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The computation of smooth fields of orthogonal directions within a volume
is a critical step in hexahedral mesh generation, used to guide placement of
edges and singularities. While this problem shares high-level structure with
surface-based frame field problems, critical aspects are lost when extending
to volumes, while new structure from the flat Euclidean metric emerges.
Taking these considerations into account, this paper presents an algorithm
for computing such “octahedral” fields. Unlike existing approaches, our
formulation achieves infinite resolution in the interior of the volume via the
boundary element method (BEM), continuously assigning frames to points
in the interior from only a triangle mesh discretization of the boundary. The
end result is an orthogonal direction field that can be sampled anywhere
inside the mesh, with smooth variation and singular structure in the interior
even with a coarse boundary. We illustrate our computed frames on a number
of challenging test geometries. Since the octahedral frame field problem is
relatively new, we also contribute a thorough discussion of theoretical and
practical challenges unique to this problem.
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tional Geometry and Object Modeling—Geometric algorithms & Systems
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1. INTRODUCTION

The design of direction fields in volumetric domains is a new prob-
lem that has gained momentum in recent years. Propelled by hexa-
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hedral (hex) mesh generation, most attention has been given to the
computation of fields that assign three orthonormal directions to
each point in a volume. These fields are designed to be agnostic to
the ordering and sign of the individual directions at each point.

Hex meshes are desirable for applications in finite element (FEM)
simulation. A hex mesh is essentially a warped three-dimensional
grid covering a volumetric domain. The quality of a hex mesh
depends on several parameters: the topological quality, reflected by
a simple singularity graph; regularity, measured by evenly-sized and
orthonormal hex elements; and alignment to the boundary of the
domain. These qualities are inherited from those of the direction
field used to guide the meshing process. Therefore, the design of
smooth, orthonormal, boundary-aligned fields is a critical step in
hex remeshing, and one that we pursue in this paper.

We call such fields octahedral direction fields to emphasize their
symmetric structure. This departure in terminology from the more
generic term “frame fields” used in previous literature [Huang et al.
2011; Ray and Sokolov 2015] to refer to the same objects em-
phasizes that individual “xyz” labels are not assigned to the three
directions, and in fact some octahedral fields may not admit such a
labeling globally due to topological restrictions. Rather, each set of
directions has an octahedral symmetry group, isomorphic to the set
of 90◦ rotations of a cube.

Common techniques to design surface-based tangent directional
fields do not generalize easily to octahedral fields. Specifically, there
are no clear generalizations of angle-based [Bommes et al. 2009]
or complex [Knöppel et al. 2013] representations. The essential
difficulty is that rotations are not commutative in three dimensions,
and consequently there is no trivial way to parameterize the set of
rotations that morph one octahedral frame into another. In addition,
classification of octahedral field singularities is still underexplored.
Following [Huang et al. 2011; Ray and Sokolov 2015], we use
a spherical harmonic parametrization of octahedral fields, with a
few key differences, to help overcome some of these issues via a
relaxation approach.

Octahedral fields are typically designed in volumes discretized
by tetrahedral (tet) meshes; the boundary inherits a triangle mesh
discretization. Tet meshes facilitate the transfer of well-tested tech-
niques from 2D symmetry field design on surfaces to this case.
Nevertheless, working with tet meshes comes at a significant price.
The complexity of tet meshes with fine elements can be prohibitive
computationally, and tet meshes are themselves difficult to gener-
ate from a boundary mesh. Coarse tet meshes, on the other hand,
induce noisy and ungainly field topology. This is unavoidable due
to aliasing; singularity lines must follow the edges of the mesh.

Vector fields on surfaces require a mesh discretization to resolve
curvature and nontrivial tangent bundles, and thus such disadvan-
tages must be endured for surface-based problems. For the octa-
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hedral problem, however, volumes are flat and inherit the trivial
Euclidean parallel transport, and tet mesh discretization is in a sense
unnecessary for this problem. Simply put, tets do not convey mean-
ingful geometric information for volumetric octahedral field design;
they are simply a default numerical discretization of the problem.

In light of these observations, we offer a novel method to compute
a smooth octahedral field aligned to prescribed boundary constraints
on a triangle mesh. Our algorithm, which uses the boundary element
method (BEM), uses variables sampled only at the boundary trian-
gles. That is, we write our entire octahedral field pipeline in terms
of a triangle mesh bounding the interior; the resulting field can then
be queried at arbitrary points inside. Even with a coarse boundary,
we obtain smooth fields, whose singularity graphs exhibit desirable
structure.

2. RELATED WORK

2.1 Directional field design

Although far from a solved problem, the design of tangent direc-
tional fields on surfaces has been extensively studied in the literature;
see [Vaxman et al. 2016] for a recent survey. The most common
paradigm for this design is to discretize a surface with a triangle
mesh and compute a vertex-, edge-, or face-based directional field.
Tangent planes are defined on these mesh elements, and directions
are encoded according to a local basis. Differential notions of con-
nection, parallel transport, and smoothness are discretized by defin-
ing maps between adjacent tangent spaces.

The use of triangle meshes means that the result can be sensi-
tive to the discretization. Bad mesh elements affect the reliability
of smoothness energies, and insufficient sampling affects the field
topology considerably [Vaxman et al. 2016]. These artifacts can be
somewhat alleviated by remeshing and refinement, but ultimately
there is no guarantee or reliability. Moreover, refining greatly in-
creases the memory and time complexity of the computation. Meth-
ods that compute octahedral fields by discretizing volumes into finite
elements [Huang et al. 2011; Ray and Sokolov 2015] inherit the
same issues. As evidence, their singularity graphs appear jagged and
noisy, and this effect does not vanish with refinement (see Figures 9
and 10).

Triangle meshes seem unavoidable for tangent directional field
design, as there are not well-studied alternatives for computing and
representing directional fields on surfaces that take curvature into
account. When computing fields inside a 3D volume bounded by
a surface, we do not have these limitations: the ambient space R3

is flat, and thus directions can be defined with a global coordinate
system. It is then possible to work without volume discretization, as
proposed in this paper, using the boundary element method.

2.2 Octahedral frame representation

For general N -directional fields on triangle meshes, where the field
contains more than one vector per face, the definition of discrete dif-
ferential properties requires matching individual vectors in adjacent
tangent spaces. The matching can be done implicitly, by matching
the vectors that are the most similar in some sense [Knöppel et al.
2013; Diamanti et al. 2014], or explicitly, by encoding all possible
matching options as additional variables [Ray et al. 2008; Bommes
et al. 2009]. The most common representation for explicit matching
is angle-based [Li et al. 2006; Ray et al. 2008; Bommes et al. 2009],
where an integer is used to determine the matching. Methods for im-
plicit matching use Cartesian or complex representations [Ray et al.
2009; Knöppel et al. 2013], encoding a field with N -rotational sym-

metry by a single representative, using trigonometric (or complex
exponential) functions.

Neither of these representations trivially extends to 3D fields
with octahedral symmetry, as commutativity and other convenient
structures from the rotation group SO(2) no longer apply. It is
possible, however, to lift some ideas from representation by complex
exponentials to SO(3) by use of the degree-four spherical harmonic
basis, as introduced in [Huang et al. 2011]. We choose to use this
representation.

While on the plane there exists a natural identification between
(nonzero) complex values and symmetric N -direction frames, for
octahedral fields there is a dimensionality mismatch. The basis
of degree-four spherical harmonics is nine-dimensional, while the
space of rotations is three-dimensional. For this reason, techniques
like [Huang et al. 2011; Ray and Sokolov 2015] can be considered
relaxations of the octahedral field problem requiring projection
operators to return to the space of feasible frame functions. We
employ a simple gradient descent iteration for this task, proposed
in [Ray and Sokolov 2015].

