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Abstract
Functional maps provide a means of extracting correspondences between surfaces using linear-algebraic machinery. While the
functional framework suggests efficient algorithms for map computation, the basic technique does not incorporate the intuition
that pointwise modifications of a descriptor function (e.g. composition of a descriptor and a nonlinearity) should be preserved
under the mapping; the end result is that the basic functional maps problem can be underdetermined without regularization
or additional assumptions on the map. In this paper, we show how this problem can be addressed through kernelization, in
which descriptors are lifted to higher-dimensional vectors or even infinite-length sequences of values. The key observation is that
optimization problems for functional maps only depend on inner products between descriptors rather than descriptor values
themselves. These inner products can be evaluated efficiently through use of kernel functions. In addition to deriving a kernelized
version of functional maps including a recent extension in terms of pointwise multiplication operators, we provide an efficient
conjugate gradient algorithm for optimizing our generalized problem as well as a strategy for low-rank estimation of kernel
matrices through the Nyström approximation.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computer graphics—Computational
Geometry and Object Modeling

1. Introduction

Shape correspondence is a critical problem in geometry processing,
with applications in texture transfer, semantic segmentation, shape
interpolation, and other tasks. The basic goal is to identify pairs of
matching points between two surfaces, which may differ in their
local geometric features or meshing but exhibit shared structure that
can be leveraged to extract a smooth map.

A key idea introduced to correspondence in [OBCS∗12] involves
the extraction of functional maps rather than point-to-point maps.
While the basic output of correspondence tools used to be a mapping
from points on one surface to points on another, the functional
perspective views a map as a correspondence between functions
over one surface to functions over another. The end result is a
model that poses correspondence using the languages of functional
analysis and linear algebra rather than differential geometry: Feature
preservation is expressed via preservation of descriptor functions,
and distortion is measured through commutativity between the map
and differential operators like the Laplacian. Beyond leveraging
efficient linear algebra tools to extract correspondences, functional
map algorithms enjoy multiscale properties inherited from writing
the map in a basis such as the Laplace–Beltrami eigenmodes.

A small puzzle, however, persists in the basic functional maps
formulation. Suppose a functional map takes a function f (x) over
surface M to its image f ◦ φ(y) over surface N; here, φ : M → N
is an underlying point-to-point map. Even if f is mapped exactly,

there is no guarantee that the functional map will preserve pointwise
modifications of f , such as g(x) := f 2(x) or h(x) = cos f (x). One
way to understand this challenge is to count degrees of freedom. A
functional map from one triangle mesh of n vertices into another
has n2 degrees of freedom, but 3n values are sufficient to specify a
point-to-point map precisely: The positions of the vertices of one
mesh on the other.

In this paper, we formalize and explore the limits of perhaps the
most straightforward means of resolving the aforementioned issue,
kernelization. Long recognized as a powerful technique in machine
learning, kernelization involves lifting descriptors (or features) into
higher-dimensional spaces in the context of least-squares and other
problems over Hilbert spaces. In our example above, kernelization
might replace a single descriptor f (x) : M → R with a triplet of
descriptors ( f (x), f 2(x),cos f (x)) : M→ R3. Since this determin-
istic lifting process simply manipulates the input descriptors in a
pointwise fashion, it may not appear to add more information; in
reality, however, we can show that this change addresses underdeter-
mined problems that otherwise appear in the basic functional maps
framework.

Two recent papers [NO17, NMR∗18] consider a related problem,
namely pointwise product preservation under functional maps, in
two different ways. The first uses a different data term enforcing
commutativity of the functional map with the pointwise product
operation. The second represents functional maps in an extended
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basis containing pointwise products of the basis functions. Impor-
tantly, kernelization can be applied to these and other formulations
and flavors of functional maps, complementing their work by explic-
itly promoting preservation of not only pointwise products but also
nonlinearities applied to descriptor values [NO17, NMR∗18].

We begin by showing how the most popular objective functions
proposed for functional maps can be kernelized using a straightfor-
ward sequence of algebraic simplifications. Beyond this mathemat-
ical contribution, we provide an efficient means of optimizing for
functional maps after introducing a kernel, including application of
the Nyström approximation to avoid using any matrices that scale
quadratically in the size of the mesh.

2. Related Work

2.1. Functional Maps

Geometric tools in graphics, medical imaging, vision, and other
disciplines require correspondence algorithms. Many techniques
have been applied to this problem, surveyed in [VKZHCO11].

Our paper involves the functional map framework introduced
in [OBCS∗12]. The idea is that a smooth map between surfaces
φ : M → N admits a dual Fφ : L2(N)→ L2(M) defined through
composition: For f ∈ L2(N), we define Fφ[ f ] := f ◦φ. Functional
map algorithms estimate Fφ directly rather than φ, using tools from
optimization and linear algebra. Correspondence is posed as a varia-
tional problem for a matrix representing Fφ in a basis.

