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1 Introduction

In this supplement, we supply a full proof of Proposition 1 of the Discovery of Intrinsic Primitives on

Triangle Meshes paper for the sake of completeness. The proof is based on the max-min characterization

of the spectral data of elliptic operators that possess a variational formulation. The AKVF operator is

one such operator; and the Laplace-Beltrami operator is another. There are many theorems of this kind

in the mathematical literature and the ideas which are used to prove the theorem are fairly well known.

Examples can be found in the field of singular perturbation theory for the spectrum of the Laplace operator

on dumb-bell surfaces [2] or dumb-bell domains [4, 6]; also in the field of gluing constant mean curvature

surfaces [10] and other geometric problems. In particular, the technique of the forthcoming proof is based

on [8, Appendix B].

Let Σ be a composite surface which decomposes as a union of “large” surfaces with boundary Ωi connected

by a number of “small” transition regions whose size is governed by a parameter ε, and furthermore that

each Ωi can be viewed as a large open subset of a surface Σi, obtained for instance by removing a small ball

from Σi. We consider the eigenvalue problem for a linear, elliptic partial differential system of equations of

the form P ∗P (ω) = λω where ω is a sections of a vector bundle, and we assume that we can view P either

as a first-order partial differential operator over Σ or as such an operator over the disjoint union
⋃̇

Σi. We

prove here a Spectral Comparison Theorem that compares the spectral data of P ∗P on Σ to the spectral

data of P ∗P on each Σi. This theorem is thus more general than what we need (this level of generality

comes at no extra price) and so we show that it applies specifically when P ∗P is the AKVF operator.

The Spectral Comparison Theorem shows that up to a threshold M(ε) satisfying limε→0M(ε) = ∞,

the eigenvalues of Σi and the eigenvalues of Σ below this threshold are close; and that the corresponding

eigenspaces are close as well. The reason for this threshold is that the transition regions themselves begin to

contribute to the spectrum of P ∗P when the eigenvalues we are considering are sufficiently large. But because

of the geometric constraints we’ll impose on the size of the transition region, however, we can say that the

threshold increases to infinity with ε. All of this can be intuitively interpreted in terms of oscillations. On

a composite surface like the one considered here, eigenvectors corresponding to low eigenvalues are akin to

low-frequency oscillations that can not “tunnel” through small transition regions. Thus these eigenvectors

tend to de-couple and reflect only the geometry of their immediate surroundings. By contrast, eigenvectors

corresponding to high eigenvalues are akin to high-frequency oscillations that are unimpeded by the small

size of the transition regions and are truly global in nature. The smallest eigenvalue that allows for this

effect, and the smallest eigenvalue whose eigenvector has non-negligible contribution from a transition region,

thus depends directly on the size of the transition regions.



The remainder of this document is arranged as follows. In Section 2 we state carefully our assumptions

about the surfaces whose spectra we’ll compare. In Section 3, we state and prove the general Spectral

Comparison Theorem. In Section 4 we state precisely how we form composite surfaces from simpler parts,

and verify that the assumptions of Section 2 hold for these surfaces. Finally, in Section 5 we remove a

simplifying assumption that was made in Section 3.

2 Assumptions

Let M1,M2 be two compact surfaces without boundary and with metrics g1, g2. Suppose that we have

second-order, linear, uniformly elliptic, partial differential operators L1, L2 with smooth coefficients defined

on M1, M2, respectively. We will assume for simplicity that each Li is a scalar operator, meaning that Li
acts on functions defined on Mi. The analysis that follows holds for vector operators acting on sections of a

vector bundle over Mi (such as one-forms) provided that a suitable generalization of the coercivity condition

(defined below) holds. We will address this point again later. We now state the main assumptions relevant

to the comparison of spectral data of these operators. In what follows, we use ‖ · ‖2 for the L2 norm and

‖ · ‖∞ for the L∞ norm.

