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Fig. 1. A variety of feature-aligned cross fields computed using our novel cross-field formulation.

We present a method for designing smooth cross fields on surfaces that

automatically align to sharp features of an underlying geometry. Our ap-

proach introduces a novel class of energies based on a representation of

cross fields in the spherical harmonic basis. We provide theoretical analysis

of these energies in the smooth setting, showing that they penalize devia-

tions from surface creases while otherwise promoting intrinsically smooth

fields. We demonstrate the applicability of our method to quad meshing and

include an extensive benchmark comparing our fields to other automatic

approaches for generating feature-aligned cross fields on triangle meshes.
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1 INTRODUCTION

N -rotationally symmetric (RoSy) tangential vector fields over sur-
faces are ubiquitous in computer graphics. 2-RoSy fields can be
used to generate stripe patterns due to their ambivalence to rota-
tion by π about the normal. 4-RoSy fields (cross fields) are heav-
ily used in both surface parameterization and quadrilateral (quad)
meshing, thanks to their symmetry with respect to rotations by π

2
about the surface normal.

Depending on the application, n-RoSy field design algorithms
must trade off between several desirable properties of the field.
In almost all cases, n-RoSy fields are expected to be as smooth as
possible. For surfaces with boundary, constraints on how the field
aligns to the boundary are common, and for artistic applications,
users may wish to prescribe a sparse set of streamlines that the
field must follow. For meshing applications, alignment of n-RoSy
fields to salient geometric features is also desirable as a means to
identify or preserve mesh detail. Our focus will be on improving
this latter aspect for the important case of 4-RoSy fields.
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Fig. 2. Two surfaces (the three-cylinder-intersection and wavy-box)

whose maximal curvature directions (blue lines) contradict its feature

curves (red lines).

There are two broad strategies for achieving feature alignment.
The first is to optimize only for smoothness, under the assumption
that a well-chosen functional for measuring cross-field smooth-
ness will automatically penalize fields that fail to align to geomet-
ric features. The most commonly used smoothness functionals
(including the Dirichlet energy and its variants) are intrinsic and
recover solutions that are unique only up to rotation [Knöppel
et al. 2013]. These are ambivalent to isometric deformations of the
surface and ignore extrinsic features such as creased folds.

An alternative strategy is to include energy terms that explicitly
enforce alignment to an input guiding field of principal curvature
directions during cross-field design [Brandt et al. 2018; Knöppel
et al. 2013]. Drawbacks include the difficulty of robustly computing
principal curvature directions on noisy meshes, the fact that forc-
ing alignment to a guiding field based on local geometry may ex-
clude cross-field designs that are globally more optimal, and more
critically the fact that principal curvature directions are often dif-
ferent from features (e.g., Figure 2).

Our main observation is that neither of the preceding strate-
gies adequately identify those features most important to generat-
ing high-quality quad meshes. Often the surface being modeled is
constructed from smooth patches that are joined along sharp ex-

trinsic feature curves where the normal direction is discontinuous
or changes rapidly. On the one hand, such features are invisible to
intrinsic smoothness functionals; on the other hand, the orienta-
tion of the feature curves often contradict that of nearby curvature
lines.

Consider the surfaces shown in Figure 2: neither existing strat-
egy will promote alignment to the features curves shown in red.
Both of these shapes are developable away from a sparse set of
cone singularities at the corners; the Gaussian curvature is nearly
zero at creased edges and curved facets, and so purely intrinsic ap-
proaches have no hope of aligning to the creases. Augmenting with
a guiding field based on extrinsic curvature is counter-productive,
as the curvature lines (blue) are not compatible with the surface’s
more important crease features curves (red).

We approach feature alignment in a new way, which detects
and aligns cross fields to sharp features in a stable fashion. Our
method is based on an extrinsic representation of cross fields us-
ing spherical harmonic (SH) basis functions. SH functions have
been used successfully in volumetric octahedral field problems
for hexahedral meshing [Huang et al. 2011; Ray et al. 2016;

Solomon et al. 2017], and we argue that this representation is well
suited not only for computing octahedral fields in volumes but also
for field computation on surfaces. In particular, we apply an SH
representation of octahedral frames, or frames of three orthogonal
directions in R3, proposed by Huang et al. [2011]; when one of its
directions is constrained to the surface normal, it exhibits the same
symmetry as a two-dimensional cross. We use this fact to devise a
class of cross-field energies that promote intrinsic smoothness in
smooth regions of the surface. Over sharp creases, however, our
energy aligns the field to the crease direction, achieving automatic
feature alignment without the need for explicit computation of ex-
trinsic curvature directions or feature curves.

Contributions. In this work, we

• introduce SH functions for the computation of surface cross
fields,

• propose a family of field smoothness energies whose optima
are feature-aligned cross fields,

• provide a theoretical analysis of the behavior of a few impor-
tant members of this family, and

• introduce cross fields with soft normal alignment for in-
creased versatility/robustness.

Our approach is able to extract feature-aligned fields with com-
parable levels of efficiency to those of purely intrinsic algorithms.
We tested our algorithm extensively on more than 200 differ-
ent meshes, with results presented in both Section 6 and the
supplementary material. We leverage our algorithm to produce
feature-aligned cross fields and demonstrate their usefulness for
quad meshing.

2 RELATED WORK

The generation of tangential n-RoSy fields over surfaces has many
applications in computer graphics ranging from surface BRDF
modification [Brandt et al. 2018] to meshing [Bommes et al. 2009;
Jakob et al. 2015] to texture synthesis [Knöppel et al. 2015] and
sketch-based modeling [Bessmeltsev and Solomon 2019; Iarussi
et al. 2015]. Surveys of n-RoSy field design methods are provided
in Vaxman et al. [2016] and de Goes et al. [2015].

2.1 Cross-Field Design

Cross fields (n = 4) have been especially well studied since their
π
2 -symmetry allows them to behave like local coordinate systems,
resulting in intuitive seamless surface parameterizations.