Multiple follow-up works aimed mainly at improving the sta-
bility and applicability of the framework; see [COC∗17] for a
survey. Notable extensions of functional maps include incorpora-
tion of sparsity-based regularization [PBB∗13], optimization on
the manifold of orthogonal matrices [KBB∗13, KGB16], design
[ADK16] and tuning [COC14, LRR∗17] of descriptors, correspon-
dence between shape collections [HWG14, KGB16], partial corre-
spondence [LRB∗16,RCB∗17], incorporation of descriptors through
operators rather than least-squares [NO17], use of adjoint operators
to incorporate information about the reverse map [ERGB16, HO17],
and regularization based on conserving products in addition to linear
combinations [NMR∗18]. Functional maps also have been com-
bined with deep learning to learn how to extract dense correspon-
dences [LRR∗17].

Our paper observes that descriptor-based objective terms com-
mon to many of the techniques cited above admit kernelization.
Although we test our generalization through the pipelines proposed
in [OBCS∗12, NO17], our technique is applicable to any method
with a least-squares descriptor preservation term.

2.2. Kernelization and Nyström Approximation

Kernelization is a key technique in machine learning and was
a central focus of research during the early years of that disci-
pline [CST00]; see §4 for mathematical discussion. The basic obser-
vation that learning tools such as the perceptron algorithm [Aiz64],
principal component analysis [SSM97], canonical correlation analy-
sis [LF00], and support vector machines [CST00] can be lifted to
potentially infinite-dimensional inner product spaces while main-
taining computability. Our kernelized extension of the simplest

descriptor term in functional maps [OBCS∗12] can be viewed as an
application of kernel ridge regression [SGV98]; to our knowledge
kernelization of the more recent functional maps technique [NO17]
does not correspond to any standard kernel method in machine
learning.

Kernelization can reduce from an infinite-dimensional feature
space to a finite-dimensional kernel matrix, but the kernel matrix
is still a dense matrix whose size scales quadratically in the size of
the input data. The Nyström approximation [Nys30] we will use
in §6 replaces the full kernel with a low-rank matrix, an effective
approximation when the spectrum of the kernel decays quickly. The
Nyström method has been applied effectively to large-scale machine
learning [WS01], reducing computational load while accounting
for relationships between all members of a dataset (at least through
their proximity to a subsampled set of key points) rather than down-
sampling.

3. Mathematical Preliminaries

3.1. Optimization for Functional Maps

To begin, suppose M and N are two triangulated surfaces, with m and
n vertices respectively. We assume these surfaces have diagonal mass
matrices AM ∈Rm×m

+ and AN ∈Rn×n
+ , respectively. We furthermore

assume that the surfaces are equipped with bases ΦM ∈ Rm×kM

and ΦN ∈ Rn×kN approximately spanning the set of functions over
the two surfaces; for simplicity we will assume that the bases are
orthonormal:

Φ
>
MAMΦM = IkM×kM

Φ
>
N ANΦN = IkN×kN .

A key example involves computing the bases ΦM and ΦN as Laplace–
Beltrami eigenvectors, for which ∆Φ = AΦΛ, where ∆ is the cotan-
gent Laplacian matrix [PP93] and Λ is a diagonal matrix of non-
negative eigenvalues.

A functional map is a linear mapping from functions over one
surface to functions over another [OBCS∗12]. After truncating to
the Φ bases, we can think of a functional map as a matrix C ∈
RkN×kM transforming coefficients of a function pM ∈ Rm to those
of a mapped function pN ∈ Rn:

CΦ
>
MAM pM = Φ

>
N AN pN .

The goal of functional mapping algorithms is to recover the matrix
C. Most approaches are variational in nature, optimizing for the best
matrix C minimizing a designed objective function. For instance,
if the map is an isometry then we expect it to commute with the
Laplacian ∆, in which case we may wish to minimize a commutator
norm w.r.t. the matrix C [OBCS∗12]

F∆(C) := ‖CΛM−ΛNC‖2
Fro (1)

Low values of this objective function indicate that applying the
source surface’s Laplacian and then transporting a function by C is
nearly identical to transporting the function and then applying the
Laplacian of the target surface.

More pertinent to the discussion in this paper, suppose we are
given d descriptor functions that match between the two surfaces

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Wang, Gehre, Bronstein, & Solomon / Kernel Functional Maps

arranged into matrices PN ∈ Rn×d and PM ∈ Rm×d , respectively;
for instance, the heat kernel signature [SOG09] is preserved under
isometry and could be precomputed for the inputs. After writing
them in the Φ bases, we can store the descriptor coefficients in
matrices P̂M := Φ

>
MAMPM ∈ Rkm×d and P̂N := Φ

>
N ANPN ∈ Rkn×d .

The original work on functional maps proposed measuring descriptor
preservation through the objective function

FP(C) := ‖CP̂M− P̂N‖2
Fro. (2)

This objective simply checks that the images of the descriptors under
the functional map match. More recent work [NO17] proposes an
operator-based technique for measuring descriptor preservation:

FD(C) := ∑
i
‖CX i

M−X i
NC‖2

Fro, (3)

where

X i
M := Φ

>
MAM diag(pi

M)ΦM

X i
N := Φ

>
N AN diag(pi

N)ΦN .