2.3 Octahedral field computation

Huang et al. [2011] discretize octahedral fields on tetrahedral mesh
elements. This leads to a three-step algorithm consisting of (1)
initialization by a loose convex relaxation to 9D spherical harmonic
coefficients, (2) element-wise projection of the relaxed solution
to a 3D rotation, and (3) a non-linear and non-convex refinement
procedure.

Ray et al. [2015] propose some improvements to this three-step
algorithm. Most importantly, the convex relaxation is tightened by
modifying the boundary constraints, leading to seven linear condi-
tions per boundary element compared to the one used in [Huang
et al. 2011]. The tighter set of constraints is important for geometric
configurations where the surface normals do not naturally admit
octahedral symmetry, e.g. near tetrahedral or spherical parts. More-
over, performance is significantly improved by a custom-tailored
optimization algorithm.

A critical drawback of both previous algorithms is the require-
ment of a tetrahedral mesh, which not only requires effort to be
generated but also strongly restricts the potential topologies of the
field. Essentially, this leads to a chicken-and-egg problem. On the
one hand we need a tetrahedral mesh to compute the field, but on
the other hand to generate an appropriate tetrahedral mesh, care-
fully sampling the (unknown) singularity network of the field would
be necessary. Another disadvantage of current approaches is that
the magnitude of surface tangent field is completely unconstrained,
which can lead to serious artifacts shown in §9; note that [Li et al.
2012] presents a frame field construction without this issue but relies
on local optimization and post-processing without a notion of global
optimality.

2.4 Hexahedral meshing

The most prominent important application of octahedral fields
is in hex meshing. Similar to parametrization-based quad mesh-
ing [Bommes et al. 2013], the field can be used to construct an
integer-grid map (IGM) [Bommes et al. 2013], which maps integer
isolines of a Cartesian grid to a conforming hexahedral mesh. The
resulting hexahedral mesh can be robustly extracted, even if the map
contains common local defects like degeneracies or orientation flips
[Lyon et al. 2016].

Nieser et al. [2011] first pursued this direction by parameterizing
manually designed octahedral fields. They observed that only a sub-
set of octahedral field singularities are mappable. More specifically,
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line singularities can only be mapped if they correspond to 2D rota-
tions and point singularities need to correspond to a triangulation of
the sphere. Subsequent work proposes heuristics to obtain fields with
valid line singularities based on mesh coarsening or refinement [Li
et al. 2012; Jiang et al. 2014]. While important, these results are
only a first step since mappability of an octahedral field additionally
requires global consistency constraints that cannot be fulfilled by
any of the known algorithms. One interesting observation is that
local artifacts like non-mappable line singularities typically arise as
an artifact of inappropriate sampling, i.e. a bad tetrahedral mesh.

Several strategies for initializing the nonlinear optimization of
octahedral fields have been applied to hexahedral meshing. Li et
al. [2012] employ a surface cross-field to initialize volumetric ele-
ments in a nearest-neighbor manner. This requires the careful design
of a surface field, since not every smooth surface field can be ex-
tended smoothly to the interior. A specialized initialization for CAD
models with sharp features was proposed in [Kowalski et al. 2014].

2.5 Boundary element methods

The boundary element method (BEM) [Pozrikidis 2002] is a tech-
nique for solving differential equations using calculations on the
boundary of the domain. Most commonly, BEM is applied to inter-
polation of values from the boundary of a volume into its interior via
the Dirichlet equation; variations of this technique are popular in sci-
entific areas that use various interpolatory schemes. Using Green’s
theorem, BEM transforms differential problems in a domain into
dense problems on the boundary. In the process, some complexity
is pushed to preprocessing, yielding a smooth solution inside the
domain.

In geometry processing and graphics, BEM has been used for
barycentric coordinates for deformation [Lipman et al. 2008; Ben-
Chen et al. 2009; Weber et al. 2012], simulation [Hahn and Wojtan
2015], and parametrization [Wang et al. 2013]. Beyond interpolation,
BEM also can be incorporated into variational schemes, optimizing
boundary conditions to achieve a desired effect in the interior; this
approach was applied to deformation in [Ben-Chen et al. 2009].

In this paper, we use BEM discretizations of a lower-order than
most works in the graphics literature. The accuracy of this discretiza-
tion appears to be sufficient for our application, and the resulting
per-triangle representation provides a natural setting for posing con-
straints involving tangents to the boundary of the volume.

3. PROBLEM OVERVIEW

The problem of representing and designing octahedral fields is rela-
tively new. As such, we discuss its basic structure at some length to
highlight the challenges that are unique to frame field computation
in subsets of R3. Some of these basic principles were described
in [Huang et al. 2011; Ray and Sokolov 2015], and we repeat them
for clarity.

3.1 Field representation

We work on a domain Ω ⊂ R3, bounded by a set of smooth, closed
surfaces ∂Ω. Define the canonical axis set as

A := {±e1,±e2,±e3},

where ei ∈ R3 is the i-th standard basis vector. Then, an octahedral
frameA(p) at a point p ∈ Ω can be thought of as the setR(p) ·A =
{R(p)x : x ∈ A}, where R(p) ∈ SO(3) is a rotation about the
origin. More concretely, R(p) transforms the three coordinate axes
into the rotated frame. An octahedral field can be thought of as
a (non-unique) choice of R(p) for all points p ∈ Ω. Referring to

Fig. 1. Canonical function f0 on the unit sphere S2; radius from the origin
and color both indicate function value in this plot.

the taxonomy of [Vaxman et al. 2016], an octahedral frame is a
“three-dimensional 6-direction field,” as its definition is agnostic to
magnitude (although their taxonomy does not target frames in R3).

This representation is not unique: Multiple rotations can represent
the same octahedral frame, as sign and order between the individual
axes are irrelevant. For example, if R0 ∈ SO(3) rotates 90◦ about
any of the coordinate axes, then R0 · A = A, and hence R0 rep-
resents the same frame as the identity matrix I3×3. We denote the
group of all rotations that bring A to itself as the stabilizer group

O := {R0 ∈ SO(3) : R0 ·A = A}.

In words, O ⊆ SO(3) contains all rotation matrices that bring the
xyz axes to themselves, potentially with a change of order or sign.
Formally, O is a subgroup of SO(3), isomorphic to the octahedral
group of order 24, typically defined as the group of orientation-
preserving symmetries of a cube. Thus, if we use rotations R ∈
SO(3) to parameterize frame fields in volumes, there are 24 different
choices of R that all represent a given frame.

A natural idea might be to operate in the quotient space SO(3)/O
identifying all elements of SO(3) that are the same up to rotation
by an element of O. Cartesian approaches for 2D frame fields do
exactly this: Every 2D frame can be thought of as a rotation of the
xy axes by some 2×2 matrix R ∈ SO(2). The stabilizer group of
the xy axes is isomorphic to Z/4, generated by a 90◦ rotation about
the origin. The corresponding quotient simply can be thought of as
a set of angles repeating with a period of 90◦ rather than 360◦; in
the complex representation of 2D rotations, this quotient space can
be identified with the complex plane through use of representatives
e4iθ [Ray et al. 2009; Knöppel et al. 2013].

Octahedral frames do not admit such a straightforward quotient
representation, intuitively as a consequence of non-commutativity
of rotations; more formally, SO(3) is a simple group, meaning it
admits only trivial quotient groups. Nevertheless, one might attempt
to build upon existing representations from 2D. For example, [Dia-
manti et al. 2014] represents frames as roots of polynomials on
C. To avoid dealing with SO(3)/O, one might attempt to identify
SO(3) with the unit quaternions and represent frames as roots of
quaternionic polynomials. Quaternionic polynomials H[x] form a
noncommutative ring, however, with counterintuitive structure, al-
lowing for polynomials with infinitely many roots [Hamilton 1866].

