving edges, with more
flexible and efficient structuring elements. We iterate
the filter to increase its strength and to produce interest-
ing water-colorization effects.

2. Smoothing the shock filter

The original shock filter [6] processes each pixel pi

of an image I using the PDE scheme, given at iteration
t by It(pi):

It(pi) = −sign(∆It−1(pi))|∇It−1(pi)|, t ≥ 0, (1)



with I0(pi) = I(pi). ∆It(pi) is the Laplacian com-
puted at pixel pi, while∇I is the spatial gradient at pi.
At each iteration t ≥ 0 of this process, the shock fil-
ter performs morphological operators depending on the
sign of the Laplacian:{

∆It−1(pi) < 0⇒ It(pi) = It−1(pi)⊕D ;
∆It−1(pi) > 0⇒ It(pi) = It−1(pi)	D,

(2)

where D is a disk-shaped structuring element of ra-

(a) Shock (b) Smoothed shock

Figure 1. For a noisy 1D signal, we pro-
duce the classic shock filter (a) and our
technique (b) for 3 and 50 iterations.

dius 1, while ⊕ and 	 are the symbols of classic di-
lation and erosion operators. Shock filtering therefore
produces such morphological processes of radius t near
minima and maxima during each iteration. This algo-
rithm has been designed to create ruptures in inflection
zones, although even authors admit that it is not able to
handle noise efficiently, as illustrated in Figure 1.

The smoothed local histogram of the neighborhood
V(pi) of a pixel pi introduced by [4] is modeled as:

f̂pi
(sk) =

∑
pj∈V(pi)

K(I(pj)− sk)W (|| pi − pj ||2)

where k ∈ {1, nb}, K,W are generally Gaussian ker-
nels and sk is the k-th bin of the histogram of size nb.
Here, we focus on 1D histograms that could be applied
to gray-scale images or to one channel of three-channel
images (here, we filter the V channel of images in HSV
space). In this case, nb is an oversample of the pro-
cessed 1D histogram.

With this formalism, we can define the median filter
using the calculation of an integral over the smoothed
histogram, which is the same as computing the bins:

Rk(pi) = 1−
(
C(I(.)− sk) ∗W

)
(pi), (3)

with k ∈ {1, nb}. C is the integral of K, expressed
as an integral function (ERF) and ∗ is the convolution
operator. To obtain a smoothed median filter, we simply
find the sk value such that Rk(pi) = t, with t = 1

2 . We
can process a smoothed dilation if we choose 1

2 < t ≤
1, and a smoothed erosion with 0 ≤ t < 1

2 .

Our fast smoothed shock filter makes use of these
smoothed morphological operators inside the classic
shock scheme. In particular, we replace Equation 2 by
the calculation of the bin sk such that:

Rk(pi) =
(

1
2 + ρ∆I(pi)

)
, (4)

where we have ∆I(pi) ∈ [−1; 1] and ρ ∈ [− 1
2 ; 1

2 ].
Then, we just have to set I(pi) with this value
of Rk(pi). This equation means that we generate
smoothed erosions of parameter t = 1

2 − ρ when the
Laplacian is positive and smoothed dilations of param-
eter t = 1

2 +ρ otherwise. With this formulation, we can
process noisy signals using a few iterations of our al-
gorithm. In Figure 1, we can notice that the filtering of
the maxima and minima zones are more efficient with
our proposal than with the original shock filter scheme
(Figure 1-(b)), whereas the inflection zone is smoothed.
Moreover, with the increasing number of iterations, it
also sharpens the signal. In Figure 2, we describe our

input : An image I , a number of iterations ni

output: I is filtered by smoothed shock
for it = 1 to ni do1

computeRk(pi) for all k ∈ {1, nb}, pi ∈ I ;2
for each pi ∈ I do3

t← 1
2 + ρ∆I(pi) ;4

v ← R1(pi) + t(Rnb
(pi)− R1(pi)) ;5

for k = 1 to nb − 1 do6
ifRk(pi) ≤ v ∧ Rk+1 ≥ v then7

I(pi)←
sk+(sk+1−sk)(v−Rk(pi))

(Rk+1(pi)−Rk(pi))
;8

return I ;9

Figure 2. Our algorithm.

whole method, which combines the shock scheme to-
gether with smoothed local histograms.

3. Experimental results and analysis

We first show the impact of possible parameter
choices in our method. In Figure 3, we filter the
same image (from the database of http://www.tela-
botanica.org/) with ni = 20, ρ = 0.1 and several values
of standard deviation σw for the spatial Gaussian ker-
nel W in Equation 3. We can increase the width of the
blurring effect of our filter within homogeneous regions
using the value of σw, while still preserving edges. Our
technique could be applied as a water-colorization ef-
fect, with high values of σw.