I. Surfaces. We’ll assume that there exists c > 0 so that the following hold. Each Mi is “non-collapsed”

i.e. there is a point where the exponential map is injective onto a ball of radius at least 1/c and where the

curvature is bounded above by c. Furthermore, the volume of each Mi is bounded above by c.

II. Operators. We will assume that each Li is self-adjoint with respect to the L2-inner product of Mi

associated to gi. Furthermore we’ll assume that we can write∫
Mi

Li(u) · v dVolMi
= Ai(u, v) =

∫
Mi

u · Li(v) dVolMi
∀ u, v ∈ H1(Mi)

where

Ai(u, v) :=

∫
Mi

(∑
s,t
A

(i)
st ∇su∇sv + a(i)uv

)
dVolMi

and A
(i)
st and a(i) are C∞ functions. We are stating that each Li is a geometric operator and is in divergence

form. Moreover, we’ll assume that there exist positive constants C1, C2 so that

C1

(
‖∇u‖22 − ‖u‖22

)
≤ Ai(u, u) ≤ C2

(
‖∇u‖22 + ‖u‖22

)
∀ u ∈ H1(Mi) .

This makes Ai a bounded, symmetric and now coercive quadratic form on H1(Mi). Note that the Laplace-

Beltrami operator of Mi (defined as Li := −gsti ∇s∇t) satisfies all of the above conditions. Its associated

quadratic form is Ai(u, v) =
∫
Mi
gi(∇u,∇v) dVolMi .

III. Variational Problems. Next, we describe how we intend to compare the quadratic forms A1 and

A2 acting on functions spaces over M1 and M2. We will assume that for every sufficiently small ε > 0 there

are linear maps F1 : C∞(M1)→ C∞(M2) and F2 : C∞(M2)→ C∞(M1) such that the following properties

hold. We use the notation i′ = (2, 1) when i = (1, 2).

1. Each Fi is bounded in the L∞ norm. In other words, there is a constant C so that

‖Fi(u)‖∞ ≤ C‖u‖∞ ∀ u ∈ C∞(Mi) .

2. The maps F1 and F2 are almost inverses of each other. In other words,

‖u− Fi′ ◦ Fi(u)‖2 ≤ ε‖u‖∞ ∀ u ∈ C∞(Mi) .



3. Each Fi almost preserves the L2-inner product. In other words,∣∣〈u, v〉L2(Mi) − 〈Fi(u), Fi(v)〉L2(Mi′ )

∣∣ ≤ ε‖u‖∞‖v‖∞ ∀ u, v ∈ C∞(Mi) .

4. Each Fi almost preserves the quadratic form Ai in the following sense:

Ai′(Fi(u), Fi(u)) ≤ ε
(
‖u‖2∞ + ‖∇u‖22

)
+Ai(u, u) ∀ u ∈ C∞(Mi) .

IV. A priori estimates. Finally, we state the technical analytical assumption about the solutions of the

equation Li(u) = λu for each i = 1, 2 that must hold in order to compare the spectral data of L1 and L2.

We will assume that we have the estimate

‖u‖∞ ≤ C‖u‖2

for any solution of Li(u) = λu where C depends only on Mi and λ, but not on the value of ε appearing in

Assumptions (III.1) – (III.4) above.

Remark: We actually have another a priori estimate that follows from the coercivity condition in Assump-

tion (II). That is, if Li(u) = λu then ‖∇u‖22 ≤ C−1
1 Ai(u, u) + ‖u‖22 = C‖u‖22 where C also depends only Mi

and λ. We will make use of this estimate in the sequel as well.

3 Spectral Comparison Theorems

Our spectral comparison theorem for partial differential operators on two different, yet “comparable” surfaces

is in the style of Kapouleas [8, Appendix B], though differs from it in several respects. In the remainder of

this supplement, let f
(i)
1 , f

(i)
2 , . . . denote the orthonormalized eigenfunctions of Li on Mi for i = 1, 2 with

corresponding eigenvalues λ
(i)
1 ≤ λ

(i)
2 ≤ · · · counted with multiplicity. Also, let P

(i)
k,δ : L2(Mi) → L2(Mi)

be the L2-orthogonal projection operator onto the subspace spanned by the eigenfunctions f
(i)
` with ` such

that |λ(i)
` − λ

(i)
k | < δ. Also, let f̃

(1)
k := F2(f

(2)
k ) and f̃

(2)
k := F1(f

(1)
k ) for each k be the proxy eigenfunctions.