[Huang et al. 2011] introduces a promising representation for
octahedral frames. They design a specific canonical function f0 :
S2 → R on the unit sphere with critical points on the xyz axes (see
Figure 1); for ease of visualization, we take the suggestion of [Ray
and Sokolov 2015] to apply −1 to the original function proposed
by [Huang et al. 2011] so that the peaks of f0 align with the xyz
axes. Technicalities aside, one way of understanding f0 is that it is
the restriction of a polynomial over R3:

f0(x, y, z) ∝ x4 + y4 + z4 + [constant].
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Swap

Sharp edge 90◦ edge

Fig. 2. Aligning the green frames with the surface normal leads to ambi-
guity at non-90◦ edges (left). This cannot be solved with orthogonal frame
fields. At 90◦ edges, the constraint is satisfiable, but the direction which
aligns with the normal must change.

This is the lowest-degree polynomial admitting nontrivial octahedral
symmetry [Dunkl 1984].

Given a rotation matrix R, the function f(x) = f0(R>x) is
a rotated version of the canonical function f0 whose peaks align
with the column vectors of R. For any matrix R′ ∈ O, f(x) has
the property that f(x) = f0((RR′)>x). That is, f0(R>x) uniquely
represents the frame encoded by the columns ofR, and it is invariant
to the symmetries in O.

3.2 Boundary constraints

The “classical” problem of octahedral field design is to assign a
frame to every point inside a bounded volume Ω ⊆ R3 that inter-
polates input frames on the boundary ∂Ω. This problem is often
relaxed to interpolating partial boundary information, most com-
monly allowing for any boundary frames that have one axis aligned
to the surface normal.

Designing octahedral fields that align with surface normals is
nontrivial for several reasons. The most straightforward issue is that
surface normals might not be continuous at sharp corners. Then, the
behavior of the octahedral field around a cusp is not obvious. This
issue is particularly intricate since we wish any of the axes to align
with the normal; so, normal discontinuities that exhibit rotations of
90◦ can lead to perfect alignments. See Figure 2 for examples.

The restriction of normal-aligned octahedral frames to the outer
surface forms a tangent orthogonal frame field. Hence, topological
and regularity issues like those discussed in [Knöppel et al. 2013]
are inherited, in addition to the issues above.

3.3 Singularity graphs

Since frame fields are agnostic to sign and order of the individual
directions, they are susceptible to inconsistencies in the transport of
a frame around a closed loop. This is a direct result of the nature of
the branched covering of 3D frames [Nieser et al. 2011].

Consider a closed 1D cycle c(t) ∈ Ω, 0 ≤ t ≤ 1, c(0) = c(1)
within Ω, and let F (t) encode the frame field restricted to this
loop. We can take F (t) to be a continuous function from t into
the rotation matrices SO(3) even though this is a 24-cover of the
space of octahedral frames, conceptually by differentially “matching”
frames from F (t) to F (t+ dt).

A consequence of writing F (t) as a continuous function from
t into the rotation matrices is that F (1) = F (0)R0, where R0 en-
codes a symmetry of the canonical xyz frame. That is, F (1) and
F (0) represent the same octahedral frame at c(0) = c(1), but the
xyz labeling of the individual directions might change to ensure con-
tinuity of F (t). The cycle c is considered regular if R0 = I3×3 and
singular otherwise. We do not consider higher-order singularities,

e.g. by enumerating the degree of singularities by the accumulated
matching inconsistency alone. Such singularities are theoretically
possible, but we did not empirically witness them in our examples.
They are unlikely to appear for methods without explicit angle-
based representation [Vaxman et al. 2016] interpolating fields on
the surface, but more analysis is needed to establish this conjecture
exactly.

It is beyond the scope of this paper to give a full topological
classification of singularities and indices for octahedral fields. In
general, singularities in a 3D cross field come in two categories:
singularity curves, around which there are singular cycles defined
above, and singularity nodes, either connecting singularity curves
to each other (“nodes”) or connecting singularity curves to the
boundary ∂Ω (“leaves”). The leaves also serve as singularities of the
tangential frame field on the boundary surface, assuming the frames
are aligned to the normal and that the normal field is smooth at the
singularity. The set of singularity nodes and curves is the singularity
graph of the frame field; see Figures 9 and 10 for examples of
singularity graphs for frame fields from our method and others.

3.4 Smoothness

A secondary indicator of 3D frame field quality, beyond its singular
topology, is its smoothness. We can think of a 3D frame field as
a map τ : Ω → SO(3)/O from the volume into the space of
octahedral frames. Then, a classical measure of smoothness is the
Dirichlet energy, defined as

E[τ ] :=

∫
Ω

‖dτ‖22 dV,

where d denotes the differential of a map between manifolds and the
norm ‖ · ‖2 is induced by the metrics of R3 and SO(3). Minimizers
of E[·] are known as harmonic maps.

If the field contains singular points, the Dirichlet energy diverges
due to the rapid circulation about the singularity. Most topologies
of ∂V imply that any smooth field aligning to the boundary normal
must have a singular point, and hence computation of classical
harmonic maps τ into SO(3)/O is meaningless. Discretely, this
implies that the Dirichlet energy for unit frame fields, as an objective
function for frame field optimization, grows to infinity in the limit of
refinement; this makes the nonlinear optimization steps of [Huang
et al. 2011; Ray and Sokolov 2015] difficult to analyze. This problem
was explored in [Knöppel et al. 2013] for tangential vector fields,
and the reasoning for 3D fields is similar. Hence, the straightforward
resolution is similar as well: We compute smooth fields without a
strict unit-norm constraint.

3.5 Field Sampling

Suppose that an octahedral field is computed on a tetrahedralization
of Ω. Then, we have the field as samples on, e.g., the tet barycenters.
This sampling removes much of the information in a smooth field, in-
cluding the definition of a continuous curve c and the transportation
upon it. Instead, the derivative F ′(t) is discretized on faces between
two adjacent tets as the estimated rotation between the respective oc-
tahedral frames. Cycles are defined as cycles of tet centers around an
interior edge, and the total rotation R0 is the product of the rotations
around the cycle. As a consequence, singular edges can only fall on
tet edges, and singularity nodes must fall on tet vertices. The discrete
singular network is smooth only if, by happenstance, the tet mesh
vertices and edges are aligned with the field topology. Otherwise,
this effect will not go away even with refinement. While [Ray and
Sokolov 2015] samples the field on vertices rather than tetrahedra,
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similar discrete reasoning applies. Other than adaptive remeshing
and recomputation, the simplest solution is to compute the field as a
smooth function, the approach we take.

4. SPHERICAL HARMONIC REPRESENTATION

Following [Huang et al. 2011; Ray and Sokolov 2015], we represent
octahedral frames as rotations of a canonical function f0(x) in
the spherical harmonic basis. Other than serving as an efficient
representation, this basis facilitates treatment of rotated frames by
using Wigner D-matrices, explained below.

4.1 Canonical function

From §3.1, we represent individual octahedral frames as rotations
of the following function on the unit sphere:

f0(x) :=

√
7

12
Y40(x) +

√
5

12
Y44(x),

where {Y4m(·)}4m=−4 is the basis of degree-4 real spherical har-
monic functions and x ∈ S2. This function, henceforth referred to
as the canonical axis function, is peaked in the±xyz directions; see
Figure 1 for an illustration.

An advantage of the spherical harmonic representation is that
rotations about the origin in this basis are well-understood theoreti-
cally. Suppose R ∈ R3×3 contains a set of orthonormal directions
as its columns, so R>R = I3×3; without loss of generality, we can
assume det(R) = 1. The spherical harmonic-based encoding of R
will be the function f(x) = f0(R>x), illustrated in Figure 3. By
the multi-way symmetry of f0, changing the order of the columns
in R does not affect f(x) as a function of x.

