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1 Introduction

Many tools from discrete differential geometry (DDG) were inspired by practical considerations in
areas like computer graphics and vision. Disciplines like these require fine-grained understand-
ing of geometric structure and the relationships between different shapes—problems for which
the toolbox from smooth geometry can provide substantial insight. Indeed, a triumph of discrete
differential geometry is its incorporation into a wide array of computational pipelines, affecting
the way artists, engineers, and scientists approach problem-solving across geometry-adjacent dis-
ciplines.

A key but neglected consideration hampering adoption of ideas in DDG in fields like computer
vision and machine learning, however, is resilience to noise and uncertainty. The view of the world
provided by video cameras, depth sensors, and other equipment is extremely unreliable. Shapes
do not necessarily come to a computer as complete, manifold meshes but rather may be scattered
clouds of points that represent e.g. only those features visible from a single position. Similarly, it
may be impossible to pinpoint a feature on a shape exactly; rather, we may receive only a fuzzy
signal indicating where a point or feature of interest may be located. Such uncertainty only in-
creases in high-dimensional statistical contexts, where the presence of geometric structure in a
given dataset is itself not a given. Rather than regarding this messiness as an “implementation
issue” to be coped with by engineers adapting DDG to imperfect data, however, the challenge
of developing principled yet noise-resilient discrete theories of shape motivates new frontiers in
mathematical research.

Probabilistic language provides a natural means of formalizing notions of uncertainty in the ge-
ometry processing pipeline. In place of representing a feature or shape directly, we might instead
use a probability distribution to encode a rougher notion of shape. Unfortunately, this proposal
throws both smooth and discrete constructions off their foundations: We must return to the basics
and redefine notions like distance, distortion, and curvature in a fashion that does not rely on
knowing shape with infinite precision and confidence. At the same time, we must prove that the
classical case is recovered as uncertainty diminishes to zero.

The mathematical discipline of optimal transport (OT) shows promise for making geometry work
in the probabilistic regime. In its most basic form, optimal transport provides a means of lifting
distances between points on a domain to distances between probability distributions over the do-
main. The basic construction of OT is to interpret probability distributions as piles of sand; the
distance between two such piles of sand is defined as the amount of work it takes to transform
one pile into the other. This intuitive construction gave rise to an alternative name for OT in the
computational world: The “earth mover’s distance” (EMD) [RTG00]. Indeed, the basic approach
in OT is so natural that it has been proposed and re-proposed in many forms and with many
names, from OT to EMD, the Mallows distance [LB01], the Monge–Kantorovich problem [Vil03],
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the Hitchcock–Koopmans transportation problem [Hit41, Koo41], the Wasserstein/Vaseršteĭn dis-
tance [Vas69, Dob70], and undoubtedly many others.

Many credit Gaspard Monge with first formalizing the optimal transportation problem in 1781
[Mon81]. Beyond its early history, modern understanding of optimal transport dates back only
to the World War II era, through the Nobel Prize-winning work of Leonid Kantorovich [Kan42].
Jumping forward several decades, while many branches of DDG are dedicated to making centuries-
old constructions on smooth manifolds work in the discrete case, optimal transport has the dis-
tinction of continuing to be an active area of research in the mathematical community whose basic
properties are still being discovered. Indeed, the computational and theoretical literature in this
area move in lock-step: New theoretical constructions often are adapted by the computational
community in a matter of months, and some key theoretical ideas in transport were inspired by
computational considerations and constructions.

In these notes, we aim to provide some intuition about transport and its relevance to the discrete
differential geometry world. While a complete survey of work on OT or even just its compu-
tational aspects is worthy of a full textbook, here we focus on the narrower problem of how to
“make transport work” on a discretized piece of geometry amenable to representation on a com-
puter. The primary aim is to highlight the challenges in transitioning from smooth to discrete,
to illustrate some basic constructions that have been proposed recently for this task, and—most
importantly—to expose the plethora of open questions remaining in the relatively young disci-
pline of computational OT. No-doubt incomplete references are provided to selected intriguing
ideas in computational OT, each of which is worthy of far more detailed discussion.

Additional reference. Those readers with limited experience in related disciplines may wish
to begin by reading [Sol18], a shorter survey by the author on the same topic, intended for a
generalist audience.

Disclaimer. These notes are intended as a short, intuitive, and extremely informal introduction.
Optimal transport is a popular topic in mathematical research, and interested readers should re-
fer to surveys such as [Vil03, Vil08] for more comprehensive discussion. The recent text [San15]
provides discussion targeted to the applied world. A few recent surveys also are targeted to com-
putational issues in optimal transport [LS17, PC17].

The author of this tutorial offers his sincere apology to those colleagues whose foundational work
is undoubtedly yet accidentally omitted from this document. A “venti”-sized caffeinated beverage
is humbly offered in exchange for those readers’ forgiveness and understanding.