In the calculations that follow, C always denotes a constant (not always the same one) depending only on c

and k.

Proposition 1. Let the assumptions (I) – (IV) be in force. The spectral data of L1, L2 has the following

properties. If ε is sufficiently small, then for every k there is a constant C depending only on c and k so that

|λ(1)
k − λ

(2)
k | ≤ Cε .

Proof. We use the variational characterization of the spectral data of Li. That is, if we let Sk denote the

set of k-dimensional subspaces of H1(Mi), then

λ
(i)
k = inf

S∈Sk

(
sup

u6=0 and u∈Sk

Ai(u, u)

‖u‖2L2(Mi)

)
.

This infimum is attained if Sk = span{f (i)
1 , . . . , f

(i)
k }. The supremum is then attained if u = f

(i)
k . By

applying this characterization with i = 2 we can therefore say

λ
(2)
k ≤ sup

f̃∈Sk

A2(f̃ , f̃)

‖f̃‖22

where Sk = span{f̃ (2)
1 , . . . , f̃

(2)
k }. Let f̃ :=

∑k
i=1 bif̃

(2)
i = F1(f) where f :=

∑k
i=1 bif

(1)
i for some bi ∈ R. We

obtain an estimate for the denominator by∣∣∣‖f̃‖22 − ‖b‖2∣∣∣ ≤∑
i,j

|bi| |bj |
∣∣∣〈F1(f

(1)
i ), F1(f

(1)
j 〉 − δij

∣∣∣



≤ ε
∑
i,j

|bi| |bj | ‖f (1)
i ‖∞‖f

(1)
j ‖∞

≤ Cε‖b‖2

using Assumption (III) and (IV). (We are also implicitly using Assumption I since this guarantees that the

eigenvalues of L1, and hence the constant appearing in the supremum norm bound of the eigenfunctions,

are bounded below by a constant depending only on c and k). Consequently ‖f̃‖22 ≥ (1−Cε)‖b‖2. Next, we

obtain an estimate for the numerator by

A2(f̃ , f̃) ≤ A1(f, f) + ε
(
‖f‖2∞ + ‖∇f‖22

)
≤
∑
i,j

bibjA1

(
f

(1)
i , f

(1)
j

)
+ ε

∑
i,j

|bi||bj |
(
‖f (1)
i ‖∞‖f

(1)
j ‖∞ + ‖∇f (1)

i ‖2‖∇f
(1)
j ‖2

)
≤
∑
i

b2iλ
(1)
i + Cε‖b‖2

≤ ‖b‖2
(
λ

(1)
k + Cε

)
.

Here we have again used Assumption (IV) to deal with ‖f (1)
i ‖∞ and ‖∇f (1)

i ‖2. Now, the two estimates we

have just found together yield

A2(f, f)

‖f‖22
≤
λ

(1)
k + Cε

1− Cε
≤ λ(1)

k + Cε

so that λ
(2)
k −λ

(1)
k ≤ Cε. Reversing the roles of M1 and M2 in the preceding calculations yields the opposite

inequality, thereby establishing the desired result.

Proposition 2. Let the assumptions about M1 and M2 be in force and let δ > 0 be given. If ε is sufficiently

small, then for every k there is a constant C depending only on c, k and δ so that∥∥f̃ (i)
k − P

(i)
k,δ

(
f̃

(i)
k

)∥∥
2
≤ C
√
ε .

Proof. We use the alternate variational characterization of the spectral data of Li. That is, with the notation

from the previous proposition in force, we have

λ
(i)
k = sup

S∈Sk−1

(
inf

u6=0 and u⊥Sk−1

Ai(u, u)

‖u‖2L2(Mi)

)
.