4.2 Wigner D-Matrices

A consequence of representation theory for SO(3) is that f(x) :=
f0(R>x)—like f0(x)—is expressible within the {Y4m}4m=−4 ba-
sis [Bröcker and Dieck 2003]. So, any rotation of f0 can be encoded
using coefficients in this basis.

Given a rotation R that transforms f0 into f , the corresponding
degree-4 Wigner-D matrix of the rotation R transforms the coeffi-
cients of f0 in the spherical harmonic basis into the coefficients of
f [Kennedy and Sadeghi 2013]. Define a0 ∈ R9 as the vector of
coefficients of f0 in the {Y4m(·)}4m=−4 basis:

a0 :=

(
0, 0, 0, 0,

√
7

12
, 0, 0, 0,

√
5

12

)
.

Then,

f(x) = f0(R>x) =

4∑
m=−4

cmY4m(x),

where the coefficients c ∈ R9 are given by

c = W4(R)a0,

and W4(R) ∈ R9×9 is the degree-4 Wigner-D matrix of R. The
closed-form formulas for these matrices are somewhat involved.
Nevertheless, [Lehner et al. 2015] provides a library for computing
them numerically in the complex spherical harmonic basis; a simple
transformation converts to the real-valued version. Since rotating a
function preserves its L2 norm, W4(R)>W4(R) = I9×9.

We note an intricacy of this representation of orthonormal frames.
While W4(R) is a 9× 9 orthogonal matrix, most 9× 9 orthogonal

matrices are not Wigner-D matrices. This is easy to see by counting
degrees of freedom. Since R ∈ SO(3), R essentially has three
degrees of freedom (e.g., axis in S2 and rotation angle), while
{W ∈ R9×9 : W>W = I9×9} has 36 degrees of freedom.1

Define Γ to be the set of coefficients being rotations of f0:

Γ := {c ∈ R9 : c = W4(R)a0 for some R ∈ SO(3)} ⊆ R9.

A corollary of the discussion in the previous paragraph is that Γ 6=
{c ∈ R9 : ‖c‖2 = 1}. In fact, constraining c to be the coefficients
of a rotation of f0 is a highly nonlinear, nonconvex constraint, as
we discuss in §5.2.

5. SMOOTH FIELD DESIGN

In this section, we describe the necessary ingredients for construct-
ing smoothly-varying, boundary-aligned octahedral fields in vol-
umes. We first describe our approach in the smooth setting and
describe the actual algorithm with a discrete boundary in §7.

Suppose Ω ⊆ R3 is a compact volume whose boundary ∂Ω is a
smooth, connected surface. We wish to assign to every point in Ω
an orthonormal frame that varies smoothly in the interior of Ω and
is aligned with ∂Ω as a boundary condition. Our approach proceeds
in two steps:

(1) We optimize for octahedral frames on the boundary ∂Ω whose
interpolation to the interior of Ω via the boundary element
method creates a smooth octahedral field.

(2) To evaluate the field at arbitrary points in the interior of Ω, we
sample the field as a set of spherical harmonic coefficients and
then project the interpolated coefficients onto Γ.

5.1 Global Completion

In the initial global step, we view our unknown as a function
u(x) := (u−4(x), · · · , u4(x)) : Ω → R9 assigning spherical har-
monic coefficients to every point in Ω. These coefficients approxi-
mate rotations of the canonical function f0. Below we construct the
global optimization for u(x) term-by-term.

Smoothness in Y4m basis. Recall that if g(x) =∑4
m=−4 cmY4m and h(x) =

∑4
m=−4 dmY4m, then

‖g − h‖22 =

∫
S2

|g(x)− h(x)|2 dx = ‖c− d‖22,

that is, the distances in L2 are equal to distances between spherical
harmonic coefficients. This relationship allows us to measure the
smoothness of u(·) using the classical Dirichlet energy (see §3.4) of
u as a function u : Ω→ R9 in the spherical harmonic basis:

E[u] :=

∫
Ω

‖∇u(x)‖22 dx. (1)

Without boundary conditions, E[·] is minimized by u ≡ const.

Fig. 4. Tangent frame.

Relaxing the unit norm. As discussed
in §3.4, for the Dirichlet energy to be finite
and well-defined, we need to consider a re-
laxed space without the unit-norm constraint.
Define the set of scalings of elements in Γ as

Γ := {βc ∈ Γ : β ∈ R} ⊆ R9.

1Symmetry of W>W = I9×9 induces 36 linearly dependent constraints.
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col I3×3

7→

colR f0(x)

7→

f0(R>x)



a0,−4

a0,−3

a0,−2

a0,−1

a0,0

a0,1

a0,2

a0,3

a0,4


∈ R9 7→ W4(R) ·



a0,−4

a0,−3

a0,−2

a0,−1

a0,0

a0,1

a0,2

a0,3

a0,4


∈ R9

(a) Frames (b) Canonical function (c) Spherical harmonic coefficients

Fig. 3. Representing rotated frames. Suppose (a) the columns of R ∈ R3×3 represent a rotation of the xyz frame. To remove the xyz labels, we instead
consider (b) rotating the canonical function f0(x) : S

2 → R, which is peaked at the six axes without distinguishing them from each other. If (c) a0 ∈ R9

contains the coefficients of f0(x) in the spherical harmonic basis, then the product W4(R) · a0 ∈ R9 contains the coefficients of f0(R
>x) in the same basis,

where W4(·) : SO(3)→ R9×9 is the degree-4 Wigner D-matrix function.

Any element of Γ\{0} unambiguously defines an orthonormal
frame, since scaling does not affect the maximizers of f0. Further-
more, this space corresponds to non-unit frame Dirichlet energies.
Therefore, we opt to work in Γ.

Unfortunately, as Γ is nonlinear, the u(x) resulting from this
global step, are allowed to leave the constraint space Γ, and thus
may not even encode true rotations of non-unit octahedral frames
exactly. For this, we need to project them onto Γ again. Then, we
can project them onto Γ by simple normalization. We address this
in the local projection step (§5.2).

Normal alignment. Take n̂(·) : ∂Ω → R3 to be the outward-
facing unit normal to ∂Ω. For our frames to conform to the geometry
of ∂Ω, we wish for the boundary frames u(x) to align with n̂(x) for
all x ∈ ∂Ω, as illustrated in Figure 4.

While the full space Γ is nonlinear, Ray and Sokolov [2015] show
that its restriction to those frames aligned with n̂(·) forms a much
simpler space. Define

vc :=

√
5

12
(0, . . . , 0, 1)

vs :=

√
5

12
(1, 0, . . . , 0)

vn :=

√
7

12
(0, 0, 0, 0, 1, 0, 0, 0, 0).

The coefficients of any unit frame aligned with the ±z direction
must take the form

u±z(θ) := vn + vc cos θ + vs sin θ.

There is a single degree of freedom, expressed in θ, which results
from rotation about the z-axis W4(Rz(θ))a0. This formula is anal-
ogous to the complex representation of orthogonal tangent frames
in [Knöppel et al. 2013].

Applying a WignerD-matrixW4(Rn̂(x)) to both sides parameter-
izes the frames aligned with n̂(x). Specifically, if Rn̂ is an arbitrary
rotation matrix taking +z to n̂, we write

un̂(θ) := W4(Rn̂)[vn + vc cos θ + vs sin θ].