2 Motivation: From Probability to Discrete Geometry

To motivate the construction of optimal transport in the context of geometry processing, we begin
by considering the case of smooth probability distributions over the real numbers R. Here, the
geometry is extremely simple, described by values x ∈ R equipped with the distance metric
d(x, y) := |x− y|. Then we expand to define the transport problem in more generality and state a
few useful properties.
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Figure 1: One-dimensional examples of probability distributions used to encode geometric fea-
tures with uncertainty. A probability distribution like a Gaussian g with standard deviation σ can
be thought of as a “fuzzy” location of a point in x ∈ R. As a distribution sharpens about its mean
to a δ-function δy, it encodes a classical piece of geometry: a point y ∈ R. This language, however,
is fundamentally broader, including constructions like the superposition of two points z1 and z2
or combining a point and a fuzzy feature into one distribution ρ.

2.1 The Transport Problem

Define the space of probability measures over R as Prob(R). Without delving into the formalities
of measure theory, these are roughly the functions µ ∈ Prob(R) assigning probabilities to sets
S ⊆ R such that µ(S) ≥ 0 for all measurable S, µ(R) = 1, and µ(∪k

i=1Si) = ∑k
i=1 µ(Si) for disjoint

sets {Si ⊆ R}k
i=1. If µ is absolutely continuous, then it admits a distribution function ρ(x) : R→ R

assigning a probability density to every point:

µ(S) =
∫

S
ρ(x) dx.

Measure theory, probability, and statistics each are constructed from slightly different interpreta-
tions of the set of probability distributions Prob(R). Adding to the mix, we can think of optimal
transport as a geometric theory of probability. In particular, as illustrated in Figure 1, roughly a
probability distribution over R can be thought of as a superposition of points in R, whose weights
are determined by ρ(x). We can recover a (complicated) representation for a single point x ∈ R as
a Dirac δ-measure centered at x.

From a physical perspective, we can think of distributions geometrically using a physical analogy.
Suppose we are given a bucket of sand whose total mass is one pound. We could distribute this
pound of sand across the real numbers by stacking it all at a single point, concentrating it at a few
points, or spreading it out smoothly. The height of the pile of sand expresses a geometric feature:
Lots of sand at a point x ∈ R indicates we think a feature is located at x.

If we wish to deepen this analogy and lift notions from geometry to the space Prob(R), perhaps the
most basic object we must define is a notion of distance between two distributions µ0, µ1 ∈ Prob(R)
that resembles the distance d(x, y) = |x− y| between points on the underlying space. Supposing
for now that µ0 and µ1 admit distribution functions ρ0 and ρ1, respectively, a few candidate notions
of distance or divergence come to mind:

L1 distance: dL1(ρ0, ρ1) :=
∫ ∞

−∞
|ρ0(x)− ρ1(x)| dx
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Figure 2: The distributions ρ0, . . . , ρ4 are equidistant with respect to the L1 and KL divergences,
while the Wasserstein distance from optimal transport increases linearly with distance over R.
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(a) Source and target (b) Transport map

Figure 3: Two distributions over the real line (a) and the resulting transport map (b). In (b), the
box is the product space [0, 1]× [0, 1], and dark values indicate a matching between ρ0 and ρ1.

KL divergence: dKL(ρ0‖ρ1) :=
∫ ∞

−∞
ρ0(x) log

ρ0(x)
ρ1(x)

dx.

These divergences are used widely in analysis and information theory, but they are insufficient for
geometric computation. In particular, consider the distributions in Figure 2. The two divergences
above give the same value for any pair of different ρi’s! This is because they measure only the
overlap; the ground distance d(x, y) = |x− y| is never used in their computation.

Optimal transport resolves this issue by leveraging the physical analogy proposed above. In par-
ticular, suppose our sand is currently in arrangement ρ0 and we wish to reshape it to a new dis-
tribution ρ1. We take a steam shovel and begin scooping up the sand at points x in ρ0 where
ρ0(x) > ρ1(x) and dropping it places where ρ1(x) > ρ0(x); eventually one distribution is trans-
formed into the other.

There are many ways the steam shovel could approach its task: We could move sand efficiently,
or we could drive it miles away and then drive back, wasting fuel in the process. But assuming
ρ0 6= ρ1, there is some amount of work inherent in the fact that ρ0 and ρ1 are not the same. We
can formalize this idea by solving for an unknown measure π(x, y) determining how much mass
gets moved from x to y by the steam shovel for each (x, y) pair. The minimum amount of work is
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then

W1(ρ0, ρ1) :=


minπ

∫∫
R×R

π(x, y)|x− y| dx dy Minimize total work
s.t. π ≥ 0 ∀x, y ∈ R Nonnegative mass∫

R
π(x, y) dy = ρ0(x) ∀x ∈ R Starts from ρ0∫

R
π(x, y) dx = ρ1(y) ∀y ∈ R Ends at ρ1.

(1)

This optimization problem quantifies the minimum amount of work—measured as mass π(x, y)
times distance traveled |x − y|—required to transform ρ0 into ρ1. We can think of the unknown
function π as the instructions given to the laziest possible steam shovel tasked with dropping
one distribution onto another. This amount of work is known as the 1-Wasserstein distance in
optimal transport; in one dimension, it equals the L1 distance between the cumulative distribution
functions of ρ0 and ρ1. An example of ρ0, ρ1, and the resulting π is shown in Figure 3.