Here, pi denotes the i-th descriptor function in the per-vertex ba-
sis. The idea of this objective function is that the functional map C
should commute with the operator that multiplies a function point-
wise by the descriptor.

Additional constraints can further improve the quality of a func-
tional map. For instance, if the underlying point-to-point map is
area-preserving, then C should be an orthogonal matrix: C>C =
IkM×kM [OBCS∗12]; in this setting, minimization of (2) can be
posed as manifold optimization [KGB16]. Other changes of basis
may imply that C should be sparse or low-rank [PBB∗13, GCR∗17].
Partial correspondence is encoded by a matrix C with approximately
slanted-diagonal structure [RCB∗17]. Finally, a pointwise map cor-
responds to a pointwise product preserving functional map [NO17];
under this assumption, the matrix C can be extended with extra
coefficients in the pointwise products of the bases Φ [NMR∗18].

3.2. Kernels and Mercer’s Theorem

Our main contribution is to show that (2) and (3) are amenable to
kernelization. We work with the following definition:
Definition (Positive definite kernel on Rd). A positive definite ker-
nel on Rd is a symmetric continuous function K : Rd ×Rd → R
such that

K(x1,x1) K(x1,x2) . . . K(x1,xm)
K(x2,x1) K(x2,x2) . . . K(x2,xm)

...
...

. . .
...

K(xm,x1) K(xm,x2) . . . K(xm,xm)

� 0

for any finite set of points {x1, . . . ,xm} ⊆ Rd with m≥ 1.

In this paper, we will use the term “kernel” to refer only to positive
definite kernels.

Mercer’s theorem is a theoretical result about positive definite
kernels indicating that they can be regarded as dot products in a high
(potentially infinite) dimensional space:
Theorem (Mercer’s theorem, simplified). Suppose K(x,y) ∈

L2(Rd ×Rd) is a positive definite kernel. Then, there exists a se-
quence of functions {ϕi(x)}∞i=1 such that

K(x,y) =
∞
∑
i=1

ϕi(x)ϕi(y), (4)

with convergence in the L2 norm.

Mercer’s theorem is essentially a corollary of the spectral theorem;
we can write φi =

√
λiψi where ψi is a unit eigenvector of the

operator TK defined via 〈TK f ,g〉 :=
∫
Rd×Rd K(x,y) f (x)g(y)dxdy.

Mercer’s theorem allows linear techniques to be lifted to other
spaces. It has been applied to countless basic problems in learning,
from ridge regression to SVMs [CST00]. The basic observation
is that many problems only require inner products between data
points rather than the data points themselves. For instance, consider
the normal equations A>Ax = A>b resulting from the least-squares
problem minx ‖Ax−b‖2

2. Notice

A>A =


a1 ·a1 a1 ·a2 · · · a1 ·an
a2 ·a1 a2 ·a2 · · · a2 ·an

...
...

. . .
...

an ·a1 an ·a2 · · · an ·an

 A>b =


a1 ·b
a2 ·b

...
an ·b

 ,

where ai is the i-th column of A. The dot products ai · a j can be
replaced with kernelized values K(ai,a j), which—by Mercer’s
theorem—effectively lifts the data to a higher-dimensional space
before performing least-squares. For example, in a scalar variable
the kernel K(s, t) := (1,s,s2) · (1, t, t2) lifts linear least-squares to
quadratic least-squares. Other kernels, e.g. the Gaussian kernel
K(x,y) := exp(−γ‖x− y‖2

2), correspond to infinite sequences of
functions ϕi in (4).

From a practical perspective, Mercer’s theorem allows for a much
broader class of liftings ϕ than would be achievable by applying
the desired modifications directly to the descriptor functions. In par-
ticular, while it may be easy algorithmically to take inner products
of low-dimensional liftings like t 7→ (1, t, t2), Gaussian kernels and
many others belong to a class for which evaluating the inner product
K(x,y) = ϕ(x) ·ϕ(y) is easier than evaluating ϕ directly; indeed, the
ϕ corresponding to a Gaussian kernel is an infinitely-long sequence
that cannot be stored on a computer (see the proof of the proposition
in §4.4).

4. Kernelizing Functional Maps

Our basic motivation for kernelizing functional maps comes from an
easily-understood limitation of the current functional mapping tools.
In particular, suppose a descriptor f (x) is included in a term like (2).
Even if f (x) is preserved exactly under the functional map—and
hence the corresponding piece of FP(C) vanishes—it can be the
case that a derived descriptor like g(x) := f (x)2 is not. Hence, we
might augment our list of descriptors to also include f (x)2 and other
pointwise variations of f (x), or even the product of descriptors
f (x)h(x); kernelization attempts to capture some set of derived
descriptors in this fashion, implicitly or explicitly. Surprisingly, this
change is not just superficial but rather introduces a significant
improvement to functional maps algorithms.