Methods to compute intrinsically smooth cross fields with align-
ment and singularity constraints were studied by Ray et al. [2008],
Crane et al. [2010], and Knöppel et al. [2013]. More similar to our
work, Jakob et al. [2015] instead formulated an extrinsic smooth-
ness functional on cross fields in an attempt to automatically align
to surface features. Their method penalizes an extrinsic distance
between neighboring crosses that does not use a shared tangent
space or connection. The resulting energy is non-convex but is
minimized to local optimality, often resulting in more singular-
ities than necessary. Huang and Ju [2016] analyzed this extrinsic
energy, finding that it can be decomposed into an energy expressed
in terms of intrinsic twisting and alignment to extrinsic curvature
directions. We performed a similar analysis of the energy we in-
troduce in the supplemental materials.
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When using cross fields for quad mesh parameterization or pro-
cessing, methods [Bommes et al. 2009; Brandt et al. 2018; Campen
et al. 2016; Knöppel et al. 2013] often promote feature alignment
by including a loss term penalizing disagreement with curvature
directions. However, as we argue in Section 1 and illustrate in Fig-
ure 2, alignment to curvature directions is often less important
than alignment to sharp creases. Other parameterization meth-
ods such as those of Bommes et al. [2013, 2009] and Campen et al.
[2015] allow feature alignment but just assume that such feature
curves are provided as input.

2.2 Octahedral Fields and Volumetric Representations

The three-dimensional generalization of a cross field is an octa-

hedral field. Octahedral fields are often used in volumetric prob-
lems like hexahedral meshing [Nieser et al. 2011]. A single octahe-
dral frame consists of three mutually orthogonal vectors and their
negations. Huang et al. [2011] introduced a particularly convenient
representation of an octahedral frame as a rotation of the spher-
ical function д(x ,y, z) : (x ,y, z) ∈ S2 �→ x4 + y4 + z4, encoded by
coefficients in the SH basis. Ray et al. [2016] used this representa-
tion to generate volumetric normal-aligned octahedral fields, and
Solomon et al. [2017] combined the SH representation with the
boundary element method (BEM) to remove the need for a vol-
umetric mesh. Both of these methods use normal alignment con-
straints at the surface to enforce alignment of the octahedral frame
with the volume’s boundary.

Although there is no canonical three-dimensional generaliza-
tion of arbitrary n-RoSy fields, the SH representation allows for
frames that mimic the symmetries of all platonic solids [Shen et al.
2016], including octahedral fields [Corman and Crane 2019; Liu
et al. 2018; Solomon et al. 2017]. Algebraic characterization of the
orbit of д(x ,y, z) under the space of rotations as a subset of all
possible SH coefficients was presented by Palmer et al. [2019] and
Chemin et al. [2018].

3 PRELIMINARIES

Since our formulation relies heavily on both the SH representa-
tion of octahedral frames and vectorial total variation, we present
a preliminary introduction to these topics.

3.1 SH Octahedral Frames

As introduced by Huang et al.
[2011], the canonical axis-aligned
octahedral frame can be repre-
sented by SHs as a function д0 :

S2 → R written as д0 =

√
5
12Y44 +√

7
12Y40, where Ylm denotes the

basis for real SHs. The function д0

can be understood as the scaled
projection ofx4 + y4 + z4 onto the fourth band (l = 4) of SHs. Writ-
ten differently, we can encode д0 as a vector of coefficients in the
full basis of fourth-band SHs Y4(−4) , . . . ,Y44:

f0 =
⎡⎢⎢⎢⎢⎣0, 0, 0, 0,

√
7

12
, 0, 0, 0,

√
5

12

⎤⎥⎥⎥⎥⎦
T

.

The space of octahedral frames can be described as all rotations
of the canonical octahedral frame—that is, the orbit of f0 under
the group of 3D rotations SO(3) (see Definition 3.5 in Palmer et al.
[2019]). We write this via exponentiation of the Lie algebra ele-
ments: the set of octahedral frames is

V =
{
f
���� there exists v ∈ R3 with f = ev ·L f0

}
,

where v · L = vxLx +vyLy +vzLz and Lx ,Ly ,Lz are the an-
gular momentum operators expressed in the basis of band-
four SHs. In this basis, Lx ,Ly ,Lz are each 9 × 9 matrices. The
angular momentum operators are explicitly written in Sec-
tion 4 of the supplementary material. In this description, v
can be interpreted as an axis-angle representation of rota-

tion, with corresponding rotation matrix e[v]. [v] denotes the
skew-symmetric matrix that acts as [v]u = v × u. Accordingly,
ev ·Lд0 encodes the octahedral frame whose directions are x̂ , ŷ, ẑ

rotated by e[v], where “̂” denotes normalization (see inset).

SH frame as sum of three lobes

Using such SH rotations, we
can present an alternative inter-
pretation of the octahedral frame
f0 as the sum of three orthog-
onal SH lobe-shaped functions.
The z-aligned lobe is l = [0, 0, 0, 0,√

7
12 , 0, 0, 0, 0] and is depicted in

the inset. Lobes can be rotated in the same way that frames can (i.e.,
by applying ev ·L). The canonical octahedral frame can therefore be

equivalently expressed as f0 = l + e
π
2 Lx l + e

π
2 Ly l .

The space of octahedral frames that are aligned to a unit vector
n̂ can be described by the set

{
evn ·Leθ Lz f0

���� θ ∈ S1
}
,

where vn is any axis-angle rotation taking ẑ to n̂ (e.g., the vector
parallel to ẑ × n̂ and has magnitude equal to the angle from ẑ to n̂),
and θ encodes an additional twist of the frame about n̂. The first
rotation about ẑ can be written in explicit form [Huang et al. 2011]
as

eθ Lz f0 =
⎡⎢⎢⎢⎢⎣
√

5

12
cos 4θ , 0, 0, 0,

√
7

12
, 0, 0, 0,

√
5

12
sin 4θ

⎤⎥⎥⎥⎥⎦
T

.