Since this condition applies only to the boundary ∂Ω, we can pa-
rameterize all boundary frames via two functions c(·) : ∂Ω → R
and s(·) : ∂Ω→ R:

u(x) := W4(Rn̂(x))[vn + vcc(x) + vss(x)]. (2)

c(x)2 + s(x)2 = 1/8 c(x)2 + s(x)2 = 1 c(x)2 + s(x)2 = 8

Fig. 5. Relaxing the constraint c(x)2 + s(x)2 = 1 still leads to frames
that are well-aligned to the coordinate axes, although the scale in the xy

plane differs from the scale in the z plane.

This linear condition couples u(·), c(·), and s(·), since W4(Rn̂(x))
is a constant derived from n̂(x) alone. Note that the set of matrices
that transform ±z into n̂(x) is nonempty; it carries a single degree
of freedom, which simply changes the relative way to measure θ; this
said, the matrix Rn̂(x) can be chosen arbitrarily. This corresponds
with the local bases for tangential fields constructed in [Knöppel
et al. 2013]

The functions c(x), s(x) represent the tangential restriction of the
octahedral field as a 4-direction field (“4-RoSy field”). Thus, they
are not independent functions, and the true degree of freedom is a
single angle θ. This is captured by a unit-norm constraint c(x)2 +
s(x)2 ≡ 1, which [Ray and Sokolov 2015] attempts to enforce in
their nonlinear optimization while their linear initializer ignores it
altogether. This constraint, however, is topologically unsatisfiable
for smooth fields on the surface, as explained in §3.4.

We propose a relaxation of the c(x)2 + s(x)2 ≡ 1 constraint that
is still topologically satisfiable by smooth octahedral fields. Namely,
we enforce that the average of c(x)2 + s(x)2 equals one over the
outer surface: ∫

∂Ω

[c(x)2 + s(x)2] dx = A, (3)

where A is the area of ∂Ω. This global constraint is reminiscent
of eigenvalue problems in differential geometry; see [Mullen et al.
2008; Ben-Chen et al. 2010; Knöppel et al. 2013] for examples. It
forces the boundary frames to have nontrivial tangent plane direc-
tionality away from singular points. Even if c(x)2 + s(x)2 6= 1
at some x ∈ ∂Ω, the frame at x still has three clear orthogonal
directions, as illustrated in Figure 5.
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Full problem. Combining the terms above provides an opti-
mization problem for u:

minu,c,s E[u]
s.t. u(x) = W4(Rn̂(x))[vn + vcc(x) + vss(x)]

∀x ∈ ∂Ω∫
∂Ω

[c(x)2 + s(x)2] dx = A.

(4)

As promised, this is a relaxation of the orthogonal frames problem
in that we do not explicitly enforce u(x) ∈ Γ. Counting degrees of
freedom results in 9 degrees of freedom per x ∈ Ω\∂Ω, representing
the components of u; the constraint on the boundary implies only 2
degrees of freedom per x ∈ ∂Ω.

Remark. Note that (3) is not the only possible nontriviality con-
straint. We chose it after experimenting with several other possi-
bilities. Constraining

∫
Ω
‖u(x)‖22 dx = |Ω| as an integral over the

volume Ω can lead to degeneracies in which u(x) ≡ 0 on ∂Ω. This
happens when a large amount of rotation is required to align to the
boundary. Another option is to let the coefficient of vn ∈ R9 scale
on the boundary with vc and vs. This is similar to our formulation,
except letting the normal term vanish creates degeneracies for the
case illustrated in Figure 2, in which the entire frame vanishes.

5.2 Local Projection Step

The interpolated u(x) generally is not in the constraint set Γ when
x 6∈ ∂Ω, due to our relaxation in the global step. After solving (4),
however, we can project u(x) pointwise onto the constraints. We use
the gradient descent procedure in [Ray and Sokolov 2015, Algorithm
5] for this purpose.

6. BOUNDARY OPTIMIZATION

The octahedral field problem involves a flat, Euclidean volumetric
domain. While problems on surfaces must deal with curvature and
parallel transport, these constructions are trivial for our problem.
Hence, we view explicit tetrahedralization of the interior of Ω as
a means for computation rather than a meaningful element of the
problem. In this section, we show that indeed our problem can be
solved completely on the boundary ∂Ω, alleviating the need for any
volumetric meshing to compute smooth frame fields.

If we fix u ∈ ∂Ω, then the problem of computing u in the interior
resembles a Laplace equation. Inspired by the boundary element
method (BEM) [Pozrikidis 2002], we replace the global optimization
step with one that can be carried out on the outer surface.

The only part of (4) that involves knowing u in the interior of Ω is
E[u]. If we know u|∂Ω, however, then expanding the form of E[u]
to recover the remainder provides a familiar Dirichlet problem:

minu:Ω→R9

∫
Ω
‖∇u(x)‖22 dx

s.t. u|∂Ω fixed. (5)

Remaining terms from (4) drop out when u|∂Ω is fixed. This is the
weak form of the Laplace equation ∆u = 0.

Suppose u satisfies ∆u = 0 in the interior of Ω. Applying Green’s
first identity gives a way to compute the Dirichlet energy of u only
given boundary information:

E[u] :=

∫
Ω

‖∇u‖22 =

∫
∂Ω

u
∂u

∂n̂
, (6)

where n̂ is the unit normal to ∂Ω and ∂u/∂n̂ indicates the directional
derivative of u in the n̂ direction. The key observation from this
equation is that the optimization objective E[u] in (1) can be written

in terms of only integrals and constraints on the boundary ∂Ω, if we
can recover ∂u/∂n̂ directly from u|∂Ω.

To this end, for a fixed x ∈ ∂Ω, a well-known formula from basic
PDE determines u(x) given only u|∂Ω [Evans 2010]:

1

2
u(x) =

∫
∂Ω

[
G(y − x)

∂u(y)

∂n̂
− u(y)

∂G(y − x)

∂n̂

]
dy, (7)

where G is the Green’s function G(x) := 1/(4π‖x‖2). If we know
u(x) on ∂Ω, then this integral, when evaluated for all x ∈ ∂Ω,
can be viewed as a linear constraint determining the relationship
between u and ∂u/∂n̂. Adding this integral equation to the optimiza-
tion problem as a constraint, and using (6) to evaluateE[·] alleviates
the need to compute u in the interior of Ω:

minu, ∂u
∂n̂ ,c,s

E[u, ∂u/∂n̂] (using (6))
s.t. u(x) = W4(Rn̂(x))[vn + vcc(x) + vss(x)]

∀x ∈ ∂Ω∫
∂Ω

[c(x)2 + s(x)2] dx = A
(7) holds ∀x ∈ ∂Ω.

(8)

7. ALGORITHM

We next describe the implementation of our technique for practical
geometric models. After constructing the relevant vectors and matri-
ces to describe our octahedral field problem, we parallel the local
and global steps from §5 and show how they can be implemented
using standard linear algebra and optimization machinery.

7.1 Discretization

We discretize the boundary ∂Ω ⊆ R3 as a triangle mesh with n
faces. Our goal is to find one vector of u values per triangle via a
piecewise constant discretization of (8).

Contrasting with some existing work in boundary elements for
geometry processing [Lipman et al. 2008; Ben-Chen et al. 2009], we
use piecewise-constant elements rather than piecewise-linear (per-
vertex) elements because the triangles have well-defined tangent
planes. Denote the set of coefficient variables as uk ∈ R9, k ∈
{1, . . . , n}. We use ūm ∈ Rn to denote the value of the m-th
coefficient of u along the entire mesh, where m ∈ {−4, . . . , 4},
and u ∈ R9n to denote the vector containing all the unknowns;
these reshapings will simplify our notation later.

To discretize the objective E[·], we use the boundary element
method (BEM) to fill in boundary derivatives ∂u/∂n̂ from the per-
triangle boundary values of u [Pozrikidis 2002, §5.1.4]. In par-
ticular, we use triangle midpoint-collocated BEM to obtain a ma-
trix B ∈ Rn×n such that Bum ≈ (∂u/∂n̂)m; we employ closed-
form calculations for integrals over triangle elements as outlined
in [Graglia 1993].