Generalizing slightly, we can define the p-Wasserstein distance:

[Wp(ρ0, ρ1)]
p :=


minπ

∫∫
R×R

π(x, y)|x− y|p dx dy
s.t. π ≥ 0 ∀x, y ∈ R∫

R
π(x, y) dy = ρ0(x) ∀x ∈ R∫

R
π(x, y) dx = ρ1(y) ∀y ∈ R.

(2)

In analogy to Euclidean space, many properties ofWp are split into cases p < 1, p = 1, and p > 1;
for instance, it satisfies the triangle inequality any time p ≥ 1. The p = 2 case is of particular
interest in the literature and corresponds to a “least-squares” version of transport that minimizes
kinetic energy rather than work (see §2.4). Generalizing (2) even more, if we replace |x− y|p with
a generic cost c(x, y) we recover the Kantorovich problem.

It is important to note an alternative formulation of the transport problem (2), which historically
was posed first but does not always admit a solution. Rather than optimizing for a function π(x, y)
with an unknown for every possible (x, y) pair, one could consider an alternative in which instead
the variable is a single function φ(x) that “pushes forward” ρ0 onto ρ1; this corresponds to choos-
ing a single destination φ(x) for every source point x. In this case, the objective function would
look like ∫ ∞

−∞
|φ(x)− x|pρ0(x) dx, (3)

and the constraints would ask that the image of ρ0 under φ is ρ1, notated φ]ρ0 = ρ1. While this
version corresponds to the original version of transport proposed by Monge, sometimes for the
transport problem to be solvable it is necessary to split the mass at a single source point to multiple
destinations. A triumph of theoretical optimal transport, however, shows that π(x, y) is nonzero
only on some set {(x, φ(x)) : x ∈ R} whenever ρ0 is absolutely continuous, linking the two
problems.

2.2 Discrete Problems in One Dimension

So far our definitions have not been amenable to numerical computation: Our unknowns are
functions π(x, y) with infinite numbers of variables (one value of π for each (x, y) pair in R×R)—
certainly more than can be stored on a computer with finite capacity. Continuing to work in one
dimension, we suggest some special cases where we can solve the transport problem with a finite
number of variables.
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Figure 4: Discrete (a) and semidiscrete (b) optimal transport in one dimension.

Rather than working with distribution functions ρ(x), we will relax to the more general case of
transport between measures µ0, µ1 ∈ Prob(R). Define the Dirac δ-measure centered at x ∈ R

via

δx(S) :=
{

1 if x ∈ S
0 otherwise.

It is easy to check that δx(·) is a probability measure.

Suppose µ0, µ1 ∈ Prob(R) can be written as superpositions of δ measures:

µ0 :=
k0

∑
i=1

a0iδx0i and µ1 :=
k1

∑
i=1

a1iδx1i , (4)

where 1 = ∑i a0i = ∑i a1i and a0i, a1i ≥ 0 for all i. Figure 4(a) illustrates this case; all the mass of µ0
and µ1 is concentrated at a few isolated points.

In the case where the source and target distributions are composed of δ’s, we only can move mass
between pairs of points x0i 7→ x1j. Taking Tij the total mass moved from x0i to x1j, we can solve for
W p

p as

[Wp(µ0, µ1)]
p =


minT∈Rk0×k1 ∑ij Tij|x0i − x1j|p

s.t. T ≥ 0
∑j Tij = a0i

∑i Tij = a1j.

(5)

This is an optimization problem in k0k1 variables Tij: No need for an infinite number of π(x, y)’s!
In fact, it is a linear program solvable using many classic algorithms, such as the simplex or interior
point methods.

There is a more subtle case where we can still represent the unknown in optimal transport using
a finite number of variables. Suppose µ0 ∈ Prob(R) is a superposition of δ measures and µ1 ∈
Prob(R) is absolutely continuous, implying µ1 admits a distribution function ρ1(x):

µ0 :=
k

∑
i=1

aiδxi and µ1(S) :=
∫

S
ρ1(x) dx. (6)

This situation is illustrated in Figure 4(b); it corresponds to transporting from a distribution whose
mass is concentrated at a few points to a distribution whose distribution is more smooth. In the
technical literature, this setup is known as semidiscrete transport.

Returning to the transport problem in (2), in this semidiscrete case we can think of the coupling π
as decomposing into a set of measures π1, π2, . . . , πk ∈ Prob(R) where each term in the sum (6)
has its own target distribution: δxi 7→ πi. As a sanity check, note that µ1 = ∑i aiπi(x).
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Figure 5: Solving 1D semidiscrete transport from Figure 4(b); every Dirac δ-function mass in the
source µ0 gets mapped to a contiguous interval worth of mass in the target µ1.

Without loss of generality, we can assume the xi’s are sorted, that is, x1 < x2 < · · · < xk. Suppose
1 ≤ i < j ≤ k, and hence xi < xj. In one dimension, it is easy to see that the optimal transport map
π should never “leapfrog” mass, that is, the delivery target of the mass at xi when transported
to ρ1 should be to the left of the target of mass at xj, as illustrated in Figure 5. This monotonicity
property implies the existence of intervals [b1, c1], [b2, c2], . . . , [bk, ck] such that πi is supported in
[bi, ci] and ci < bj whenever i < j; the mass aiδxi is distributed according to ρ1(x) in the interval
[bi, ci].