The preceding allows us to formulate the set of all octahedral
frames д aligned to a given direction n̂ in terms of two constraints:

‖ f ‖2 = 1, Wn f = u0 =

⎡⎢⎢⎢⎢⎣0, 0, 0,
√

7

12
, 0, 0, 0

⎤⎥⎥⎥⎥⎦
T

, (1)

whereWn is the second through eighth rows of e−vn ·L . The linear
constraint rotates the frame from normal alignment to ẑ alignment,
and the norm constraint ensures that the first and last components
are of the appropriate form.

Last, we will make use of the projection operator πV : R9 →V
onto the space of octahedral framesV , as defined in Section 5.5 of
Palmer et al. [2019].
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3.2 Vectorial Total Variation

We will later make use of a total variation energy (among others) to
analyze the behavior of our cross fields on creased surfaces. Here,
we introduce total variation and vectorial total variation defini-
tions in Rn and provide intuition about their use. The extension
to functions on a Riemannian manifold is straightforward, using
the standard intrinsic gradient and divergence operators.

The total variation of a differentiable scalar function h : Ω → R
isTV [h] =

∫
Ω
‖∇h‖2 dAwhere Ω ⊂ Rn [Ambrosio et al. 2000]. For

non-differentiable h, the relevant definition is

TV [h] = sup
ϕ ∈C1

c ,∀x ‖ϕ (x ) ‖2≤1

(∫
Ω
h∇ · ϕdA

)
,

where C1
c denotes differentiable, compactly supported vector

fields. For smooth h, equivalence to
∫

Ω
‖∇h‖ follows from integra-

tion by parts and Stokes’s theorem. In this case, the maximizing

ϕ is −∇h
‖∇h ‖ . If h is the indicator function of a suitably regular (e.g.,

non-fractal) subset A ⊂ Ω, then TV [h] is the perimeter of A.
When h : Ω → Rm is vector valued rather than scalar valued,

there are many different definitions for the vectorial total variation
VTV [h] [Sapiro 1996]. We use one proposed by Di Zenzo [1986],
which for differentiable h is given by VTV [h] =

∫
Ω
‖∇h‖F dA,

where ‖ · ‖F is the Frobenius norm. More generally, we can take

VTV [h] = sup
ϕ ∈C1

c ,∀x ‖ϕ (x ) ‖F ≤1

	



m∑
i=1

∫
Ω
hi∇ · ϕi

�
� , (2)

where h = (h1,h2, . . . ,hm ), and ϕ = (ϕ1,ϕ2, . . .ϕm ) is a differen-
tiable, compactly supported m-tuple of vector fields. This defini-
tion is not equivalent to a sum ofm independent scalar total varia-
tions: the constraint on ϕ introduces non-trivial coupling between
the dimensions. This definition of total vectorial variation is con-
sidered in the case where Ω is a surface in R3 by Bresson and Chan
[2008] but without specific analysis for discontinuous h.

4 SH OCTAHEDRAL FRAMES AS CROSS FIELDS

We use normal-aligned octahedral fields to encode tangent cross
fields on surfaces, with the goal of computing a smooth cross field
on a surface aligned to sharp features. The SH representation will
enable us to capture features even when they are purely extrinsic.
To this end, our next task is to define a means of measuring
smoothness by examining the gradient of a SH field along the
surface.

4.1 Derivatives of SH Octahedral Frames

To calculate ‖∇f ‖2, we first express it in an appropriate local coor-
dinate system that simplifies the formulas in coordinates and bet-
ter reveals the structure. Following the notation in Section 3.1, an
octahedral field f (r ) : Ω → V ⊂ R9 can be parameterized relative
to a point r∗ by v (r ) : Ω → R3, where v (r ) is the axis-angle rota-
tion from f (r∗) to f (r ). This implies thatv (r∗) = [0, 0, 0]. Without
loss of generality, we rotate the surface so that the normal of Ω at
r∗ is ẑ. We can then compute the gradient ∇f at the point r∗ from

the formula f (r ) = ev (r ) ·L f (r∗):

∇f (r ) |r ∗ =
⎡⎢⎢⎢⎢⎢⎣
| | |

Lx f (r∗) Ly f (r∗) Lz f (r∗)
| | |

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
| | |
∇xv ∇yv ∇zv
| | |

⎤⎥⎥⎥⎥⎥⎦r ∗

. (3)

As the field f (r ) encodes an extrinsically embedded frame at
each point, we take the gradient ∇ to be the component-wise de-
rivative of the field’s nine scalar functions rather than a covariant
or Lie derivative along the surface to capture the extrinsic geom-
etry of the surface. We use Section 1.2.5 in Rossmann [2002] and
the fact that v (r∗) = [0, 0, 0] to derive Equation (3).

By combining facts about the SH representation and standard
results in differential geometry, we show that the squared norm
‖∇f (r )‖2 at r∗ can then be expressed in the following more intu-
itive way.

Proposition 4.1. Let f (r ) : Ω →V ⊂ R9 be a normal-aligned

octahedral field over a smooth surface Ω. Then at every point r∗ ∈ Ω,

‖∇f ‖2
F
= k2

1 + k
2
2 +w , where k1 and k2 are the principal curvatures

and w measures the intrinsic tangential twist of the octahedral field.

Using mean and Gauss curvatures H and K , we can write ‖∇f ‖2
F
=

2H2 − K +w .

We leave the full proof of this formula to the supplementary ma-
terial. Proposition 4.1 gives a more intuitive form for Equation (3)
and relates the SH representation of an octahedral frame to prop-
erties of the frame it represents. Most notably, the Dirichlet energy
of the SH representation can be effectively decoupled into extrinsic
dependence of ‖∇f ‖2

F
on the surface Ω and the intrinsic tangential

twisting of the normal-aligned octahedral field f (r ). The values of
H and K simply contribute a fixed quantity depending on Ω rather
than the field. Therefore, the influence of f on ‖∇f ‖2

F
is just in w ,

the intrinsic twist of the cross field it represents. We stress that this
behavior is quite different from the behavior of the component-
wise derivative evaluated on vectors, as studied in Huang and Ju
[2016], where their smoothness energy promotes alignment to ex-
trinsic curvature directions.