If T̄ ∈ Rn×n+ is the diagonal matrix of triangle areas and L̄ :=

T̄B, then the Dirichlet energy can be discretized from (6) as

E[{ūm}4m=−4] :=
∑4

m=−4
ū>mL̄ūm = u>Lu,

where L ∈ R9n×9n contains blocks of L̄’s. We assume L is symmet-
ric, which can be enforced explicitly by taking L ← 1/2(L+ L>)
in case the BEM-based approximation of L is slightly asymmetric.
In practice, we find that L is positive semidefinite as would be ex-
pected from this Laplacian-style matrix; we leave a proof of this
property or exploration of conditions when it holds as a topic for
future research.

We additionally introduce variables c, s ∈ Rn for the bound-
ary data in (2). Denote by u0 ∈ R9n the vector with blocks
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W4(Rn̂k
)vn, where n̂k is the normal of triangle k. Furthermore,

denote by Hc,Hs ∈ R9n×n the matrices taking c, s to vectors with
blocks W4(Rn̂k

)vcck and W4(Rn̂k
)vssk, respectively. Then, (2)

becomes

u = u0 +Hcc+Hss.

Finally, we discretize the nontriviality constraint (3) as

c>T̄ c+ s>T̄ s = A.

This leads to the following discretization of (4):

min{u,c,s} u
>Lu

s.t. u = u0 +Hcc+Hss
c>T̄ c+ s>T̄ s = A.

(9)

with 9n+ 2n = 11n variables and 9n+ 1 constraints, resulting in
exactly 2n− 1 degrees of freedom.

7.2 Global Step: Optimization

Define

Q :=

(
H>c LHc H>c LHs
H>s LHc H>s LHs

)
∈ R2n×2n

v :=

(
H>c Lu0

H>s Lu0

)
∈ R2n

x :=

(
c
s

)
∈ R2n

T := diag(T̄ , T̄ ) ∈ R2n×2n

Then, (9) is equivalent to

minx∈R2n x>Qx+ 2x>v
s.t. x>Tx = A.

(10)

When v 6= 0, this is not an eigenvalue problem. Nonetheless, in
Appendix A we derive a method for efficiently recovering the global
optimum, inspired by the LSQI algorithm in [Golub and Van Loan
2012]. Our final algorithm takes place in two steps:

(1) Computation of the smallest (algebraic) eigenvalue λmin for
the generalized problem Qx = λTx. This can be carried out
without applying Q−1, e.g. using Matlab’s eigs routine.

(2) Finding a unique root of g(λ) := x(λ)>Tx(λ) − A in the
interval (−∞, λmin), where x(λ) solves the linear system (Q−
λT )x = −v. We use the bisection algorithm [Press et al. 2007]
since g(λ) is monotonic in this interval.

The globally optimal x is x(λ0), where g(λ0) = 0.
The eigenvalue iteration is fast since it only requires multiplica-

tion by Q and T . Solution time is dominated by the second step;
each iteration of bisection requires inversion of a dense linear sys-
tem. The density is on the order of the number of boundary triangles
rather than the number of tetrahedra in a volumetric mesh, however,
implying a smaller size for Q than tet-based finite element methods.

7.3 Local Step: Interior Evaluation

The optimization above in §7.2 is a “precomputation” in the sense
that once we have obtained per-triangle estimates of u and ∂u/∂n̂ we
can evaluate u(x) at any x in the interior of the mesh via a smooth
formula. This sampling can be carried out in parallel for multiple
x’s, since the computation decouples given the boundary data.

In particular, in the smooth case, when x ∈ Ω\∂Ω the formula (7)
changes slightly to evaluate u(x):

u(x) =

∫
∂Ω

[
G(y − x)

∂u(y)

∂n̂
− u(y)

∂G(y − x)

∂n̂

]
dy. (11)

The somewhat counterintuitive loss of a 1/2 factor is explained e.g.
in [Pozrikidis 2002].

For x in the interior of a triangle mesh and triangle k ∈
{1, . . . , n}, define

σk(x) :=

∫
Tk

G(y − x) dy

ρk(x) := n̂k ·
∫
Tk

∇G(y − x) dy.

[Graglia 1993] provides algorithms for computing these quantities
in closed form. Then, we evaluate u(x) as

u(x) =
∑
k

[ukσk(x) + [Bu]kρk(x)]. (12)

This function is smooth in the interior of the mesh, regardless of its
coarseness. After computing u(x), the frame at x ∈ Ω is recovered
using the recovery procedure outlined in §5.2.

Sharpening. We note one heuristic improvement in our pipeline.
Before sampling u in the interior Ω\∂Ω (§7.3), we replace u(x) for
x ∈ ∂Ω with u(x)/‖u(x)‖2. While allowing u(x) to take non-unit
values makes sense during the global optimization stage, during
interpolation the larger values of u(x) make the choices of frames
in the interior near boundary singularities more clear.

7.4 Comparison to Existing Techniques

Having established the technical details of our algorithm, we briefly
point out the main differences between our proposed method and
previously published algorithms:

—Compared to both [Huang et al. 2011] and [Ray and Sokolov
2015], we use the boundary element method rather than a tetrahe-
dral mesh of the interior of Ω. This makes our fields and singular-
ity curves smooth even when the boundary is discrete.

—Unlike both [Huang et al. 2011] and [Ray and Sokolov 2015],
our global optimization step does not require a local, nonlin-
ear/nonconvex refinement procedure. This allows for u(x) to
be sampled at multiple interior x’s in a completely decoupled
fashion.

—We use the improved boundary conditions of the linear step
in [Ray and Sokolov 2015] over [Huang et al. 2011].

—Rather than enforcing the smoothly unsatisfiable pointwise
c(x)2 + s(x)2 ≡ 1 constraint proposed in the nonlinear step
of [Ray and Sokolov 2015] or dropping nontriviality on the bound-
ary altogether like [Huang et al. 2011], we use the relaxed condi-
tion (3). This makes our optimization problem nonlinear, but we
provide an algorithm in Appendix A to solve the relaxed problem
to global optimality.

8. SINGULARITY COMPUTATION

One challenge working with a smooth octahedral field rather than
one sampled on a tetrahedral mesh is that there is no obvious way
to extract its singular structure in closed form. A naı̈ve way to
approximate the singular graph would be to sample frames on a
tetrahedral mesh inscribed in Ω and then use a discrete algorithm like
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Fig. 6. We find singular points by iteratively “tightening” singular loops.
In each step, a singular triangle is subdivided into four subtriangles, and the
nonsingular subtriangles are removed. This process is repeated recursively
until the loop is sufficiently small.

that in [Huang et al. 2011], but this forces the edges of the singular
graph to align with mesh edges and requires dense sampling. Instead,
to better visualize the singularity graphs of our smooth octahedral
fields, we propose a random sampling technique that can find points
on the singular graph without tetrahedral meshing. The end result is
a cloud of points sampled from the singular graph, each of which
is found by iteratively tightening a loop around a singularity as
illustrated in Figure 6.

In more detail, we randomly sample a point p ∈ Ω with uniform
probability and a random unit vector n̂ ∈ S2. We construct an
equilateral triangle in the plane orthogonal to n̂ through p, rotated
by a random angle about n̂. The radius of the triangle is chosen to be
at least 10× the average distance between p and its closest neighbor
in the collection of sampled p’s; in practice we find little dependence
on the constant 10 so long as it is not too small. We sample our
octahedral frames at the vertices and edge midpoints of the triangle
(6 points total), subdividing the triangle into four subtriangles. We
test each subtriangle to see if it is a discrete singular loop, that is, if
composing frame matchings from vertex to vertex yields the identity.
Non-singular loops are discarded, and the remaining singular loops
are again subdivided into four smaller subtriangles. This process
continues until singular loops are below a fixed radius threshold; the
barycenter of the refined triangle is taken as an approximation of a
singular point.