The semidiscrete transport problem corresponds to another case where we can solve a transport
problem with a finite number of variables, the bi’s and ci’s. Of course, in one dimension these can
be read off from the cumulative distribution function (CDF) of ρ1, but in higher dimensions this
will not be the case. Instead, the intervals [bi, ci] will be replaced with power cells, a generalization
of a Voronoi diagram (§4.3).

While our discussion above gives two cases in which a computer could plausibly solve the trans-
port problem, they do not correspond to the usual situation for DDG in which the geometry
itself—in this case the real line R—is discretized. As we will see in the discussion in future sec-
tions, there currently does not exist consensus about what to do in this case but several possible
adaptations to this case have been proposed.

2.3 Moving to Higher Dimensions

We are now ready to state the optimal transport problem in full generality. Following [Vil03,
§1.1.1], take (X, µ) and (Y, ν) to be probability spaces, paired with a nonnegative measurable cost
function c(x, y). Define a measure coupling π ∈ Π(µ, ν) as follows:
Definition (Measure coupling). A measure coupling π ∈ Prob(X × Y) is a probability measure on
X×Y satisfying

π(A×Y) = µ(A)

π(X× B) = ν(B)

for all measurable A ⊆ X and B ⊆ Y. The set of measure couplings between µ and ν is denoted Π(µ, ν).
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With this piece of notation, we can write the Kantorovich optimal transportation problem as fol-
lows:

OT(µ, ν; c) := min
π∈Π(µ,ν)

∫∫
X×Y

c(x, y) dπ(x, y) (7)

Here, we use some notation from measure theory: dπ(x, y) denotes integration against proba-
bility measure π. Note if π admits a distribution function p(x, y) then we can write dπ(x, y) =
p(x, y) dx dy; the more general notation allows for δ measures and other objects that cannot be
written as functions.

We note a few interesting special cases below:

Discrete transportation. Suppose X = {1, 2, . . . , k1} and Y = {1, 2, . . . , k2}. Then, µ ∈ Prob(X)
can be written as a vector v ∈ Sk1 and ν ∈ Prob(Y) can be written as a vector w ∈ Sk2 , where Sk
denotes the k-dimensional probability simplex:

Sk :=

{
v ∈ Rk : v ≥ 0 and ∑

i
vi = 1

}
. (8)

Our cost function becomes discrete as well and can be written as a matrix C = (cij). After simpli-
fication, the transport problem between v ∈ Sk1 and w ∈ Sk2 given cost matrix C becomes

OT(v, w; C) =


minT∈Rk1×k2 ∑ij Tijcij

s.t. T ≥ 0
∑j Tij = vi ∀i ∈ {1, . . . , k1}
∑i Tij = wj ∀j ∈ {1, . . . , k2}.

(9)

This linear program is solvable computationally and is the most obvious way to make optimal
transport work in a discrete context. It was proposed in the computational literature as the “earth
mover’s distance” (EMD) [RTG00]. When k1 = k2 := k and C is symmetric, nonnegative, and
satisfies the triangle inequality, one can check that OT(·, ·; C) is a distance on Sk; see [CA14] for a
clear proof of this property.

Wasserstein distance. Next, suppose X = Y = Rn, and take cn,p(x, y) := ‖x − y‖p
2 . Then, we

recover the Wasserstein distance on Prob(Rn), defined via

Wp(µ, ν) := [OT(µ, ν; cn,p)]
1/p. (10)

Wp is a distance when p ≥ 1, and W p
p is a distance when p ∈ [0, 1) [Vil03, §7.1.1]. In fact, the

Wasserstein distance can be defined for probability measures over a surface, Riemannian mani-
fold, or even a Polish space via the same formula.

The Wasserstein distance has drawn considerable application-oriented interest and aligns well
with the basic motivation laid out in §1. Its basic role is to lift distances between points ‖x− y‖p

2
to distances between distributions in a compatible fashion: The Wasserstein distance between two
δ-functions δx and δy is exactly the distance ‖x− y‖2. In §3, we will show how this basic property
has strong bearing on several computational pipelines that need to lift geometric constructions to
uncertain contexts.
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2.4 One Value, Many Formulas

A remarkable property of the transport problem (7) is the sheer number of equivalent formulations
that all lead to the same value, the cost of transporting mass from one measure onto another. These
not only provide many interpretations of the transport problem but also suggest a diverse set of
computational algorithms for transport, each of which tackles a different way of writing down the
basic problem.

Duality. A basic idea in the world of convex optimization is that of duality, that every minimiza-
tion problem admits a “dual” maximization problem whose optimal value lower-bounds that of
the primal. As with most linear programs, optimal transport typically exhibits strong duality: The
optimal values of the maximization and minimization problems coincide.