4.2 Lp Smoothness Energy of SH Cross Fields

Suppose we wish to measure smoothness of a normal-aligned oc-
tahedral field in the SH representation. We define the following
class of convex smoothness energies using the Lp -norm of ‖∇f ‖F
over the surface Ω for p ≥ 1:

Ep (Ω, f ) =

(∫
Ω
‖∇f ‖p

F
dA

) 1
p

. (4)

We now analyze the behavior of the Ep energy for cross fields in
several select cases.

4.2.1 Case p = 2: Dirichlet Energy. We begin with a common
choice in geometry processing when smoothness is desirable:
the Dirichlet energy E2. Given Proposition 4.1, we can write the
Dirichlet energy as

∫
Ω

2H2 − K +w . Since H and K are indepen-
dent of the octahedral field f , they have no influence over the f
that minimizes E2. Therefore, on smooth Ω, we recover intrinsi-
cally smooth cross fields.

Since the Dirichlet energy may diverge at singularities [Knöppel
et al. 2013], this choice of energy has the theoretical drawback of
diverging for all f in the neighborhood of creases that break octa-
hedral symmetry. In the discretized setting, however, the behavior
of E2 is dependent on mesh resolution and empirically leads to
strong feature alignment as demonstrated in Section 6. It also leads
to an easily- solved optimization problem described in Section 5.2.

ACM Transactions on Graphics, Vol. 39, No. 3, Article 25. Publication date: April 2020.



Octahedral Frames for Feature-Aligned Cross Fields • 25:5

4.2.2 Case p = 1: Vectorial Total Variation. As noted in the pre-
vious section, the conventional means of measuring field smooth-
ness fails to be well defined for our field representation on creased
surfaces. We show here that the E1 energy is not only finite across
sharp edges and around singular points but also provides an intu-
itive measure of field quality that captures both smoothness and
feature alignment. It is also known as the vectorial total variation.

Consider a function f : Ω → R9 that is piecewise smooth on n
closed patches Ωj intersecting in a finite-length curve network Γ =⋃s

k=1
γk , where eachγk is aC1 curve. Equivalently, Γ =

⋃n
j=1 ∂Ωj ,

and the vectorial total variation can be decomposed into integrals
over each patch and Γ.

Proposition 4.2. For compact Ω and f as earlier, VTV [f ] is fi-

nite and given by the following equation:

VTV [f ] =
n∑

j=1

∫
Ω̊j

‖∇f ‖F dA +
s∑

k=1

∫
γk

‖ f + − f −‖2 dL, (5)

where f + and f − refer to the limiting values of f on either side of

γk , and Ω̊j denotes the interior of Ωj .

The basic argument starts from Equation (2), splits it into in-
tegrals over the patches, applies integration by parts, and utilizes
partitions of unity to construct a maximizing sequence of ϕ’s. The
full argument is contained in supplementary materials Section 2.
An analogous result, which applies to arbitrary functions on Rn

with bounded variation, is contained in Ambrosio et al. [2000],
with the addition of a third term representing the Cantor part of
f . Since our f is piecewise smooth, however, we can safely ignore
the Cantor part. The second term is often referred to as the jump

part in the total variation literature.
The formula (5) provides an intuitive description of the total

variation of an octahedral field in the SH basis as a measure of
intrinsic smoothness with extra jump terms. Letting f represent a
normal-aligned octahedral field, we obtain

VTV [f ] =
n∑

j=1

∫
Ω̊j

√
2H2 − K +w dA +

s∑
k=1

∫
γk

f + − f −2
dL.

(6)
Generalizing to creased surfaces. Although the preceding result is

derived for smooth surfaces Ω and discontinuous f , we can further
generalize the result to a surface Ω constructed from smooth open
patches Ωj joined along a network of sharp creases Γ =

⋃s
k=1

γk .

As there is neither a consistent metric nor a consistent tangent
space on Ω across Γ, there is no well-defined choice of gradient. We
therefore use Equation (6) as the definition for E1 on such a creased
surface. Since f is a normal-aligned octahedral field, it is necessar-
ily discontinuous across creases, resulting in contributions to the
jump term.

The jump ‖ f + − f −‖2, where f + and f − represent octahedral
frames aligned to different normal directions, is minimized if f +

and f − are both aligned to the axis of rotation from one normal to
the other. We formalize this property by Proposition 4.3.

Proposition 4.3. Let Ω+ and Ω− be smooth patches of a surface

with normal directions n̂+ and n̂− that meet at a crease. Let d̂ denote

the intersection of their tangent spaces at the crease. Let f +
θ

and f −
ϕ

be the octahedral frames on either side of the crease aligned to n̂+

and n̂−, respectively. θ and ϕ denote their deviation from alignment

to d̂ . The cost ‖ f +
θ
− f −

ϕ
‖2 is minimized by θ = ϕ = 0.

Octahedral frames near crease

Proof of this proposition is
left to Section 3 of the supple-
mentary material.

The setup is depicted on the
right, showing discontinuous
normal directions n̂+ and n̂− as
the left and right red arrows, re-

spectively. The crease direction d̂
is shown by the middle red arrow.
We emphasize that this proposition implies (locally) crease align-
ment always minimizes the VTV. We extensively test and show in
supplemental material that this crease alignment tends to globally
hold on surfaces with complicated geometry and topology as well.

4.2.3 General p ≥ 2. By Equation (4) and Proposition 4.1, Ep

incentivizes intrinsic smoothness for all p on smooth domains. On
creased domains, we have demonstrated (local) crease alignment
for the p = 1 case. For p ≥ 2, the value of Ep diverges for a creased
surface. However, we find empirically that minimizing Ep (by re-
covering solutions to Equation (7)) on a discretized surface leads
to stronger feature alignment as p increases. This behavior may
be explained by Proposition 4.3, which affects all edges regardless
of p. The p simply exponentiates the energy across each edge be-
fore accumulating it into the total Ep . Local to a single edge, the
energy-minimizing configuration is unaffected by p. Based on our
experiments, we further conjecture that the sequence of fields ob-
tained by minimizing E2 on an increasingly dense discrete approx-
imation of Ω converges to a feature-aligned cross field. This intrin-
sically smooth feature alignment is empirically shown in Figure 6.
We leave proof of this conjecture to future work.