In our formulation, ρ modulates the effect of the
Laplacian in the computation of smoothed morphologi-
cal operators (see Figure 4, where (a) is under creative
commons licence, from Daniel Giffard), with ni = 20.
The increase of ρ decreases the smoothing impact of the



(a) Input (b) ρ = 0.1 (c) ρ = 0.2 (d) ρ = 0.3

Figure 4. Impact of parameter ρ upon smoothed morphological operators.

(a) Input (b) σw = 3 (c) σw = 7 (d) σw = 11

Figure 3. About increasing the blurring ef-
fect with the smoothing kernel W .

filter, giving a classic shock filter if we choose ρ = 0.5.
We are able to conserve the structural patterns including
shingles and bricks even with small values of ρ.

We now consider the following list of some compa-
rable methods to ours:

Shock-OR: Original shock filter [6] ;
Shock-AM: Regularized shock filter from [1] ;
Shock-GSZ: Regularized complex shock filter [3] ;
Shock-W: Coherence-enhancing shock filter [10] ;
FSShock: Our proposal,

whose output on a 2D slice of a CT image is shown in
Figure 5. Regularization schemes such as Shock-AM
and Shock-GSZ improve the quality of denoising but
resort to a slow iterative process to accomplish these re-
sults. The gain between 10 and 30 iterations is slightly
perceptible. Our method, denoted FSShock, is able to
produce better filtering with a small number of itera-
tions (e.g. 10 iterations on the lung image). It produces
clean enhancement of the CT slice, in which organs
and bones are clearly distinguishable. It can be veri-
fied with the segmentations we performed with the al-
gorithm from [2]. Here, we do not present results from
Shock-W, since it is more a flow-like pattern enhance-

(a) Shock-OR

(b) Shock-AM

(c) Shock-GSZ

(d) FSShock

Figure 5. Output of the tested methods ap-
plied on a CT scan slice, for 10, 20, 30 it-
erations. A zoomed part at 30 iterations is
depicted with its segmentation (right).



ment technique than a filtering algorithm and is there-
fore unable to produce an edge-preserving blur.

We evaluate the quality of FSShock us-
ing the DenoiseLab benchmark (available at
http://www.stanford.edu/˜slansel/DenoiseLab/), which
is composed of 13 gray-scale 512×512 images, altered
with various noises, applied with several standard devi-
ations (from 5 to 25). We consider the SSIM (structural
similarity) measure to estimate the perceptual quality
of the obtained images [9]. The SSIM between a
ground-truth image U and a tested image V leads to a
value belonging to [0; 1], 1 being the perfect equality
between U and V . We have tuned our SSIM with the
most used parameter values in the literature, and we set
ρ = 0.1, σw = 3, because they give the best SSIM.

Our contribution does not always produce the best
SSIM values, but it is the fastest technique to converge
to its best SSIM. In particular, if we have a more precise
look at the behavior of the algorithms while they iterate,
we notice in Figure 6 that our method achieves its best
performance within a few iterations. We have depicted
our measures for the image Barbara, with an additive
white Gaussian noise (AWGN) of standard deviation
25, knowing that the shapes of the curves are similar in
all the other cases. We have computed each method on
a workstation laptop Dell R© XPSTM M1730 with a pro-
cessor Intel R© CoreTM Duo 2.4GHz with 3.9Gb RAM.
We get the following time results:

Shock-GSZ: 0.1 second per iteration, its best SSIM is
reached between 1 and 50 iterations, i.e. between
0.1 and 5.0 seconds ;

FSShock: 0.4 second per iteration, its best SSIM is
reached between 1 and 5 iterations, i.e. between
0.4 and 2.0 seconds.

Figure 6. SSIM during iterative processes
for Barbara, AWGN of strength 25.

We can conclude that our method may be easily con-
trolled, leading to its best performance in a few itera-
tions. Furthermore, it yields a better estimation of ex-
ecution time, contrary to Shock-GSZ, where a maybe
very long iterative process can occur.

4. Conclusion and future work

In this article, we have presented a very promising
technique for 2D image filtering that can be efficiently
used (1) as a stylization tool for water-colorization and
(2) as a fast and easily-controlled denoising method.

The adaptation of high-performance filtering tech-
niques on smartpones is a real challenge, because it
implies a good optimization of potentially long iter-
ative processes, and a high control of memory. The
shock filter and the coherence-enhancing shock filter
have been successfully embedded on smartphones (see
http://www.shockmypic.com/), and we expect to have
interesting results with our contribution on this kind of
mobile phones.

An other important issue is to keep on comparing our
proposal with the other filtering techniques of the liter-
ature, and to study the behavior of SSIM under various
types of noises, with variable standard deviations, etc.

We also plan to use our fast smoothed shock filter
for medical imaging applications. We have shown that
it could have high potential for CT image segmentation,
and integrating robust statistical noise models would en-
able filtering of many other modalities.
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