To motivate duality for transport, we will start with the finite-dimensional problem (9). We note
two simple identities:

max
s∈R

st =
{

0 if t = 0
∞ otherwise

max
s≤0

st =
{

0 if t ≥ 0
∞ otherwise

These allow us to write (9) as follows:

min
T

max
S≤0,φ,ψ

[
∑
ij

Tij(cij + Sij) + ∑
i

φi

(
vi −∑

j
Tij

)
+ ∑

j
ψj

(
wj −∑

i
Tij

)]
.

The dual problem is derived by simply swapping the min and the max:

max
S≤0,φ,ψ

min
T

[
∑
ij

Tij(cij + Sij) + ∑
i

φi

(
vi −∑

j
Tij

)
+ ∑

j
ψj

(
wj −∑

i
Tij

)]

= max
S≤0,φ,ψ

min
T

[
∑
ij

Tij(cij + Sij − φi − ψj) + ∑
i

φivi + ∑
j

ψjwj

]
after refactoring.

Since T is unbounded in the inner optimization problem of the dual, the solution of the inner
minimization is−∞ unless Sij = φi + ψj− cij for all (i, j), that is, unless the coefficient of Tij equals
zero. Since the outer problem is a maximization, clearly we should avoid an optimal value of −∞
for the inner minimization. Hence, we can safely add Sij = φi + ψj − cij as a constraint to the dual
problem. After some simplification, we arrive at the dual of (9):

maxφ,ψ ∑i[φivi + ψiwi]
s.t. φi + ψj ≤ cij ∀(i, j). (11)

Although we have not justified that it is acceptable to swap a max and a min in this context, sev-
eral techniques ranging from direct proof to the “sledgehammer” Slater duality condition [Sla50]
show that the optimal value of this maximization problem agrees with the optimal value of the
minimization problem (9).

As is often the case in convex optimization, the dual (11) of the transport problem (9) has an intu-
itive interpretation. Suppose we change roles in optimal transport from the worker who wishes
to minimize work to a company that wishes to maximize profit. The customer pays φi dollars
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per pound to drop off material vi to ship from location i and ψj dollars per pound to pick up
material wj from location j. The dual problem (11) maximizes profit under the constraint that
it is never cheaper for the customer to just drive from i to j and ignore the service completely:
φi + ψj ≤ cij.

We pause here to note some rough trade-offs between the primal and dual transport problems.
Since both yield the same optimal value, the designer of a computational system for solving op-
timal transport problems has a decision to make: whether to solve the primal problem, the dual
problem, or both simultaneously (the latter aptly named a “primal–dual” algorithm). There are
advantages and disadvantages to each approach. The primal problem (9) directly yields the ma-
trix T, which tells not just the cost of transport but how much mass Tij to move from source i to
destination j; the only inequality constraint is that the entire matrix has nonnegative entries. On
the other hand, the dual problem (11) has fewer variables, making it easier to store the output on
the computer, but the “shadow price” variables (φ, ψ) are harder to interpret and are constrained
by a quadratic number of inequalities. Currently there is little consensus as to which formulation
leads to more successful algorithms or discretizations, and state-of-the-art techniques are divided
among the two basic approaches.

As with many constructions in optimal transport, the dual of the measure-theoretic problem (7)
resembles the discrete case up to a change of the notation. In particular, we can write

OT(µ, ν; c) :=
{

supφ∈L1(dµ),ψ∈L1(dν)

∫
X φ(x) dµ(x) +

∫
Y ψ(y) dν(y)

s.t. φ(x) + ψ(y) ≤ c(x, y) for dµ-a.e. x ∈ X, dν-a.e. y ∈ Y.
(12)

It is worth noting a simplification that appears often in the transport world. Since µ and ν are
positive measures and the overall problem in (12) is a maximization, we might as well choose φ
and ψ as large as possible while satisfying the constraints. Suppose we fix the function φ(x) and
just optimize for the function ψ(x). Rearranging the constraint shows that for all (x, y) ∈ X×Y we
must have ψ(y) ≤ c(x, y)− φ(x). Equivalently, for all y ∈ Y we must have ψ(y) ≤ infx∈X[c(x, y)−
φ(x)]. Define the c-transform

φc(y) := inf
x∈X

[c(x, y)− φ(x)]. (13)

By the argument above we have

OT(µ, ν; c) = sup
φ∈L1(dµ)

∫
X

φ(x) dµ(x) +
∫

Y
φc(y) dν(y).

This problem is unconstrained, but the transformation from φ to φc is relatively complicated.

We finally note one special case of this dual formula, the 1-Wasserstein distance, which has gained
recent interest in the machine learning world thanks to its application in generative adversarial
networks (GANs) [ACB17]. In this case, X = Y = Rn and c(x, y) = ‖x − y‖2. We notice an
interesting property

|φc(x)− φc(y)| =
∣∣∣inf

z
[‖x− z‖2 − φ(z)]− inf

z
[‖y− z‖2 − φ(z)]

∣∣∣ by definition

≤ sup
z
|‖x− z‖2 − ‖y− z‖2| by the identity | inf

x
f (x)− inf

x
g(x)| ≤ sup

x
| f (x)− g(x)|

≤ ‖x− y‖2 by the reverse triangle inequality. (14)
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Furthermore, by definition of the c-transform (13) by taking x = y we have φc(y) ≤ −φ(y), or
equivalently φ(y) ≤ −φc(y). Hence,