Our goal in this section is to show that the descriptor preservation
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objectives (2) and (3) can be kernelized. We additionally prove
under weak assumptions that kernelization restores the rank of the
functional mapping problem, showing that fewer than n descriptors
are needed to recover an n×n functional map.

4.1. Kernel Matrices

As in §3.1, suppose we are given d matching descriptors on meshes
M and N. We will assume these are not in a reduced basis, and hence
our descriptor matrices contain one value per vertex: PM ∈ Rm×d

and PN ∈ Rn×d .

Our basic observation is that function preservation constraints (2)
and (3) can be written completely in terms of kernel (Gram) matrices
whose entries are given by

Klinear(PM ,PN)i j := (PM,row i) · (PN,row j) = (PMP>N )i j.

Suppose we are given a feature map ϕ : Rd → Rd′ , which lifts
the d-dimensional features to d′-dimensional features; typically we
think of d′ > d although this will not be necessary for our discussion
below. As a preprocess, we could run the rows of PM and PN through
ϕ before computing the functional map. In this case, we evidently
will be able to write the resulting problem in terms of

Kϕ(PM ,PN)i j := ϕ(PM,row i) ·ϕ(PN,row j). (5)

Mercer’s Theorem, introduced in §3.2, indicates that any posi-
tive definite kernel K : Rd ×Rd → R implicitly can be written
in form (5). Hence, we will eventually bypass the use of ϕ and work
directly with kernel functions K, via the kernel matrix definition

K(PM ,PN)i j := K(PM,row i,PN,row j). (6)

Our basic outline is to show that (2) and (3) can be written in terms
of Klinear; then, kernelizing these terms is as simple as replacing
Klinear with a Mercer kernel matrix of the form (6).

4.2. Linear Function Preservation

As a warm up, consider the objective term defined in (2). Since in
this section we will assume descriptors are known per-vertex, we
will use a slightly modified version of FP:

FP(C) = ‖CΦ
>
MAMPM−Φ

>
N ANPN‖2

Fro. (7)

This expression assumes PM and PN are known per-vertex; the
“Φ
>A” matrices project into the bases whose columns are the Φ’s.

Expanding the square shows:

FP(C) =Tr(C>CΦ
>
MAMKlinear(PM ,PM)AMΦM)

−2Tr(CΦ
>
MAMKlinear(PM ,PN)ANΦN)+ const.

Hence, kernelizing (2) involves substituting in a general kernel K
for Klinear, leading to the energy term

FP,K(C) =Tr(C>CΦ
>
MAMK(PM ,PM)AMΦM)

−2Tr(CΦ
>
MAMK(PM ,PN)ANΦN)+ const., (8)

with gradient

∇CFP,K = 2CΦ
>
MAMK(PM ,PM)AMΦM−2Φ

>
N ANK(PN ,PM)AMΦM .

This expression is somewhat complicated, but the key observation is
that FP,K only involves evaluating K rather than explicitly applying
a potentially high-dimensional feature map ϕ.

4.3. Commutative Function Preservation

Now we consider the more complicated expression (3). Once again
we expand the square:

FD(C)=∑
i

[
Tr(C>CX i

MX i>
M )−2Tr(CX i

MC>X i>
N )+Tr(CC>X i>

N X i
N)
]
.

(9)
Algebraic rearrangements lead to the following expressions:

∑
i

X i
MX i>

M = Φ
>
MAM

[
(ΦMΦ

>
M)�Klinear(PM ,PM)

]
AMΦM (10)

∑
i

X i>
N X i

N = Φ
>
N AN

[
(ΦNΦ

>
N )�Klinear(PN ,PN)

]
ANΦN (11)

∑
i

CX i
MC>X i>

N =CΦ
>
MAM

[
(ΦMC>Φ

>
N )�Klinear(PM ,PN)

]
ANΦN ,

(12)

where � denotes the elementwise (Hadamard) product.

Replacing Klinear with a general kernel K in (10), (11), and (12)
and subsequently substituting into (9) yields a kernelized version of
commutative function preservation, which we will denote FD,K . The
gradient of this objective term is given by

∇CFD,K =2CΦ
>
MAM

[
(ΦMΦ

>
M)�K(PM ,PM)

]
AMΦM

−4Φ
>
N AN [(ΦNCΦ

>
M)�K(PN ,PM)]AMΦM

+2Φ
>
N AN

[
(ΦNΦ

>
N )�K(PN ,PN)

]
ANΦNC.

Once again, while the notation is somewhat cumbersome, the end
result here is that the commutative function preservation term (3)
readily admits kernelization. As we will see in the next section, using
a kernel does not incur significant computational cost relative to
solving the non-kernelized problem: In the end, the matrix products
above lead to matrices whose size is on the order of that of C rather
than the full mesh.