This supremum is attained if S = span{f (i)
1 , . . . , f

(i)
k−1}. The infimum is then attained if u = f

(i)
k .

Now let `1 < `2 be, respectively, the largest integer less than k and the smallest integer greater than k

so that |λ(i)
` − λ

(i)
k | > δ. Write f̃

(i)
k = f◦ + f ′ + f ′′ where

f◦ := P
(i)
k,δ(f̃

(i)
k ) and f ′ ∈ span{f (i)

j : j = 1, . . . , `1} and f ′′ ∈ span{f (i)
j : j ≥ `2} .

Our goal is to show ‖f ′‖2+‖f ′′‖2 ≤ C
√
ε. We proceed by induction. We must first prove the result for i = 1, 2

and k = 1. We use the notation i′ = (2, 1) if i = (1, 2) as usual. In this case, we have f̃
(i)
1 = P

(i)
1,δ(f̃

(i)
1 ) + f ′′

with f ′′ ⊥ f (i)
1 . Our variational characterization implies

(λ
(i)
1 + δ)‖f ′′‖22 ≤ Ai(f ′′, f ′′)

= Ai(f̃ (i)
1 − f◦, f̃

(i)
1 − f◦)

= Ai(f̃ (i)
1 , f̃

(i)
1 )−Ai(f◦, f◦)

where we have used the symmetry of Ai and the fact that Ai(f◦, f◦) = Ai(f̃ (i)
1 , f◦) since f◦ and f ′′ belong

to orthogonal eigenspaces of Li and thus Ai(f◦, f ′′) = 0. Now

Ai(f◦, f◦) = 〈f̃ (i)
1 , f

(i)
1 〉2L2A1(f

(i)
1 , f

(i)
1 ) = λ

(i)
1 ‖f◦‖22 .



Furthermore by our assumptions about the variational problems,

Ai(f̃ (i)
1 , f̃

(i)
1 ) ≤ Ai′(f (i′)

1 , f
(i′)
1 ) + Cε ≤ λ(i′)

1 + Cε .

Therefore combining these two estimates yields

(λ
(i)
1 + δ)‖f ′′‖22 ≤ λ

(i′)
1 − λ(i)

1 ‖f◦‖22 + Cε .

Finally, observe that ‖f◦‖22 + ‖f ′′‖22 = ‖f̃ (i)
1 ‖22 ≥ (1−Cε) by our assumptions about the variational problem

and the fact that ‖f (i)
1 ‖ = 1. Hence

(λ
(i)
1 + δ)‖f ′′‖22 ≤ λ

(i′)
1 − λ(i)

1

(
1− Cε− ‖f ′′‖22

)
+ Cε

from which we deduce

δ‖f ′′‖22 ≤ (λ
(i)
1 − λ

(i′)
1 ) + Cε(1 + λ

(i)
1 ) .

By Proposition 1 the inequality ‖f ′′‖ ≤ C
√
ε follows once ε is sufficiently small.

To continue with the induction argument, we now assume that the result is true for i = 1, 2 and k =

1, . . . , n − 1 and we must prove the result for k = n. Consider first the component f ′ in the orthogonal

decomposition of f̃
(i)
n . This is

f ′ =

`1∑
j=1

〈f̃ (i)
n , f

(i)
j 〉L2f

(i)
j =

`1∑
j=1

〈f (i′)
n , f̃

(i′)
j 〉L2f

(i)
j + h

where ‖h‖2 ≤ Cε by the assumptions about the variational problem. But now we can use the induction

hypothesis applied to f̃
(i′)
j , which we write as f̃

(i′)
j = f◦j + f ′j + f ′′j to conclude

〈f (i′)
n , f̃

(i′)
j 〉L2 ≤ ‖f ′′j ‖ ≤ C

√
ε

and thus that ‖f ′‖2 ≤ C
√
ε. We now estimate ‖f ′′‖2 ≤ C

√
ε by performing the same kind of calculation as

in the k = 1 part of the induction argument, except with additional f ′ terms in several places. But given

what we have just computed, these terms all contribute an amount O(
√
ε) to the inequality for ‖f ′′‖2. Thus

we obtain the desired estimate for ‖f ′′‖2.