W1(µ, ν) = OT(µ, ν; c) through our choice c(x, y) := ‖x− y‖2

= sup
φ∈L1(dµ)

∫
Rn

φ(x) dµ(x) +
∫

Rn
φc(y) dν(y) by definition of the c-transform

≤
∫

Rn
φc(x) [dν(x)− dµ(x)] since φ(y) ≤ −φc(y) ∀y ∈ Rn

≤ sup
ψ∈Lip1(R

n)

∫
Rn

ψ(x) [dν(x)− dµ(x)]

where Lip1(R
n) := { f (x) : | f (x)− f (y)| ≤ ‖x− y‖2 ∀x, y ∈ Rn}.

Lip1 denotes the set of 1-Lipschitz functions; the last step is derived from (14), which shows that
ψc is 1-Lipschitz.

In fact, this inequality is an equality. To prove this, take ψ to be any 1-Lipschitz function. Then,

ψc(y) = inf
x∈Rn

[‖x− y‖2 − ψ(x)] ≥ inf
x∈Rn

[‖x− y‖2 − ‖x− y‖2 − ψ(y)] = −ψ(y). (15)

where we have rearranged the Lipschitz property ψ(x) − ψ(y) ≤ ‖x − y‖2 to show −ψ(x) ≥
−‖x− y‖2 − ψ(y). Hence,

sup
ψ∈Lip1(R

n)

∫
Rn

ψ(x) [dν(x)− dµ(x)] ≤ sup
ψ∈Lip1(R

n)

∫
Rn
[ψ(x) dν(x) + ψc(y) dµ(y)] by (15)

≤ sup
ψ∈L1(dν)

∫
Rn
[ψ(x) dν(x) + ψc(y) dµ(y)] since the constraints are loosened

=W1(µ, ν).

This finishes motivating our final formula

W1(µ, ν) = sup
ψ∈Lip1(R

n)

∫
Rn

ψ(x) [dν(x)− dµ(x)]

This convenient identity is used in computational contexts because the constraint that a function is
1-Lipschitz is fairly easy to enforce computationally; sadly, it does not extend to other Wasserstein
Wp distances, which have nicer uniqueness and regularity properties when p > 1.

Eulerian transport. The language of fluid dynamics introduces two equivalent ways to under-
stand the flow of a liquid or gas as it sloshes in a tank. In the Lagrangian framework, the fluid is
thought of as a collection of particles whose path we trace as a function of time; the equations of
motion roughly determine a map Φt(x) with Φ0(x) = x determining the position at time t ≥ 0
of the particle located at x when t = 0. Contrastingly, Eulerian fluid dynamics takes the point of
view of a barnacle attached to a point in the tank of water counting the number of particles that
flow past a point x; this formulation might seek a function ρt(x) giving the density of the fluid at
a non-moving point x as a function of time t.

So far, our formulation of transport has been Lagrangian: The transportation plan π explicitly
determines how to match particles from the source distribution µ to the target distribution ν.
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Figure 6: Displacement interpolation from ρ0 to ρ1 explains optimal transport between these two
densities using a time-varying density function ρt, t ∈ [0, 1].

Using a particularly clever change of variables, a landmark paper by Benamou & Brenier shows
that the 2-Wasserstein distance from (10) over Euclidean space with cost c(x, y) = ‖x− y‖2

2 can be
computed in an Eulerian fashion [BB00]:

W2
2 (ρ0, ρ1) =


minv(x,t),ρ(x,t)

1
2

∫ 1
0

∫
Rn ρ(x, t) ‖v(x, t)‖2

2 dA(x) dt
s.t. ρ(x, 0) ≡ ρ0(x) ∀x ∈ Rn

ρ(x, 1) ≡ ρ1(x) ∀x ∈ Rn

∂ρ(x,t)
∂t = −∇ · (ρ(x, t)v(x, t)) ∀x ∈ Rn, t ∈ (0, 1)

(16)

Here, we assume that we are computing the 2-Wasserstein distance between two distribution
functions ρ0(x) and ρ1(x). This is often referred to as a dynamical model of transport and can be
extended to spaces like Riemannian manifolds [McC01].

Formulation (16) comes with an intuitive physical interpretation. The time-varying function ρ(x, t)
gives the density of a gas as a function of time t ∈ [0, 1], which starts out in configuration ρ0 and
ends in configuration ρ1. The constraint ∂ρ

∂t = −∇ · (ρv) is the continuity equation, which states that
the vector field v(x, t) is the velocity of ρ as it moves as a function of time while preserving mass.
Over all possible ways to “animate” the motion from ρ0 to ρ1, the objective function minimizes
1
2 ρ‖v‖2

2 (mass times velocity squared): the total kinetic energy!