4.4. Analysis

The simplest formulation for functional maps, in which the descrip-
tor term (7) is minimized without regularization, can fail not just in
the presence of noisy data but also if the descriptor matrices PM and
PN are not full-rank relative to the size of C. This issue makes it dif-
ficult to recover functional maps that are pullbacks of point-to-point
maps, since a quadratic amount of data is needed to have a full-rank
descriptor matrix.

We can address this issue by using nearly any positive definite
kernel. As an example, here we verify the invertibility of (7) when
using a Gaussian kernel Kα(PM ,PN)i j := e−α‖PM, row i−PN, row j‖2

2 :
Proposition. Kα(P,P) is invertible whenever P has distinct rows.

Proof. We recall a standard proof. Without loss of generality, shift
the problem so that no row pi of P equals zero. Expanding the
square, Ki j = e−α‖pi‖2 e2αpi·p j e−α‖p j‖2

2 . Hence, K = D>GD where
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D = diag(e−α‖pi‖2) and Gi j = e2αpi·p j . D is trivially invertible, so
it suffices to argue about G. Substituting the Taylor expansion,

Gi j =
∞
∑

m=0

(2αpi · p j)
m

m!
:=
∞
∑

m=0

(2α‖pi‖2‖p j‖2)
m

m!
G(m)

i j , (13)

where G(m)
i j := (pi · p j/‖pi‖2‖p j‖)m. We have G(0) = 11> � 0 and

G(1) = P̂P̂> � 0, where P̂ contains the rows of P normalized to unit
length; these are semidefinite since they are the outer product of a
matrix and itself. Furthermore, G(m) = G(1)�·· ·�G(1) � 0 since
the Hadamard product of semidefinite matrices is semidefinite.

Note diagG(m) = 1for all m. When i 6= j, by Cauchy–Schwarz
G(m)

i j = (pi · p j/‖pi‖2‖p j‖)m m→∞−−−−→ 0. Hence, G(m) m→∞−−−−→ I, for
large m each term in the sum is diagonally dominant and hence
invertible. So, G is a sum of semidefinite matrices with at least one
invertible term, showing G is positive definite, as needed.

Other (non-kernel) extensions of functional maps may have sim-
ilar nondegeneracy properties, demonstrated by the experiments
in [NO17] with relatively few descriptors. The notable property here
is that invertibility is a consequence of standard arguments about
positive definite kernels and does not require modifying the original
functional maps problem.

It is also worth noting a corollary, that kernels can recover point-
to-point maps from accurate but low-dimensional descriptors, a
property that does not hold for the original functional maps formula-
tion thanks to loss of rank. This is true not just for Gaussian kernels
but rather for any full-rank kernel; roughly this occurs whenever the
corresponding Taylor expansion (13) has infinite length.

This proposition also highlights a curious property of methods
like kernel functional maps and [NO17], which only need a few de-
scriptors. Even in the presence of one descriptor we recover a unique
functional map, although we know generically at least two coordi-
nates are needed to specify a point on a surface. This is an interface
between discrete and smooth geometry: The kernel Kα evaluated
on a discrete set of sampled points generically is unlikely to hit the
same level set of an underlying smooth function twice. Hence, Kα

in this case will be invertible but likely ill-conditioned. In our exper-
iments, however, we find that the kernelized problem becomes well-
conditioned with just a few descriptors, whereas the non-kernelized
problem may remain ill-conditioned or non-invertible.

5. Algorithm

Our implementation extends the technique described in [NO17].
We follow their protocol for computing functional maps (which in
turn follows [OBCS∗12]), with the one exception being a modified
least-squares optimization problem that incorporates kernelization:

CK
opt := argmin

C
FP,K(C)+FD,K(C)+αF∆(C). (14)

When K(x,y) = x · y, (14) reduces to the formulation in [NO17] ex-
actly, although we choose to use an alternative scalable optimization
scheme.

function APPLYOPERATOR(C)
GP,K ←CΦ

>
MAMK(PM ,PM)AMΦM

GD,K ←


CΦ
>
MAM

[
(ΦMΦ

>
M)�K(PM ,PM)

]
AMΦM

−2Φ
>
N AN [(ΦNCΦ

>
M)�K(PN ,PM)]AMΦM

+Φ
>
N AN

[
(ΦNΦ

>
N )�K(PN ,PN)

]
ANΦNC

G∆←C∆
2
M−2∆NC∆M +∆

2
NC

return GP,K +GD,K +αG∆

end function

function CGSOLVE(ΦM ,AM ,PM ,∆M ,ΦN ,AN ,PN ,∆N ,α)
B,P,R←Φ

>
N ANK(PN ,PM)AMΦM

r← 〈R,R〉
C←ZEROS(kN ,kM)
for k = 1,2, . . . do

Q← APPLYOPERATOR(P)
a← r

〈P,Q〉
r0← r
C←C+aP
R← R−aQ
r← 〈R,R〉
if
√

r < ε then return C
P← R+ rP

r0
end for

end function

Figure 1: Although the variable in (14) is a matrix C, the objective
is still a least-squares problem to which we can apply the conjugate
gradient algorithm. Note our actual implementation precomputes
matrices repeated above; when the kernel matrices K(·, ·) are too
large we apply the Nyström approximation described in §6.2.