4 Spectral Comparison of Composite Surfaces

We will construct a composite surface M1 consisting of two “large” surfaces connected by a small neck

contained in a ball of radius α� 1. We will show that Assumptions (I) – (IV) hold for M1 and for a model

surface M2 consisting of the disjoint union of the two large surfaces, provided the eigenvalue λ is smaller

than a threshold of size o(α). Consequently, the spectral comparison results contained in Propositions 1 and

2 hold for these surfaces when α is sufficiently small, provided the eigenvalue λ is not too large.

4.1 Construction of a Composite Surface

Let M2 := Σ+∪̇Σ− be the disjoint union of two compact, non-collapsed surfaces Σ± carrying a differential

operator L2 of the kind described in the previous section. We will suppose that M1 is constructed by “gluing

together” Σ± at points p± ∈ Σ± by means of a small, cylindrical neck in the following manner. For simplicity,

choose p± so that the principal curvature vectors at p± point into Σ± (that is, Σ± looks “convex” at p±.

The specific details of the construction of M1 don’t really matter as far as the spectral comparison

theorem is concerned. This is because it can be shown that a spectral comparison theorem also holds when

M1 and M2 are small C∞ perturbations of each other. But since we must be concrete in order to verify the

various assumptions that must be satisfied for Propostion 1 and Propostion 2 to hold, we proceed as follows.

First, define Cylr := {y2 + z2 < r2} and Hθ := {(x, y, z) : |x| ≤ θα1} and H := {(x, y, z) : |x| ≤ √α1}.



• Let α1, α2 be small numbers (to be further specified below).

• By means of translations and rotations, place Σ+ and Σ− in the x < 0 and x > 0 half-spaces,

respectively, so that p± = (±α1, 0, 0) and Tp±Σ± = span{(0, 1, 0), (0, 0, 1)}.

• Delete all points of Σ± ∩ Cyl2α2
in the same connected component as p±.

• Replace the points in Σ±∩
[
Cyl3α2

\Cyl2α2

]
by a collar that interpolates smoothly between Σ±∩∂Cyl3α2

and surfaces of revolution about the x-axis making contact with the circles ∂Cyl2α2
∩∂H1/2 at an angle

of π/4. Assume the surface begins deviating from Σ± within H1.

• Construct a surface of revolution about the x-axis that transitions smoothly between Cylα2
∩H1/4 and

a surface that makes contact with the circles ∂Cyl2α2
∩ ∂H1/2 at an angle of π/4.

• Let M1 be the union of the cylindrical neck together with Σ+ and Σ− where the appropriate points

have been removed or replaced.

The surface M1 we have just constructed is pictured in Figure 1.

Figure 1: A schematic of the connected sum of Σ+ and Σ−.

4.2 Verification of the Assumptions

We’ll assume that the operator L2 is a geometric operator acting on functions f : M2 → R that is built in

some natural way from the covariant derivatives of f up to order 2. Furthermore, we’ll assume that L2 has

a natural, smooth extension to M1 and that L1 = L2 in the region where M1 coincides with M2. Also, we’ll

assume that the coefficients of L2 in are bounded independently of neck size in the L∞ norm induced by

the Riemannian metric g2. Finally, we’ll assume that L1 remains in divergence form so that the associated

quadratic form A1 can be defined such that it equals A2 when acting on functions supported on the part of

M2 that coincides with M1.

The next step is to carefully define the comparison mappings F1 and F2, beginning with the cut-off

function. Let χ̊ : R → R be a smooth, monotone function that equals one on (−∞, 1] and equals zero on

[2,∞) and let x(p) denote the x-coordinate of a point p ∈ Σ±. Define

χ(p) := χ̊

(
log(|x(p)|)
log(
√
α1)

)
.