From a computational perspective, it can be convenient to replace velocity v with momentum
J := ρ · v to obtain an equivalent formulation to (16):

W2
2 (ρ0, ρ1) =


minJ(x,t),ρ(x,t)

1
2

∫ 1
0

∫
Rn
‖J(x,t)‖2

2
ρ(x,t) dA(x) dt

s.t. ρ(x, 0) ≡ ρ0(x) ∀x ∈ Rn

ρ(x, 1) ≡ ρ1(x) ∀x ∈ Rn

∂ρ(x,t)
∂t = −∇ · J(x, t) ∀x ∈ Rn, t ∈ (0, 1)

(17)

Notably, this formulation is convex jointly in the unknowns (ρ, J).

Dynamical formulations of transport make explicit the phenomenon of displacement interpolation
[McC94], illustrated in Figure 6. Intuitively, the Wasserstein distance W2 between two distribu-
tion functions ρ0 and ρ1 is “explained” by a time-varying sequence of distributions ρt interpolating
from one to the other. Unlike the trivial interpolation ρ(t) := (1− t)ρ0(x) + tρ1(x), optimal trans-
portation slides the distribution across the geometric domain similar to a geodesic shortest path
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between points on a curved manifold. Indeed, the intuitive connection to differential geometry
is more than superficial: [Ott01, Lot08] show how to interpret (16) as a geodesic in an infinite-
dimensional manifold of probability distributions over a fixed domain.

It is worth mentioning that other p-Wasserstein distances Wp also admit Eulerian formulations.
Most importantly, the 1-Wasserstein distance can be computed as follows:

W1(ρ0, ρ1) =

{
minJ(x)

∫
Rn ‖J(x)‖2 dA(x)

s.t. ∇ · J(x) = ρ1(x)− ρ0(x).
(18)

This problem, known as the Beckmann problem, has connections to traffic modeling and other tasks
in geometry. From a computational perspective, it has the notable property that the vector field
J(x) has no time dependence.

3 Motivating Applications

Having developed the basic definition and theoretical properties of the optimal transport problem,
we can now divert from theoretical discussion to mention some concrete applications of transport
in the computational world. These are just a few, chosen for their diversity (and no doubt biased
toward areas adjacent to the author’s research); in reality optimal transport is beginning to appear
in a huge variety of computational pipelines. Our goal in this section is not to give the details of
each problem and its resolution with transport, but just to give a flavor of how optimal transport
can be applied as a powerful modeling tool in application-oriented disciplines as well as citations
to more detailed treatments of teach application.

Operations and logistics. Given its history and even its name, it comes as no surprise that a
primary application of optimal transport is in the operations and logistics world, in which engi-
neers are asked to find a minimum-cost routing of packages or materials to customers. The basic
theory and algorithms for this case of optimal transport date back to World War II, in which op-
timal transport of soldiers, weapons, supplies, and the like were by no means purely theoretical
problems.

A particular case of interest in this community is that of transport over a graph G = (V, E).
Here, shortest-path distances over the edges of G provide the costs for transport, leading to a
problem known to computer scientists as minimum-cost flow without edge capacities [RMO93]. This
linear program is a classic algorithmic problem, with well-known algorithms including cycle can-
celing [Kle67], network simplex [Orl97], and the Ford–Fulkerson method [FJF56]. A challenge for
theoretical computer scientists is to design algorithms achieving lower-bound time complexity for
solving this problem; recent progress includes [She17], which achieves a near-linear runtime using
an approach that almost resembles a numerical algorithm rather than a discrete method.

Histogram-based descriptors. Some of the earliest applications of optimal transport in the com-
putational world come from computer vision [RTG00]. Suppose we wish to perform similarity
search on a database of photographs: Given one photograph, we wish to search the database for
other photos that look similar. One reasonable way to do this is to describe each photograph
as a histogram—or probability distribution—over the space of colors. Two photographs roughly
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Figure 7: Level sets of geodesic distance to the front right toe of a 3D camel model approximated
using the optimal transport technique [SRGB14a].

look similar if they have similar color histograms as measured using optimal transport distances
(known in this community as the “Earth Mover’s Distance”), giving a simple technique for sorting
and searching the dataset.

This basic approach comes up time and time again in the applied world. For images, rather than
binning colors into a histogram one could bin the orientations and strengths of the gradients to
capture the distribution of edge features [PW09]. Recent work has proposed an embedding of
the words in an English dictionary into Euclidean space Rn [MCCD13], in which case the words
present in a given document become a point cloud or superposition of δ-functions in Rn; ap-
plication of the Wasserstein (“Word-Movers”) distance in this case is an effective technique for
document retrieval [KSKW15].

Registration. Suppose we wish to use a medical imaging device such as the MRI to track the
progress of a neurodegenerative disease. On a regular basis, we might ask the subject to return to
the laboratory for a brain scan, each time measuring a signal over the volume of the MRI indicating
the presence or absence of brain tissue. These signals can vary drastically from visit to visit, not
just due to the progress of the disease but also due to more mundane issues like movement of the
patient in the measurement device or nonrigid deformation of the brain itself.

Inspired by issues like those mentioned above, the task of computing a map from one scan to
another is known as registration, and optimal transport has been proposed time and time again as
a toolbox for this task. The basic idea of these tools is to use the transport map π as a natural way
to transfer information from one scan to another [HZTA04]. One caveat is worth noting: Optimal
transport does not penalize splitting mass or making non-elastic deformations in the optimal map,
so long as points of mass individually do not move too far. A few recent methods attempt to
cope with this final issue, e.g. by combining transport with an elastic deformation method more
common in medical imaging [FCVP17] or by defining a modified version of optimal transport that
is invariant to certain species of deformation [Mém11, SPKS16].