The right columns in Figures 9 and 10 illustrate examples of
our samplings. The refinement procedure is independent for each p,
allowing for many loops to be subdivided in parallel. While we could
draw these point clouds as graphs by e.g. connecting these points to
their nearest neighbors, we choose not to do so since mathematically
it is difficult to verify that the resulting graph is truly the singularity
graph of the smooth field.

There is some under-sampling in the singular fields near the
boundaries of the models, especially the ones in Figure 10. This is
not reflective non-smoothness for our octahedral fields but rather the
limited likelihood of sampling a p and surrounding triangle close to
the boundary. Additional sampling near the boundary and/or biasing
the triangle normal n̂ to align with the surface normal potentially
could resolve this issue if a dense sampling of the singular point
cloud is desired.

9. EXPERIMENTS

In this section, we provide experiments demonstrating the behavior
of our pipeline for computing 3D frame fields in volumes. We
illustrate frames using a variety of means to provide intuition for
their tangential and volumetric structure.

Fig. 11. Traced singularity graph for [Ray and Sokolov 2015] on the torus
with 316,079 tetrahedra after nonlinear refinement; line breaks denote layer-
ing rather than a discontinuity in the singularity curve. Notice that the entire
graph is a single connected component.

9.1 Boundary Conditions

Beyond our use of the boundary element method to achieve smooth
octahedral fields inside volumes, our formulation differs from pre-
vious work before discretization by the introduction of the nontriv-
iality constraint (3), which forces our fields to have nonvanishing
tangential behavior on the boundary of the domain.

To isolate the effect of our boundary conditions from improve-
ments due to use of BEM and other design decisions, we compare
the behavior of our boundary conditions versus those from the linear
step of [Ray and Sokolov 2015] after implementing the latter using
a BEM discretization. This is achieved simply by solvingQx = −v,
to obtain the minimizer of Equation (10) without the nontriviality
constraint.

Figure 7 compares these options by showing the restriction of
our computed fields to the outer triangle mesh surfaces of different
volumes V . We first compare values of the squared norm c(x)2 +
s(x)2 as a function of x ∈ ∂V ; our technique forces this value to
average to 1, while the weaker boundary conditions can decrease
the tangential norm in favor of a smoother field. We also compare
the field itself restricted to the boundary to demonstrate how this
change has an effect on the singular structure of the resulting field.

9.2 Interior Frames

Figure 8 illustrates octahedral fields computed using our technique.
For fair comparison, we show the BEM analog of [Ray and Sokolov
2015] discussed in the previous section. The images show the direc-
tionality and orientation of the frames using flows in one direction
rendered as boxes aligned to the orthogonal component.

The smoothness of the flow lines illustrates the smoothness and
lack of undersampling afforded by our procedure over tetrahedral
methods. Compared to the alternative boundary conditions, our
method also yields better singular structure e.g. near non-90◦ an-
gles (boxed examples in first row) with lots of symmetry or non-
orthogonal structure. This confirms our intuition that the bound-
ary nontriviality constraint (3) reduces catastrophic cancellation of
frames when normal alignment forces u(x) to change rapidly or
repeatedly.

9.3 Comparison to Previous Work

Figures 9 and 10 illustrate a benchmark designed to evaluate our
method in comparison to previous work [Huang et al. 2011; Ray
and Sokolov 2015]. We also show intermediate output of [Ray and
Sokolov 2015] before nonlinear refinement, since the linear stage
of their pipeline is more closely related to our method (which does
not require refinement). The authors of these two papers kindly
agreed to participate in this benchmark and used their own imple-
mentations/hardware for these tests; this ensures fair representation,
although we are unable to provide timing comparisons.
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Fig. 7. Validation of boundary conditions. The first of each pair shows the norm c(x)2 + s(x)2 as a function along the boundary (scaled from blue to yellow),
and the second in each pair shows the corresponding tangent frame field. Here, “unconstrained” refers to the boundary conditions of [Ray and Sokolov 2015]
adapted to BEM discretization, while “constrained” indicates addition of the nontriviality constraint (3).

We compare on a set of tet meshes highlighting challenges in the
octahedral frames pipeline. Each shape appears multiple times with
different tet resolution filling the interior; note that the boundaries of
different tet meshes are not identical even if they fill the same shape.
Since previous methods operate on tet meshes, for comparison we
extract the triangle mesh boundary from each test tet mesh, simplify
it using [Sacht et al. 2015] to no more than 6000 triangular faces (a
reasonable resolution for our BEM implementation), and run our
method. This implies that our result can change between tests on the
same shape; this resolution dependence is a byproduct of our testing
procedure and not a drawback of our technique.

The output of previous techniques differs slightly between the two
papers and with our own. [Huang et al. 2011] generates one frame
per tet, [Ray and Sokolov 2015] generates one frame per vertex, and
our method generates a smoothly-varying frame function. For this
reason, the figures show the singular network corresponding to the
discrete or smooth frame fields. See §8 for discussion of how we
generate point clouds sampling from singular graphs in our frame
fields.

There are several conclusions to draw from this experiment il-
lustrating the advantages and drawbacks of our method. First, our
singular point clouds are smooth even when the tetrahedral meshes
are coarse; this contrasts with previous FEM-based methods, for
which singular topology must be associated with mesh elements. Ad-
ditionally, our method achieves simple topology even on fairly low
resolution meshes. This topology agrees with results from denser
meshings of the same surface without the need for nonlinear refine-
ment, a critical step in previous work (see e.g. the sphere example
for [Ray and Sokolov 2015] without nonlinear refinement for a fail-
ure of their linear initializer). Even when the initializer for [Ray and
Sokolov 2015] succeeds in generating a smooth field, the topology
of this field can be more complicated, as illustrated in the torus
example and highlighted in Figure 11.

10778 triangles 4276 triangles

1696 triangles 672 triangles

Fig. 12. Sensitivity to density of the boundary mesh; boundary fields visu-
alized using the same method as Figure 7. Qualitatively our result remains
stable even after aggressive coarsening of the boundary.

This experiment shows some drawbacks as well. For instance,
the sphere with a dense boundary shows spurious singularities near
junctures of the singular graph. These represent failures of the frame
projection procedure due to the relaxed constraints in the interior of
the domain, which can be corrected using the nonlinear refinement
in [Huang et al. 2011; Ray and Sokolov 2015]. Additionally, the
singular point clouds for the “real-world” meshes in Figure 10 are
only sparsely sampled near the boundary, reflecting the fact that
we can only sample points from the singular graph rather than
constructing it explicitly; these samples are harder to obtain near the
boundary surface because they must be contained within a sampled
loop; this is of course a drawback of the simplistic singular graph
reconstruction rather than the field itself.
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Outer surface Flow lines

Fig. 13. Interior of the frame field from Figure 12 computed using only
672 triangles. The frames still vary smoothly and follow the contours of the
boundary.

Unconstrained Constrained

Fig. 14. (top) Comparison of hex meshes generated from octahedral frame
alternatives sampled in a tet mesh of a cylinder; we show a cut through the
two hex meshes to illustrate interior frames; (bottom) additional hex meshes
(with cut-aways) generated from our frames.

9.4 Boundary Density

Figure 12 tests our method under coarsening of the boundary. For
this experiment, we consider the boundary of a tet mesh with 10778
triangles. We then produce different coarsenings of the boundary
using [Sacht et al. 2015]. We choose this method because it produces
“nested” meshes, each of which enclose the original tet mesh; hence
each can be used to sample the same interior. As illustrated in this
experiment, our method is stable under coarsening of the bound-
ary, a property derived from its expression in the well-understood
boundary element basis.