4.2.4 Relation to Polycube Surfaces. We achieve an additional
property for all values of p through our use of SH octahedral
frames. Consider the case of Ω being a cube: minimizers of Ep will
have zero energy, despite the cube’s sharp corners, since the field’s
octahedral symmetry allows it to simultaneously align to all three
creases at each corner. Effectively, a surface with many angle- π

2
turns and cube corners can have just as low of an energy as one
with no creases at all. More generally, if Ω is a polycube surface,
Ep (Ω, f ) = 0 by choosing f to be a facet-aligned uniform frame
field.

5 OPTIMIZING FOR AN OCTAHEDRAL FRAME FIELD

Our preceding discussion provides a new class of energies based
on the SH representation of cross fields, which naturally promote
both intrinsic smoothness and extrinsic crease alignment with-
out the need for feature curve detection or reliance on potentially
noisy local curvature estimates. For this reason, we propose solv-
ing the following variational problem to find a cross-field f ∗ over a
surface:

f ∗ = arg min
f

Ep (Ω, f )

subject to Wn (x ) f (x ) = u0.
(7)

Recall that the constraint encodes normal alignment of the frame
field (see Equation (1)). Some past algorithms have an extra
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| | f (x ) | |2 = 1 constraint that results in uniform-scale isotropic oc-
tahedral fields over Ω. This constraint makes the problem non-
convex and causes the functional to diverge in the neighbor-
hood of field singularities, which are unavoidable on generic sur-
faces by the Poincaré- Hopf theorem. Accordingly, a relaxation is
naturally required; we drop the constraint ‖ f (x )‖2 = 1, yielding
a convex problem with globally optimal solution. Dropping the
‖ f (x )‖2 = 1 constraint allows the frame’s two tangential compo-
nents to scale independently from its normal component, resulting
in anisotropic octahedral fields. We obtain octahedral fields with
uniform-magnitude normal lobes and varying scale in the mag-
nitude of the tangential cross field. This relaxation is similar in
spirit to the one that appears in Knöppel et al. [2013] and has sim-
ilar benefits, including automatic placement of singularities, and
bounded-energy minimizers in the smooth limit (which is neces-
sary for the field to be insensitive to the underlying mesh).

5.1 Soft Normal Alignment

It is sometimes beneficial to relax the normal alignment con-
straint, such as in cases where the mesh contains sliver trian-
gles with unstable normal directions. In these cases, a smoother
cross field can be obtained by deviating slightly from exact normal
alignment. This relaxation changes the optimization problem from
Equation (7) into the following:

f ∗ = argmin
f

Ep (Ω, f )

subject to ‖Wn (x ) f (x ) − u0‖2 ≤ ϵ .
(8)

This problem imposes a pointwise normal alignment constraint
with tolerance ϵ . When ϵ = 0, we recover the hard normal align-
ment formulation (7). On the opposite side of the spectrum, as

ϵ → ‖u0‖2 =
√

7
12 ≈ 0.76, the solution to (8) approaches a con-

stant octahedral field. This is the case where normal alignment
has relaxed so far that the octahedral frames are effectively un-
constrained.

For values in between,
we perform the follow-
ing experiment to obtain
a rough correspondence
between soft normal
alignment parameter
ϵ and maximum angle
deviation from normal
alignment: for each
value of ϵ between 0
and .7 (at intervals of
.05), we sample 100, 000 ϵ-perturbations of a ẑ−aligned frame,
extract the frame they represent, and compute its maximum angle
deviation from the ẑ-axis. Results are shown in the inset.

We highlight that this parameter encodes a pointwise constraint
uniformly applied over the mesh. As such, its interpretation does
not change with different meshes. Please see the supplemental ma-
terial for results on more than 200 different meshes using a variety
of values of ϵ .

The benefit of soft normal alignment is demonstrated in Fig-
ure 5. Due to the influence of a sliver triangle in the buste mesh

with unstable normal direction, the hard-normal-aligned cross
field is forced to create a localized artifact. By using soft normal
alignment, the sliver triangle’s unstable normal direction has less
influence over the resulting cross field, therefore increasing the
quality of the result. A similar benefit is demonstrated on the duck
and armchair meshes shown in the supplementary material.

Additionally, we test soft normal alignment on a cube mesh with
artificial noise added in Figure 5. With hard normal alignment the
cross fields exhibit undesirable alignment to noise that increases
with p. With soft normal alignment, the cross fields show signifi-
cantly decreased sensitivity to noise.

5.2 Discretization

Now we describe how to construct smooth cross fields by numer-
ically optimizing a discretization of Ep . We assume the surface Ω
has been triangulated into a manifold meshM = (V ,E, F ). Let nt

be the normal direction of triangle t ∈ F . We represent a cross on
M as a normally aligned octahedral frame ft ∈ V ⊂ R9 per tri-
angle. We use the shorthand f to denote the concatenation of all
ft into a single 9|F | × 1 vector. V is a nv × 3 matrix of vertex po-
sitions, where nv is the number of vertices. E denotes the ne × 2
matrix of edges, where ne is the number of edges. The energy Ep

can be discretized as

Ep = 	


∑
e ∈E

we ‖ ft1 − ft2 ‖
p
2
�
�

1
p

, (9)

where t1 and t2 are triangles adjacent to edge e , andwe are weights

corresponding to the dual Laplacian. We usewe =
‖e ‖
‖e∗ ‖ , where ‖e ‖

is the length of edge e and ‖e∗‖ is the distance between barycenters
of t1 and t2.

For ϵ = 0, the normal alignment constraint is discretized by the
linear constraintW f = u, whereW is a sparse block-diagonal ma-
trix with a block Wnt for each triangle. It has dimensions 7|F | ×
9|F |. The vector u is a repetition of u0 for each triangle, resulting
in a 7|F | × 1 vector. For ϵ > 0, the normal alignment constraint is
discretized by a second-order cone constraint: ‖Wnt ft − u0‖2 ≤ ϵ
per triangle.