Conjugate gradients. While previous work largely uses direct lin-
ear solvers, for scalability we minimize (14) using the iterative
conjugate gradient algorithm. This technique is guaranteed to find
a global optimum since (14) is a sum of squared norms applied to
linear expressions in the unknown matrix. Our iterative algorithm,
whose pseudocode is given in Figure 1, avoids computing Kronecker
products with repeated dense blocks, which often appear in direct
solver implementations of these optimization problems.

The standard conjugate gradients algorithm solves a minimization
problem of the form ‖Ax−b‖2

2 by iteratively multiplying by A>A;
notice∇x‖Ax−b‖2

2 = 2A>Ax−2A>b, so the linear operator A>A
is the linear term in the gradient of the least-squares objective. To
make conjugate gradients applicable to our method, we introduce
a function APPLYOPERATOR, which returns the linear piece of the
gradient of (14). As a side benefit to our work, we find this approach
to be an equally efficient and more easily-implemented alternative
to direct solver machinery used for past functional maps work.

6. Nyström Approximation

Our basic algorithm is guaranteed to converge but suffers from a
challenging efficiency drawback: The K(·, ·) matrices are too large
to store for typical meshes. Here we show how this challenge can
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be overcome with a standard low-rank approximation of K known
as the Nyström approximation [WS01].

6.1. Basic Construction

Suppose K ∈ Rn×n is a symmetric, positive definite kernel matrix.
Following [WS01], suppose we subsample n′ rows from K, dividing
it into a block matrix:

K =

(
K11 K12
K>12 K22

)
. (15)

Here, K11 ∈ Rn′×n′ , K12 ∈ Rn′×(n−n′), and K22 ∈ R(n−n′)×(n−n′).

Assuming n′� n, typically we have the storage capacity com-
putationally to store all blocks of this matrix except K22. Suppose,
however, that K is rank-n′ and that the first n′ rows are linearly
independent. Then, one can show that K22 = K>12K−1

11 K12, a product
of low-rank factors.

The Nyström approximation for any kernel matrix writes

K22 ≈ K>12K−1
11 K12. (16)

This approximation holds exactly in the low rank case. More broadly,
if the eigenvalues of K decay at a reasonable rate, this approximation
can be extremely effective even if n′ rows are subsampled at random.

6.2. Nyström for Functional Maps

It is tempting to apply the Nyström approximation—or a suitable
extension for asymmetric matrices [NAS16]—to each K(·, ·) term in
Figure 1 independently to reduce computational burden. This strat-
egy, however, turns out to be ineffective: Approximating the terms
independently disconnects the algorithm from the least-squares prob-
lem (14), and as a result the conjugate gradient algorithm no longer
is guaranteed to converge thanks to a loss of symmetry and/or posi-
tive definiteness. Instead, we derive a strategy that maintains positive
definiteness of the functional maps linear system while applying the
Nyström formula to reduce computational burden.

Recall that PM ∈ Rm×d and PN ∈ Rn×d contain per-vertex de-
scriptors on M and N. The basic issue we wish to tackle is that
matrices like K(PN ,PM) are too large to compute and store.

Take a subset of m′ vertices from M and n′ vertices from N;
choices of subsampling strategies are evaluated in §7.1. Concatenate
their descriptors into a matrix PS ∈ R(m′+n′)×d and define

R :=
(
K(PS,PM) K(PS,PN)

)
R0 := K(PS,PS).

Note R0 is a submatrix of R. We apply the Nyström approximation
to the “extended kernel” matrix

K :=

R0 R

R> K
((

PM
PN

)
,

(
PM
PN

))
to derive the estimate formula

K
((

PM
PN

)
,

(
PM
PN

))
≈ R>R−1

0 R. (17)

Contrasting somewhat with the notation in §6.1, here we obtained a

kernel approximation for the entire set of inner products between
pairs of descriptors on M, pairs of descriptors on N, and pairs of
descriptors from the two surfaces, including those in the sample set.

Since kernel matrices are symmetric and positive definite, we use
eigenvalue decomposition to write R0 =V ΛV> for an orthogonal
matrix V and a diagonal matrix Λ whose diagonal is positive. Define

W =

(
WM
WN

)
= R>V Λ

−1/2,

where WM ∈ Rm×(m′+n′) and WN ∈ Rn×(m′+n′) are blocks corre-
sponding to M and N. This leads us to the approximations:

K(PM ,PM)≈WMW>M
K(PN ,PM)≈WNW>M
K(PN ,PN)≈WNW>N .

(18)

These are consistent with an approximated joint kernel matrix, main-
taining positive definiteness of our approximation to the algorithm
in Figure 1 if they are substituted into the relevant formulas.