This function transitions from zero to one in M1∩
[
H \ int(H0)

]
and equals on one M1∩H. Note we’ll abuse

notation and view χ as being defined on either M1 or M2 as needed, where the definition on M2 is simply

obtained by pre-composing with nearest point projection from M1 ∩ [H \ H0] to M2 ∩ [H \ H0]. Finally,

let F1 : C∞(M1) → C∞(M2) be given by F1(f) := χf which is then viewed as a function on Σ+∪̇Σ− that

equals zero near p±. Let F2 : C∞(M2)→ C∞(M1) be given by F2(f) := χf
∣∣
Σ+

+ χf
∣∣
Σ−

we first view f
∣∣
Σ+

and f
∣∣
Σ−

as functions on the two components of M1 \H0 before combining them into one function on all of

M1 that vanishes in M1 ∩H0.

We are now ready to check the various assumptions for M1 and M2. The Assumptions (I) and (II) are

clear. For Assumption (III) we have four statements to check for each surface.

Assumption III.1. Straightforward since ‖χ‖∞ ≤ 1.

Assumption III.2. Start with u ∈ C∞(M1). Then

‖u− F2 ◦ F1(u)‖22 =

∫
M1

(1− χ2)u2 ≤ CVol(supp(1− χ)) · ‖u‖2∞ ≤ ε2‖u‖2∞

if α1 and α2 are sufficiently small. The inequality for u ∈ C∞(M2) is similar.

Assumption III.3. Another similar computation.

Assumption III.4. This is a more involved computation since we must estimate norms of ∇χ. First,

we show that ‖∇χ‖2 can be made as small as desired by choosing the parameters of our construction

appropriately. To this end, note that∫
M2

‖∇χ‖2 ≤ C
∫ 2π

0

∫ √α1

α1

‖∇χ(r, θ)‖2 rdrdθ

once we choose geodesic polar coordinates in the small annular region containing the support of ∇χ and

bound the metric there by the Euclidean metric. Thus we obtain∫
M2

‖∇χ‖2 ≤ C
∫ √α1

α1

1

r(log(
√
α1))2

dr =
C log(r)

(log(
√
α1))2

∣∣∣∣
√
α1

α1

=
C

| log (α1)|

and this can be made as small as desired by choosing α1 sufficiently small. Now let ε > 0 be given and

compute

A2(F1(u), F1(u)) =

∫
M2

(
a

(2)
ij ∇

i(χu)∇j(χu) + a(2)χ2u2
)

=

∫
M2\H0

(
a

(2)
ij

(
u2∇iχ∇kχ+ 2χu∇iu∇jχ+ χ2∇iu∇ju

)
+ a(2)χ2u2

)
≤ C

∫
M2\H0

(
|u|2‖∇χ‖2 + |u|‖∇u‖‖∇χ‖

)
+

∫
M2\H0

χ2
(
a

(2)
ij ∇

iu∇ju+ a(2)u2
)

≤ C‖u‖2∞
| log(α1)|

+
C‖u‖∞‖∇u‖2
| log(α1)|1/2

+

∫
M2\H0

a
(2)
ij ∇

iu∇ju+

∫
M2\H0

χ2a(2)u2

≤ C

| log(α1)|1/2
(
‖u‖2∞ + ‖∇u‖22

)
+A1(u, u) +

∫
M1

(χ2 − 1)a(1)u2

≤ C

| log(α1)|1/2
(
‖u‖2∞ + ‖∇u‖22

)
+ C
√
α1α2‖u‖2∞ +A1(u, u)

≤ ε
(
‖u‖2∞ + ‖∇u‖22

)
+A1(u, u)



if α1 and α2 are sufficiently small. We have used the fact that χ2a
(2)
ij ∇iu∇ju ≤ a

(2)
ij ∇iu∇ju since a

(2)
ij ∇iu∇ju

is positive and χ ≤ 1. Also we have used Vol(M1 ∩ H) = O(
√
α1α2). Hence our estimate follows. The

estimate A1(F2(u), F2(u)) ≤ ε
(
‖u‖2∞ + ‖∇u‖22

)
+A2(u, u) holds by similar calculations.