For the casep = 1 and a completely flat surface Ω, our discretiza-
tion agrees with the standard discretization of total variation in
image processing [Chambolle et al. 2010; Rudin et al. 1992].

5.3 Meshes with Boundary

When the mesh contains boundaries, we do not enforce any
boundary conditions; in PDE parlance, this choice corresponds to
“natural boundary conditions.” Although it is tempting to expect
the natural boundary conditions for p = 2 to imply zero Neumann
boundary conditions [Stein et al. 2018], the SH representation vec-
tor is complicated by being constrained to a spatially varying lin-
ear subspace. We simply allow the cross on the boundary to be
that which minimizes total energy. If desired, one can enforce a
constraint that the cross field on the boundary be aligned to the
boundary through the method described in Section 5.4.

5.4 Manual Guidance

To support manual guidance of the octahedral frame field, we can
prescribe alignment of the frame field to streamlines. Streamline
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Fig. 3. Soft normal alignment increases quality of the cross field and de-

creases the influence of mesh artifacts. The buste mesh is shown with

p = ∞ and varying normal alignment: ϵ = 0 for the top figure and ϵ = 0.5

for the bottom. (a) Hard-normal-aligned streamlines. (b) Magnified crosses

show a small patch of diagonal crosses in an otherwise regular region. (c)

Magnified triangle normals visualized with sliver triangle 4611 shaded in

blue. (d) Soft normal-aligned streamlines;. (e) Magnified crosses no longer

show diagonal artifacts. (f) Extra-magnified triangle normals visualized

with sliver triangle 4611 shaded in blue. While the normal direction of the

region points diagonally up and right, the sliver triangle’s normal direction

points almost completely to the right.

constraints combined with normal alignment result in a fully de-
termined frame. Therefore, prescribing streamlines is equivalent
to prescribing the value of ft on a subset of triangles Tp . Denote
the prescribed octahedral frame on triangle t as Ft . We then add a
new linear constraint that

∀t ∈ Tp , ft = Ft . (10)

This technique is demonstrated in Figure 4.

5.5 Non-Triviality Constraint

As a result of dropping the unit-norm constraint from Equation (7),
we have no explicit guarantee that the tangential components of
octahedral frames do not degenerate to zero. On a surface with a
crease, however, the normal alignment constraint on one side of

Fig. 4. Octahedral fields obtained by minimizing E∞ on the hand mesh

before and after adding manual direction. The manually added streamline

is shown by the inset black arrow. This constraint removes a singularity

from the original octahedral field.

the crease imposes that the magnitude of the tangential compo-
nent on the other side of the crease is close to one. As a result,
we observe empirically that most of our octahedral frames do not
degenerate.

In the case that octahedral frames do degenerate significantly,
their norms can be too small to project robustly. We locate these
by using the octahedral projection from Palmer et al. [2019]
to measure the distance from ft to the octahedral variety V :
d ( ft ) = ‖πV ( ft ) − ft ‖2, and thresholding by d ( ft ) > .665. If such
frames are found, we run the optimization again while holding
non-degenerate frames to their projected values. In our experi-
ments, just one round of re-solving results in 99.8% non-degenerate
frames.

5.6 Solving for an Octahedral Field

In its most general form, our problem formulation consists of mini-
mizing a mixed-norm objective, with both linear and second-order
cone constraints. This results in a convex problem that we solve
with Mosek 9 [MOSEK ApS 2017]. The normal alignment con-

straint becomes
[
ϵ, (Wnt ft − u0)T

]
∈ L8, where L8 is the eight-

dimensional Lorentz cone. Likewise, the energy is formulated us-
ing a single p-norm cone. Our code is written in Matlab with a
mex interface to Mosek; it builds cross platform. Since our problem
is convex, any dependence on initialization would entirely be due
to non-unique solutions, which we do not observe in practice. Fur-
thermore, we use the interior point method, which does not accept
manual initialization. In the specific case of ϵ = 0,p = 2, solving
this optimization is equivalent to solving a linear system.

6 RESULTS

We begin with a comparison of the behavior of our energy for
different values of p. This experiment is depicted in Figure 7. We
observe that our cross fields naturally align to features with in-
creasing strength for higher p. In the case p = 1, our cross field
is discontinuous over all creases, but although it is provably in-
centivized to align, it sometimes deviates due to the influence of
neighboring creases (e.g., on the top surface of the fandisk). For
p = 2, our cross fields achieve close alignment to the upper half
of the shallow crease, as well as alignment on the top face where
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Fig. 5. As ϵ increases or as p decreases, the cross fields become less sen-

sitive to noise added to the cube mesh.

the p = 1 case failed. Finally, for p = ∞, our fields align down the
entirety of the shallow crease. Although in theory Ep for p ≥ 2
diverges on creases, we observe that its discretization yields em-
pirically strong crease alignment. This may be due to application
of Proposition 4.3 over all edges of the mesh. We show our fields
for different discretizations of the same geometry in Figure 8 and
observe that in all cases we achieve crease alignment.

Supplementary material. In our supplementary document,
we perform an empirical study to evaluate the performance of
our method. We evaluate our method on several models drawn
from the Thingi10k [Zhou and Jacobson 2016] dataset, as well as
several other commonly used benchmark models to demonstrate
effective crease alignment on real-world models. We also compare
our approach to several baseline methods [Brandt et al. 2018;
Jakob et al. 2015; Knöppel et al. 2013] by generating fields on
the models in the “Robust Field-Aligned Global Parametrization”
dataset [Myles et al. 2014], taking care to sample the relevant
parameter space for each formulation. Although it is difficult to
precisely quantify the quality of a vector field, we highlight sev-
eral cases where our method recovers fields that more faithfully
conform to mesh features than baseline methods on real-world
models.