This experiment suggests that we can squeeze efficiency out of
our method by coarsening the boundary before sampling the interior
frames; this reduces the number of terms in the sum (12). As an
extreme example, Figure 13 shows streamlines of the frames from
the coarsest example in Figure 12. This downsampled computation
still produces smooth frames conforming to the outer geometry.

Mesh Triangles Global Local
BEM Optimization Sampling Projection

Torus
1542 0.79 39.31 8499.9 4679.2
5438 8.53 648.89 3565.2 11609.3
5998 27.28 1185.27 2545.1 9449.4

Sphere
496 0.04 2.89 22654.2 19174.0
2014 0.84 91.76 7636.4 31510.6
6000 16.00 1467.86 2728.4 26769.2

Elk
5998 16.04 1114.02 2674.0 27360.0
6000 18.65 1004.20 1747.0 31211.6
5998 12.31 1231.54 2528.4 34926.5

Rocker arm
5050 9.43 698.84 3132.8 36548.9
5998 10.81 785.87 3250.2 47338.2

Fig. 15. Timings for tests in Figures 9 and 10. The global steps of BEM
construction and numerical optimization are single-threaded; times are re-
ported in seconds. The local step has a parallel implementation; timings are
in units of frames per second.

9.5 Hexahedral Meshing

Our octahedral frames have a practical impact on hex meshing
pipelines. We experiment using a variant of [Nieser et al. 2011],
which relies upon octahedral frames for guidance. Figure 14 shows
the results of hex remeshing on tet meshes guided by samples of our
frames. Even without dense sampling or nonlinear polishing, our
singular structure and smoothly-varying frames create a symmetric
hex mesh. The hexahedral meshes are robustly extracted from the
parametrization with the freely available HexEx library [Lyon et al.
2016].

9.6 Efficiency

Figure 15 contains timings for the tests in Figures 9 and 10 using our
technique. We implement our method in Matlab with C++/OpenMP
plugins for parallelizable tasks. Our computer has 5.3GB of RAM
with 24 double-threaded 2.4 GHz Intel CPUs.

For each test, timings are reported for separate stages of the
pipeline. The global steps—construction of BEM matrices and opti-
mization for boundary frames—are carried out on a single thread;
times are reported in seconds. The local steps are easy to parallelize
by sample point; since the field can be queried anywhere, we report
timings in terms of the average number of frames sampled/projected
per second.

Note that in our benchmark, many triangle meshes for testing
had 6000 triangles. A drawback of our current implementation is
that the 6000×6000 dense BEM matrices are stored in memory,
which appeared to create many “cache misses” and related memory
efficiency issues, as evidenced by the much faster computation times
for the smaller torus/sphere meshes. Future work could consider
application of the fast multipole method [Rokhlin 1985] to alleviate
the need to store such dense matrices. Also note that the 6000 limit
was fairly arbitrary, and in fact our method works similarly well
with coarser boundary mesh approximations as evidenced by the
experiments in §9.4.

10. DISCUSSION AND CONCLUSION

This work represents significant progress on several aspects of the
octahedral field problem. We demonstrate a pipeline in which octa-
hedral frames can be recovered with infinite resolution even after
discretization of the boundary. Our pipeline, quadratic optimization
algorithm, and robust projection also overcome several challenges
related to optimization in the space of frames.
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Some drawbacks of our approach and current implementation
indicate avenues for future research. Since we do not use a meshing
of the interior of the volume, posing constraints on alignment to
interior features becomes more challenging. Note that the boundary
element method does not require volumes to have connected bound-
aries, so this drawback likely could be addressed by augmenting
the outer boundary surface with reversely-oriented interior elements.
Additionally, our current implementation’s efficiency is limited by
use of dense matrices expressing interactions between every pair of
boundary elements.

More broadly, octahedral frame field computation—and hex
meshing—are by no means solved problems, and they will pro-
vide theoretical and practical challenges for years to come. A key
question is whether it is possible to optimize directly in the space
of octahedral frames without a relax-and-project pipeline; such an
approach likely will make it more challenging to apply boundary
element methods tuned to classical PDEs. More immediately, it
may be possible to generalize our pipeline to computation of other
classes of symmetry fields in volumes and to apply fast multipole
methods to further accelerate the BEM [Liu 2009]. The specifica-
tion of alignment constraints inside the volume, as for instance of
interest for geological data [Ray and Sokolov 2015], seems to be
a straightforward extension of the optimization problem that we
plan to investigate in the future. Another challenge is the ability
to detect and discover the singularity graph without the need for a
sampling method (responsible for the artifacts in Figure 10). Finally,
a discrete challenge might be to construct a hex mesh directly from
a triangulated boundary and our octahedral field, eliminating the
drawbacks of tet discretization altogether.
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APPENDIX

A. QUADRATIC OPTIMIZATION

The Lagrangian optimality condition for problem (10) is

(Q− λT )x = −v (13)

for dual variable λ ∈ R. This system of equations shows that we can
think of x as a function x(λ) when the left hand side is nonsingular.

Define g(λ) := x(λ)>Tx(λ) − A. Since λ enforces
x(λ)>Tx(λ) = A, we seek the smallest root λ of the secular
equation g(λ) = 0. Our remaining task is to bracket a root of g(λ),
and then it can be found by bisection.

Suppose the matrix of (13) is not invertible. Then, there exists a
nontrivial x that the left hand side takes to zero. Equivalently,

Qx = λTx. (14)

Computing λ from Q and T is a generalized eigenvalue problem,
solvable using standard numerical machinery. Take λmin to be the
minimum such eigenvalue. Assuming the right hand side of (13)

is not orthogonal to the corresponding generalized eigenvector, we
must have ‖x‖ → ∞ as λ→ λmin from the left. By equivalence of
norms on R2n, this shows limλ→λ−min

g(λ) =∞.
As λ→ −∞, then x→ 0 assuming T is nonsingular, since (13)

approaches the system Tx = 0. That is, limλ→−∞ g(λ) = −A and
g(λ) < 0 for sufficiently small λ.

We have shown that g(λ) is continuous for λ ∈ (−∞, λmin) and
that this interval contains a root. Basic calculations show g′(λ) > 0
on this interval, so there is exactly one root.
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Fig. 8. Frame fields in the interior of V visualized using flows; red boxes highlight notable singularities and features. As in Figure 7, we compare our frame
fields to those with the boundary constraints from [Ray and Sokolov 2015] adapted using BEM for smoothness. Our fields have fewer singularities on the
surface and interpolate smoothly to the interior with cube-like structure.
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# tets

# bdry. triangles
[Huang et al. 2011],

nonlinear
[Ray and Sokolov 2015],

linear
[Ray and Sokolov 2015],

nonlinear
Ours

5216
1542

39992
5438

316079
5998

2234
496

17794
2014

143107
6000

Fig. 9. Benchmark comparison to [Huang et al. 2011] (final nonlinearly-refined result) and [Ray and Sokolov 2015] before and after nonlinear refinement.
Even with coarse boundaries, our singular graphs are smooth, whereas the singular graphs of these methods must lie on the tetrahedral mesh; our method also
does not require local nonlinear refinement. See §9.3 for detailed discussion. Additional results are shown in Figure 10.
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# tets

# bdry. triangles
[Huang et al. 2011],

nonlinear
[Ray and Sokolov 2015],

linear
[Ray and Sokolov 2015],

nonlinear
Ours

18025
5998

120466
6000

939092
5998

13276
5050

91582
5998

Fig. 10. Continuation of Figure 9.
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