It remains to prove that Assumption (IV) holds for each surface. We can of course assume that all the

desired bounds hold for M2 since these follow by standard elliptic theory on M2 along with the compactness

and non-collapsedness of M2. Details of this theory can be found in [5] with extensions to surfaces in [1, 7, 9].

But it is a non-trivial question whether these estimates remain valid for M1 due to the presence of the neck

region in M1.

As a matter of fact, the desired estimate is not true if λ is too large compared to the parameters specifying

the size of the neck region of M1. The reason is that there exist eigenfunctions of L1 that are concentrated

in the neck region — namely these eigenfunctions have unit L2 norm but are mostly supported in the neck

region, which forces their L∞ norm to be very large there. Such eigenfunctions exist because the Dirichlet

problem for L1 restricted to M1∩H has eigenfunctions and these are a good approximation of the problematic

eigenfunctions in question here. (It will become clear below in what sense we can expect the approximation

to be valid.) However, the first eigenvalue of the Dirichlet problem for L1 restricted to M1 ∩ H0 is of size

O(α−2
1 ) since M1 ∩ H0 can be scaled up by a factor of α1 to a surface with uniform geometry. Thus we

expect that the problematic eigenfunctions won’t cause us any trouble provided we seek only to estimate

functions solving Li(u) = λu with λ sufficiently small. The following lemma validates this discussion.

Lemma 3. There is a number µ(ε) with limε→0 µ(ε) =∞ so that if λ < µ(ε) then any solution u ∈ C2,β(M1)

of the equation L1(u) = λu satisfies the estimate ‖u‖∞ ≤ C‖u‖2 where C is a constant depending only on λ

and the geometry of Σ±.

Proof. Suppose that u ∈ C2,β(M1) satisfies L1(u) = λu. Let χ be a cut-off function that vanishes in M1∩H0

and transitions monotonically to one in M1 ∩H1 where H1 := {(x, y, z) : α1 ≤ |x| ≤ 2α1}. Note that this is

a different cut-off function that the one we have used before. Write u = χu+ (1− χ)u := uext + uneck . The

function u
∣∣
M1\H0

can be viewed as a function defined on Σ−∪̇Σ+ and thus can be estimated using standard

interior elliptic estimates as ‖u‖L∞(M1\H0) ≤ C‖u‖2 where C depends only on λ and Σ±. Hence uext can be

so estimated as well. Now observe that

L1(uneck )− λuneck = −[L1, χ](u) := L(χu)− χL1(u) .

Note that since [L1, χ](u) contains ∇χ · ∇u and ∇2χ · u terms only, it is supported in M1 ∩ [H1 \H0].

Let us now consider uneck as a function of compact support on the interior of M1 ∩ H1. The Dirichlet

eigenvalue problem L1(u)−σu = 0 with u
∣∣
∂M1∩H1

= 0 has a first eigenvalue σ0. And because we can re-scale

M1 ∩H1 by the factor α−1
1 and obtain a surface with uniformly bounded geometry, this eigenvalue satisfies

σ = O(α−2
1 ). Therefore so long as σ − λ is positive and uniformly bounded away from zero, the operator

L1 − λ is uniformly invertible. Thus we have the estimate

|uneck |∗C2,β ≤ Cα2
1|L1(uneck )− λuneck |∗C0,β ≤ Cα2

1

∣∣[L1, χ](u)
∣∣∗
C0,β

where the | · |∗Ck,β norm is the scale invariant version of this norm in which the kth derivative is weighted by