Our runtimes are shown for a set of meshes with 240 to 76K
vertices and 480 to 152K faces in Figure 11. Runtimes naturally in-
crease with mesh size and appear to grow linearly with number of

Fig. 6. On this developable surface, our cross fields are intrinsically

smooth in the limit of refinement but exhibit some mesh sensitivity on

coarse meshes, particularly for higher p values. They are crease aligned

for all resolutions. Note that the extrinsic curvature of the cylindrical bend

has no effect on the cross fields at higher resolutions.

triangles in our mesh test set. Memory costs are incurred to store
a Wnt per triangle, a single u0, we per edge, and ft per triangle.
Hence, storage is linear in size of the mesh. More detailed infor-
mation regarding parameter choices and runtimes is provided in
the supplementary material. Table 1 shows a summary of our run-
times in comparison to that of other methods. Our runtimes are on
the same scale as Knöppel et al. [2013] and to the bases setup step
in Brandt et al. [2018].

Comparison to explicit feature curves. Next, we compare our
feature-aligned cross fields to those produced with the help of
explicitly computed feature curves. We obtain feature curves on
the 1904-triangle Moai mesh from Figure 6 in Gehre et al. [2016].
We compute a cross field with additional hard constraints as de-
scribed in Section 5.4 to enforce alignment to the pre-computed
feature curves. We compare the resulting field with and without
explicit feature curve alignment in Figure 4. Although the feature
curves help guide the cross field, just a few artifacts in the com-
puted features drastically influence the resulting cross field to have
more singularities and be less smooth without clear benefit. The
Moai is shown from an angle where these differences are most pro-
nounced.

Effect of mesh resolution on crease alignment vs extrinsic

curvature. In this experiment, we test on a geometry where a
sharp crease is mis-aligned to extrinsic curvature directions. We
generate meshes of this geometry at varying resolution to see how
crease alignment interacts with extrinsic curvature. Results of this
experiment are depicted in Figure 6. As mesh resolution increases,
our cross fields become crease aligned and intrinsically smooth,
agreeing with the theory. For very low mesh resolution, the cross
fields are more sensitive to the underlying meshing pattern.
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Fig. 7. Cross fields generated by minimizing Ep for p = 1, 2, ∞ on the fandisk mesh. The shallow crease of the fandisk mesh is marked in red. Our cross

fields naturally align to the shallow crease with increasing strength for higher p .

Table 1. Runtimes in Seconds for Computing Cross-fields Using

Different Methods on Meshes with a Varying Number of Triangles

Number of Bases Biharmonic Instant Globally
Ours

triangles setup solve meshes optimal

3K 5 .005 .026 .85 2.8

12K 24 .005 .053 20.46 15.058

20K 44 .005 .080 21.913 25.895

69K 170 .006 .141 62.733 135.09

80K 181 .006 .222 71.15 112.3

Methods listed are those of Brandt et al. [2018], Jakob et al. [2015], Knöppel et al.
[2013], and our own. Runtimes for fields from [Brandt et al. 2018] are split into time
needed for the setup of 500 bases eigenfields and the field computation separately
because of drastically differing timescales.

Comparison to three-dimensional octahedral fields. Due to simi-
larity of frame representation, we compare our method to surface
cross fields obtained by optimizing a volumetric octahedral field.
Algorithms like those of Huang et al. [2011] and Ray et al. [2016]
can generate surface cross fields by approximating the surface
with the limiting behavior of a thin layer of tetrahedra or prism
elements. However, prism elements are non-standard and both el-
ement types will be poorly conditioned without introducing fur-
ther restrictions such as zero normal gradient to mimic a triangle
mesh. We instead opt to compare with the BEM [Solomon et al.
2017], which acts directly on surface triangle meshes. We use the
2,500-triangle fandisk mesh for this comparison. As observed ear-
lier, our method has increasing feature alignment with increased
values of p. In comparison, Figure 10 shows that the BEM field
fully ignores the shallow crease of the fandisk, running through it
at a 45◦ offset. Moreover, despite the fact that the BEM only needs
boundary data as input, its runtime is close to 50 times slower than
ours.

Challenging test cases. We compare feature alignment of our
cross fields with that of existing methods on several meshes il-
lustrative examples in Figure 12. As pointed out in Section 1, a key
advantage of our technique is that it recovers crease-aligned fields
on models whose maximal curvature directions disagree with their
creases. This occurs naturally when models are specified by the
intersections of developable patches—a very common primitive in
CAD tools. We introduce two benchmark models for testing crease

Fig. 8. Cross fields generated by minimizing E2 on different meshings of

the three-cylinder-intersection with number of faces indicated. Cross field

(d) is computed on the multi-resolution mesh (e). Notice that we obtain the

same feature-aligned cross field each time.

alignment when creases disagree with intrinsic notions of cur-
vature. The three-cylinder-intersection mesh is composed of 12
quadrilateral patches, where each patch is a subset of a cylinder
and has maximal curvature directions making π

4 angles with its
boundary creases. The wavey-box example has the same creases
as a standard cube, with the modification that each of its faces
has a sine wave ripple running diagonally through it. These two
cases are shown in Figure 2. The fandisk mesh is another exam-
ple of a challenging case for feature alignment due to its shal-
low crease with strong non-aligning neighboring creases, which
is representative of one way that such features arise in real-world
models.

Our cross fields on these test cases are shown in Figure 12. We
observe proper feature alignment in our fields, and although other
methods can sometimes be tuned per model to achieve the same
feature alignment, there is no choice of parameters that worked on
all test cases. In particular:

• Fields from Jakob et al. [2015] are distracted by extrinsic cur-
vature on the three-cylinder-intersection and entirely pave
over the shallow crease of the fandisk. Their results on
wavey-box and wedge are successfully aligned to the creases.

• Fields from Brandt et al. [2018] are challenging to tune with
λ representing alignment to a guiding extrinsic curvature
field. We show their method for the biharmonic energy
(m = 2) as a point of contrast to Dirichlet energy. We choose
two values of λ, λ = −.0001 for slight extrinsic curvature
alignment and λ = −.1 for stronger extrinsic curvature
alignment. Their fields are unable to align to features of the
three-cylinder-intersection in both cases, and specifically for
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Fig. 9. Comparison of our feature-aligned cross fields to those generated

when adding additional explicit feature curve alignment constraints. Ex-

plicit feature curves were obtained from Figure 7 in Gehre et al. [2016].

