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“Meaningful” Parts?

Hierarchical Mesh Segmentation Based on Fitting Primitives
Attene et al, Visual Computer 22.3 (2006)



“"Meaningful” Parts?




How do you choose?



ldea: Let Parts Bend




Isometric Deformation

Preserves Pairwise Distances



Isometric Deformation
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Segmentation and
part-finding invariant to
near-isometry
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Find symmetries using
approximate Killing vector fields

Compute and cluster
Isometry-invariant point signatures



Killing
Vector
Fields



Killing




Self-lsometry

Distance-Preserving Self Map



Continuous Self-Isometry

fma_b‘é class qf _
Distance-Preserving Self Maps



Tangent Vector Field

w(p) = tangent vector at p




Killing Vector Fields (KVFs)

Continuous self-isometry
¢t P —> D




Killing Vector Fields (KVFs)

Continuous self-isometry
¢t P —> D

|

Killing vector field
N TY




Discrete Approximate KVFs

Eurographics Symposium on Geometry Processing 2010 Volume 29 (2010), Number 5
Olga Sorkine and Bruno Lévy
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Abstract

Symmetry is one of the most important properties of a shape, unifving form and function. It encodes semantic infor-
mation on one hand, and affects the shape's aesthetic value on the other. Symmenry comes in many flavors, amongst
the most interesting being intrinsic symmetry, which is defined only in terms of the intrinsic geometry of the shape.
Continuous intrinsic symmetries can be represented using infinitesimal rigid transformations, which are given as
tangent vector fields on the surface — kmown as Killing Vector Fields. As exact symmefries are quite rare, especially
when considerine noisv sampled surfaces, we propose a method for relaxine the exact svimmetry consiraint to allow




AKVFs: Main ldea

Vector field: w € R
Operator (matrix) K measuring

deviation from isometry

Want to minimize ||Kwl|? subject to ||w| =1

0

Find eigenvectors ( “eigenfields”) of K



AKVF Examples




</digression>
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Composite Shape
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Motivating Theorem

Proposition 1. There exist constants €y,C > 0 depending
only on the eigenvalues of £y, X and a number M (€) with
limg_soM(€) = oo so that the spectral data of P™ P satisfies:

1. Ife < g then forall n s.t. Ay, < M(€) we have

(An —un| < C/llog(e)] .

2. Let P, § be the L:-(Jrr/u;rgf;um! projector onto the subspace
W, 5 = span{iiy : k s.t. | Ay — | < 8}. If € < g then for
all o > 0 and n s.t. Ay < M(€) we have

W, = P, 5(0,) +M
2 < C/(87[log(e)]).

where | L W, 5 and satisfies |||




Motivating Theorem

Proposition 1. There exist constants €
only on the eigenvalues o
1ilng_>0M €) =

> L= -orthogonal projector onto the subspace
w5 = span{ii : k si. [\ — | < 8}, Ife < € then for
all o > 0 and n s.t. Ay < M(€) we have

W, = P, 5(0n) +M
where 1 LW, § and satisfies |0 Hig < C/(82| log(e)|).




Motivating Theorem

Proposition 1. There exist constants €
only on the eigenvalues of 2
limg_,o M (€

_ > L= -orthogonal projector onto the subspace
S = span{u;\ ks.t.|hn— | <0} If € < gy then for
all § >0 and n s.t. My < - M(€) we have

Wp = Py 5(0n) +M



Motivating Theorem

Proposition 1. There exist constants €
only on the eigenvalues of 2
limg_,o M (€

S > L= -orthogonal projector onto the subspace
no +— 51”“”{”;1 k s.t. |A.” —;U,{l < 8} If € < g then for




Larger Necks




Problem: Linear Combination




lon

INnat

0
=
O

v

Inear

L

Problem




Problem: Linear Combination




Tangling Energy



to Untangle

M




How to Untangle
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to Untangle

M




How to Untangle
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Signatures for Part Discovery

o(p) = (Jlua(p )H lu2(P);- - - [lun (P)]])

Untangled vectorﬂelds

AAR!




Segmentation Algorithm

Find
Compute signature
for each point




Segmentation Results




Segmentation Results




Comparison

Shape Diameter Randomized Cuts Intrinsic Primitives
[Shapira et al. 2008] [Golovinskiy et al. 2008]



Comparison

Shape Diameter Randomized Cuts Intrinsic Primitives
[Shapira et al. 2008] [Golovinskiy et al. 2008]




Part Discovery
e s
| \ §




v8 Rlfy

AN




>~
S
L
>
O
@
D
Qo
afd
|
(o]
al




Conclusions

Segmentation into
Intrinsically symmetric parts

KVFs of a composite come from
KVFs of its parts

Untangle KVFs for better localization



Special Thanks

Hertz

freedom to innovate

ULBR[GH STANFORD

P N COMPUTER SCIENCE 3}7235 10X NJ23
N\ WEIZMANN INSTITUTE OF SCIENCE

Google

BIO-X



177427

Questions?