αk1 and the Hölder seminorm receives an extra factor of αβ1 . The reason for this weighting by factors of α1 is

because if we re-scale M1 ∩H1 by the factor α−1
1 we obtain a surface with uniformly bounded geometry for

which a version of the above estimate holds but where all constants are independent of α1. Reversing the

scaling then yields the above estimate with the factors of α1 as given. Now,

α2
1

∣∣[L1, χ](u)
∣∣∗
C0,β = α2

1

∣∣a(1)
ij

(
∇j∇i(χu)− χ∇j∇iu

)∣∣∗
C0,β

≤ Cα2
1

∣∣|u|‖∇2χ‖+ ‖∇u‖‖∇χ‖
∣∣∗
C0,β



≤ C|u|∗C1,β(M1∩[H\H0])

since it is easy to show that the pointwise norm of χ satisfies |χ|∗C2,β ≤ C and both ∇χ and thus ∇2χ are

supported in the transition region of M1. Our a priori estimate for M2 now implies that |u|C0(M1∩[H\H0]) ≤
C‖u‖2. Scaling and the local Schauder estimate for L1−λ then together imply that α1‖∇u‖C0(M1∩[H\H0]) +

α1+β [∇u]β,M1∩[H\H0] ≤ C‖u‖2 as well. We thus find that

|uneck |∗C2,β ≤ C‖u‖2

which implies that ‖u‖L∞(M1∩H) ≤ C‖u‖2. This estimate together with the previous estimate for u in the

rest of M1 yields the lemma.

5 Remarks on Vector Equations

We must still verify that the above analysis holds for the operator L := P ∗P where P is the AKVF operator

defined as the symmetric part of the covariant derivative tensor of X, namely P (X) := Sym(∇X). Clearly,

the various assumptions on the smoothness of the coefficients of the operator hold. What we must check is

that the above analysis carries over to systems of second-order partial differential equations — since after

all L is not a scalar operator (in local coordinates, the equation L(X) = λX is a system of equations for the

vector quantity X). At first glance, this distinction could potentially matter a great deal since the a number

of the special yet very important analytic features of second-order, scalar equations (such as the maximum

principle and any a priori estimates related to it) can fail to hold for elliptic systems.

However, a careful examination of the proof of the spectral comparison theorems above shows that we

are in fact not using any special features of scalar equations, provided we generalize the coercivity condition

from Assumption II properly. But coercivity of the quadratic form Ai is a consequence of the behaviour of

its principal symbol, namely the algebraic operator ξ 7→
∑
s,t a

(i)
st ξ

sξt where ξ ∈ R2, since coercivity follows if

we have the algebraic inequality
∑
s,t a

(i)
st ξ

sξt ≥ C‖ξ‖2 for some C > 0. It is the notion of principal symbol

and the algebraic coercivity inequality which must be properly generalized to elliptic systems.

This is done as follows. Let L be a vector operator on a surface Σ whose expression in terms a local

coordinate frame for the tangent bundle of Σ is given by L(X) := −
∑
stj ∇t

(
aistj∇sXj

)
. The associated

quadratic form is now given by

A(X,Y ) :=

∫
Σ

∑
stjk

astjk∇sXj∇tXk

where astjk :=
∑
i gika

i
stj and gik are the components of induced metric of Σ. The appropriate generalization

of the above algebraic inequality is called the strong Legendre condition, which states that∑
stjk

astjkξ
sjξtk ≥ C‖ξ‖2 := C

∑
si

(ξsi)2 ∀ ξ ∈ R4 .

It is straightforward to verify that the strong Legendre condition holds for the operator P ∗P . In fact, the

principal symbol of P ∗P has coefficients a1111 = 4, a1122 = 2, a2211 = 2, a1221 = 2, a2112 = 2, a2222 = 4 and

all others zero. Then
∑
stjk astjkξ

sjξtk ≥ 4(ξ2
11 + ξ2

12 + ξ2
21 + ξ2

22) so that the condition holds.

Once we have the strong Legendre condition, then the a priori estimates for solutions of P ∗P (X) = λX

follow by standard elliptic estimates for systems. The details can be found in [3]. The remaining steps of the

spectral comparison theorems can still be carried out as before, but with extra book-keeping to keep track

of the vectorial nature of the objects involved.
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