It is worth noting an alternative interpretation of our Nyström ap-
proximations in (18). In effect, these approximations have led to new
(m′+n′)-dimensional per-vertex descriptors in the rows of WM and
WN , designed to approximate the potentially infinite-dimensional
kernel lifting. Even if m′+ n′ is larger than the dimensionality of
the original descriptors, these matrices are typically full rank, as
suggested in §4.4.

In the end, our conjugate gradients algorithm in Figure 1 is eas-
ily modified to include the Nyström approximation above, and as
long as expressions in the resulting APPLYOPERATOR function
are parenthesized properly we only require memory scaling with
(m′+n′)(m+n) instead of (m+n)2, a considerable savings as long
as we choose m′,n′ ∼ 100−500 relative to the full number of ver-
tices m on M and n on N. The only implementation challenge is
that the expression for GD,K must be implemented manually rather
than using standard linear algebra libraries to avoid incurring larger
space/time requirements induced by computing the Hadamard prod-
uct explicitly.

7. Experiments

7.1. Kernel Approximation

We begin by evaluating the effect of the Nyström approximation
in §6, to choose parameters for our experiments. Our task is to
decide how many descriptors m′ and n′ to sample on M and N;
larger m′ and n′ improve quality of the kernel approximation at
additional computational expense. We also choose which descriptors
to subsample in constructing (R0,R) in (17).

As an illustrative experiment, we consider a Gaussian kernel
Kγ(x,y) := e−γ‖x−y‖2

2 ∈Rm×m applied to the wave kernel signature
descriptor [ASC11] on the shape in Figure 2. While approximation
quality depends on the informativeness of the descriptor and com-
plexity of the shape, this example is intended to illustrate a pattern
we observe across our datasets and justifies a rough conservative
choice of m′,n′. In this experiment, the descriptors are normalized
to have a maximum value of 1.

We consider γ ∈ {0.01,0.1,1,10}; small γ decreases the distance

c© 2018 The Author(s)
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Figure 2: (top) Spectra of the kernels for the experiment in §7.1;
(bottom) visualization of the kernels as matrices over all pairs of
vectors, as well as a single row as a function on the surface.

between the different descriptors and hence makes them appear
more similar. Figure 2 plots the spectra of the full kernel matri-
ces relative to the largest eigenvalue. As expected, λk drops fastest
when γ is small since the corresponding kernel matrix is closer
to uniform.†The spectra lower-bound performance of any rank-k
approximation, in the sense that the best approximation of a sym-
metric matrix in the Frobenius norm is given by its projection onto
the space spanned by the top k eigenvectors. Even in the γ = 10 case,
rank-k approximation error drops under 1% for k ≥ 300.

The previous plot lower-bounds the best possible performance,
but we do not have access to the best-possible rank-k approximation
of the kernel, since computing the full kernel would be inefficient.
Instead, the Nyström rank-k approximation depends on a subsam-
pled set of rows. Figure 3 evaluates three possible strategies against
the spectral lower-bound on approximation quality:

• Uniform: Choose m rows uniformly at random
• Geodesic FPS: Choose a farthest-point sample of points with

respect to geodesic distance along the surface, starting with a
random initializer
• Descriptor FPS: Choose a farthest-point sample in descriptor

space starting with a random initializer

Each γ follows similar pattern: The “basic” Nyström uniform ap-
proach is outperformed by FPS. FPS in descriptor space slightly
outperforms geodesic FPS. Based on our experiments, our remain-
ing tests use descriptor FPS with k = 400; this achieves relative error

† The uniform kernel K(x,y)≡ 1 occurs when γ = 0 and leads to a rank-1
factorization K = 11>.

of 5.8× 10−11, 5.1× 10−8, 6.9× 10−5, and 0.051 for our four γ

values.

7.2. Kernel Parameters and Map Quality

Figure 4 shows a qualitative comparison of our kernel functional
maps approach to [OBCS∗12] with an increasing number of corre-
sponding descriptor pairs (left to right). In the top row, we show the
source shape and the point-to-point correspondences for [OBCS∗12]
using a texture map. The bottom row shows our results. We use a
Gaussian kernel and set γ = 500. In both cases, we use the wave
kernel signature (2, 4, 10, and 100 functions); we set kN = kM = 100
and α = 1 in all experiments. Next to the point correspondences, we
depict the geodesic distance to the ground truth correspondences for
ranging from 0 (white) to 0.2 (red) in log-scale. The results show
that our method requires far fewer descriptors (in our examples, the
map with 2 descriptor pairs already shows good correspondence
quality) than the baseline functional maps [OBCS∗12] to obtain
low-error point correspondences.

Figure 5 shows performance of our kernelized method pairs of
shapes sampled from the FAUST dataset.‡ Here, we show perfor-
mance for Gaussian kernels of ranging parameter γ as well as a
hyperbolic tangent kernel resembling the nonlinearity used in neural
networks. We compute 100×100 functional maps with a rank-200
Nyström approximation and wave kernel signature/map descrip-
tors [ASC11]. Our implementation uses the test framework code
from [NO17], including their implementations of basis functions
and descriptors.