Despite the extra cost of pre-computing explicit feature curves, slight arti-

facts in the feature curves (most pronounced on the side) force the explic-

itly guided cross field to have lower quality.

Fig. 10. Cross field and runtime comparison of our method to a method

optimizing volumetric octahedral frames [Solomon et al. 2017]. The fan-

disk used contains 2.5K triangles.

λ = −.1 the field strongly aligns to noise on the flat upper
face of the fandisk mesh. Their fields are successfully crease
aligned for the wedge mesh.

• We compare against both the anti-holomorphic and Dirich-
let energies of Knöppel et al. [2013] with the curvature align-
ment parameter λ set to −0.1. This results in good alignment
on the three-cylinder-intersection, but noisy or unaligned
fields for the remaining test cases.

In contrast, our method for p = 2 achieves feature alignment on
all test cases without unnecessary discontinuities in the field over
flat faces. We show additional results for more than 200 different
meshes with both smooth and creased geometries with varying
values of p and ϵ in the supplementary material. The fields are
crease aligned for all creased meshes and are otherwise intrinsi-
cally smooth. For comparison, we include fields from Brandt et al.
[2018] and Knöppel et al. [2013] on a larger range of λ. We also
include fields from Brandt et al. [2018] for m = 1 and fields from
Jakob et al. [2015] in the supplementary material.

Quad meshing. Feature alignment is especially important when
using cross fields to guide high-fidelity quad meshing. We gener-
ate quad meshes using Campen et al. [2015] to parameterize our
cross fields. We compare against a standard quad meshing pipeline
using cross fields from Bommes et al. [2009] and Campen et al.
[2015] for parameterization. We also test against parameterization
by Campen et al. [2016], which introduces extra guidance to en-
courage extrinsic curvature alignment.

Fig. 11. Runtimes to compute cross fields over various mesh sizes.

For the fandisk mesh, prior methods generate quad meshes that
are influenced by the shallow crease but do not manage to capture
it sharply (see Figure 13). We observe that by placing singularities
near the shallow crease of the fandisk, our quad meshes manage to
align much more sharply. The quad mesh generated by minimizing
E∞ aligns even better than for E2.

We also compare quad meshes generated from our cross fields
against the prior art on the anchor, spot, moomoo, and three-
cylinder-intersection meshes. These results are shown in Figure 14.
We observe generally better alignment in the quad meshes gener-
ated from our method. By placing singularities on the cylindrical
region of the anchor, our quad meshing manages to align better
to its creases. On the spot mesh, we see a straighter connection
between the ear and the head. For the three-cylinder-intersection,
the quad mesh generated from our fields clearly aligns better. Since
the moomoo is a relatively smooth mesh, we do not see particu-
larly defining differences in quality.

7 DISCUSSION AND CONCLUSION

Feature alignment is a desirable property in many geometry pro-
cessing applications. In the context of cross fields and remeshing,
we consider features to be creases where the surface changes non-
smoothly. Quality of feature detection and alignment can signifi-
cantly impact quality of the remeshing and the usefulness of the
resulting cross fields. Although significant effort has been put into
extrinsic alignment of cross fields to curvature directions, they
are not always appropriate substitutes for crease alignment. By
specifically targeting discontinuities of the surface, we have cre-
ated a new class of octahedral frame field energies parameterized
byp ≥ 1 for computing crease-aligned cross fields on surfaces. The
resulting fields are intrinsically smooth over smooth surfaces and
can be used for crease-aligned quad meshing. Moreover, alignment
is fully automatic and does not rely on explicit extraction of feature
curves, itself an open problem and active area of research.

We find the behavior of Ep for p ≥ 2 over creases of a dis-
cretization to be an interesting point for further exploration since
all practical computations on surfaces are necessarily discrete and
we observe strong feature alignment, despite the problem being
ill posed in the smooth setting. Theoretical analysis of anisotropic
normally aligned octahedral frame fields combined with
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Fig. 12. Various cross field methods compared on several meshes with complex features and geometry. We test on the three-cylinder-intersection, wavey-

box, wedge, and fandisk meshes and compare against the following works with various parameters: Brandt et al. [2018], Jakob et al. [2015], and Knöppel

et al. [2013]. We use normal-aligned octahedral fields generated by minimizing E2. We achieve crease alignment on all test cases where other methods

succeed sporadically.

Fig. 13. Quad meshes of the fandisk mesh generated using cross fields from E2, E∞, MIQ + QGP [Campen et al. 2015], and MIQ + Curvature filter [Campen

et al. 2016], respectively. Our methods achieve sharp alignment to the shallow crease with increased depth for higher p . Alternative methods are influenced

by the crease only to a shallower extent.

Proposition 4.3 may be able to explain this behavior. Since
all edges of a mesh are creases of a piecewise linear domain, the
behavior of geometry processing algorithms on creased domains
merits further study.

There are also further applications of soft-normal-aligned oc-
tahedral frame fields. Although in this article we fix ϵ as a single

parameter per mesh, it could also be defined as a scalar field rep-
resenting “trust” in the quality of a mesh. It would be interesting
to explore a spatially varying ϵ dependent on triangle quality or
other metrics in the future. If we treat the mesh itself as variables,
soft normal alignment enables a surface flow toward meshes with
lower cross-field energy. Our analysis can be further extended to
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Fig. 14. Quad meshes of the anchor, spot, moomoo, and three-cylinder-intersection meshes. We compare quad meshes generated using cross fields from

our E2 energy with quad meshes generated through Campen et al. [2015] and Bommes et al. [2009]. Our methods achieve sharper feature alignment on

the anchor, spot (on the ear), and three-cylinder-intersection meshes.

SH representations of n-RoSy fields or even platonic solid symme-
tries [Shen et al. 2016]. We also conjecture that with mild assump-
tions, the solution to our problem is unique, but a proof is outside
the scope of this work; we leave exploration of these ideas to future
work.

Even without these extensions, our method provides a practical
solution to a challenging problem. By using a new representation
of cross fields, we achieve crease-aligned cross fields on surfaces.
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