We find that the most effective choice of kernel parameter is
the largest value of γ. This demonstrates our intuition, that a sharp
kernel can be more informative. A Gaussian kernel with large γ

can increase the effective rank of the kernel matrix, more easily
distinguishing points from one another than dot products between
descriptors in non-kernelized space.

Figure 6 compares our method’s performance on the the same
dataset to that of [NO17] and [OBCS∗12] for both 100 and 10
descriptors. We find that for both 100 and 10 descriptors, our
method performs slightly better than [NO17] and significantly better
than [OBCS∗12], with the kernel parameters specified in Figure 6.
As we have discussed, recall that [NO17] can be understood as a
special case of our method with a trivial dot product kernel. We find
that the ideal γ for our method depends on the number of descrip-
tors (γ = 500 for 100 descriptors and γ = 100 for 10 descriptors).
Parameters were chosen via grid search on a large set of parameters
and narrowing down the best parameter settings for a single shape
pair in FAUST. The plots are then generated for a random sample of
100 shape pairs in FAUST.

7.3. Optimization

Our tests are written in MATLAB, using a single thread. The main
bottleneck of our implementation is application of the kernel matrix.
While the Nyström approximation brings this operation down to
linear complexity, it still takes a significant amount of CPU time;

‡ http://faust.is.tue.mpg.de/
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Figure 4: Map quality and geodesic error. We compare the map quality of our method using a Gaussian kernel (bottom) to [OBCS∗12] (top).
The number of corresponding descriptor pairs is increased from left to right. For each target shape we show the point correspondences (left)
and the geodesic error to the ground-truth (right) in a range from 0 (white) to 0.2 (red) in log-scale. With our method only few descriptor-pairs
are required to obtain mappings with low geodesic error.

we anticipate that a GPU-based implementation could be extremely
successful for accelerating CG iterations, since all steps can be
written in terms of simple matrix operations.

On a 2.6 GHz Intel i7 CPU with 16 GB memory, our implemen-
tation takes an average of 1.47 sec to apply the positive definite op-

erator in CG for a mesh with 2529 vertices and a rank-400 Nyström
approximation of the Gaussian kernel. Figure 7 shows convergence
of the residual of the linear system for this test; note that it does not
have to be monotonic for the conjugate gradient algorithm.
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Figure 5: Performance on FAUST dataset for different kernel pa-
rameters.
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Figure 6: Comparison to [NO17] and [OBCS∗12] on FAUST. Our
methods in this experiment use 10 iterations of the CG algorithm and
the Gaussian kernel. For the γ parameter of the Gaussian kernel, γ =
500 and γ = 100 for the 100 and 10 descriptor cases respectively.

8. Discussion and Conclusion

Functional maps hold promise for efficient correspondence, but
their quality strongly depends on how descriptors are computed
and used. Kernelization squeezes the most value out of a fixed
set of descriptors through a generalization of the basic technique.
While—similarly to kernel ridge regression in machine learning—
introducing a kernel incurs quadratic storage/computation cost in
the simplest formulation, the Nyström approximation and iterative
optimization make this generalized method scalable in practice. Our
formulation and accompanying algorithm are usable “out-of-the-
box” for improving functional maps; here we demonstrate how to
kernelize two functional maps techniques [OBCS∗12, NO17] but
anticipate that the basic technique is relevant to any formulation
using least-squares problems to recover functional maps.

From a theoretical perspective, our work indicates that the geom-
etry of descriptor space is a relevant consideration in optimizing
functional maps tools for quality. In effect, kernelization changes
notions of proximity between descriptors in a fashion that is inde-
pendent from assumptions like isometry on the geometry of the
surfaces being mapped to one another. Of course, descriptors them-
selves are derived from a shape, and a careful characterization of the
relationship between the embedding of the shape and its embedding
in descriptor space—with and without kernelization—may yield
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Figure 7: Residual convergence for test in §7.3.

insight into the best way to choose or adjust possible shape descrip-
tors. An additional theoretical task is to evaluate the likelihood that
a given kernel will be effective in recovering point-to-point maps,
e.g. by verifying (approximate) preservation of pointwise products
of function values [NMR∗18].

Beyond its immediate relevance to existing functional maps algo-
rithms, our work suggests several avenues for future research. While
the experiments in §7 could be understood as cross-validation tests
to choose the best kernel parameters for a given descriptor and class
of shapes, one could also imagine an end-to-end formulation that
includes the choice of kernels as a variable; our low-rank kernel
approximation and optimization strategy will have to be revisited
in this nonlinear regime. Perhaps the most necessary future work,
however, lies in the computation of per-vertex descriptors, whose
quality has strong bearing on the quality of a functional map, per-
haps facilitated by machine learning tools to uncover the relevant
features for a given correspondence problem. Kernelization com-
plements this effort by enabling these tools to (1) learn just a few
extremely effective descriptors and (2) generalizing the treatment of
the computed descriptors to any Hilbert space.
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