Distance approximation. A predictable property of the p-Wasserstein distanceWp for distribu-
tions over a surface or manifoldM is that the distance between δ-functions centered at two points

14 Draft: 01/08/2018, 12:00 Noon



Figure 8: A blue noise pattern generated using [DGBOD12] (image courtesy F. de Goes from pho-
tograph by F. Durand).

x0, x1 ∈ M reproduces the geodesic (shortest-path) distance from x0 to x1. While distances in
Euclidean space are computable using a closed-form formula, distances along discretized surfaces
can be challenging to compute algorithmically, requiring techniques like fast marching [Set99],
the theoretically-justified but difficult-to-implement MMP algorithm [MMP87], or diffusion-based
approximation [CWW13]. In this regime, fast algorithms for approximating optimal transport
distancesWp restricted to δ-functions actually provide a way to approximate geodesic distances
while preserving the triangle inequality [SRGB14a]; the level sets of one such approximation are
shown in Figure 7.

Blue noise and stippling. Certain laser printers and other devices can only print pages in black-
and-white—no gray. The idea of halftoning is that gray values between black and white can be
approximated in a perceptually reasonable fashion by patterns of black dots of varying radius or
location over a white background; the halftoned image can be printed using the black-and-white
printer and from a distance appears similar to the original.

A reasonable model for halftoning involves optimal transport. In particular, suppose we think of
a grayscale image as a distribution of ink on a white page; that is, the image can be understood as a
measure µ ∈ Prob([0, 1]2), where [0, 1]2 is the unit rectangle representing the image plane. Under
the reasonable assumption that ink is conserved, we might attempt to approximate µ with a set
of dots of black inks, modeled using δ-functions centered at xi. The intensity of the dot cannot
be modulated (the printer only knows how to print in black-and-white), but the location can be
moved, leading to an optimization problem to the effect:

min
x1,...,xn

W2
2

(
µ,

1
n ∑

i
δxi

)
.

Here, the variables are the locations of the n dots approximating the image, and the Wasserstein
2-distance is used to measure how well the dots approximate µ. This basic idea is extended
in [DGBOD12] to a pipeline for computing blue noise; an example of their output is shown in
Figure 8.
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Political redistricting. A few recent attempts to propose political redistricting procedures have
incorporated ideas from optimal transport to varying degrees of success. For example, optimal
transport might provide one simplistic means of assigning voters to poling centers. The distribu-
tion of voters over a map is “transported” to a sparse set of polling places, where distributional
constraints reflect the fact that each polling center can only handle so many voters; assigning each
voter to his/her closest polling center might cause polling centers in city centers to become over-
loaded. A few papers have proposed variations on this idea to design compact voting districts
e.g. for the US House of Representatives [SBD07, Mil07, CAKY17, Opt]. It is important to note,
however, that many confounding—but incredibly important—factors obscure the application of
this simplistic mathematical model in practice, ranging from compliance with civil rights law to
the simple decision of a transport cost (e.g. geographical versus road network versus public trans-
portation versus travel time).

Statistical estimation. Parameter estimation is a key task in statistics that involves “explaining”
a given dataset using a statistical model. For example, given the set of heights of people in a room
{h1, . . . , hn}, a simple parameter estimation task might be to estimate the mean h0 and standard
deviation σ of a normal (bell curve/Gaussian) distribution g(h|h0, σ) from which the data was
likely sampled.

Principal among the techniques for parameter estimation is the maximum likelihood estimator (MLE).
Continuing in our height data, assuming the n heights are drawn independently, the joint proba-
bility of observing the given set of heights in the room is given by the product

P(h1, . . . , hn|h0, σ) =
n

∏
i=1

g(hi|h0, σ).

The MLE of the data is the estimate of (h0, σ) that maximizes this probability value:

(h0, σ)MLE := arg max
h0,σ

P(h1, . . . , hn|h0, σ).

Note for algebraic reasons it is often easier to maximize the log likelihood log P(· · · ), although this
is obviously equivalent to the formulation above.

As an alternative to the MLE, however, the minimum Kantorovich estimator (MKE) [BBR06] uses
machinery from optimal transport. As the name suggests, the MKE estimates the parameters of a
distribution by minimizing the transport distance between the parameterized distribution and the
empirical distribution from data. For our height problem, the optimization might look like

(h0, σ)MKE := arg min
h0,σ
W2

2

(
1
n ∑

i
δhi , g(·|h0, σ)

)

The differences between MLE, MKE, and other alternatives can be subtle from the outside looking
in, and the MKE is only recently being studied in applied environments in comparison to more
conventional alternatives. Since it takes into account the distance measure of the geometric space
on which the samples are defined, the MKE appears to be robust to geometric noise that can
confound more traditional alternatives—at the price of increased computational expense.
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Figure 9: Optimal transport is used to design the shape of transparent or reflective material to
show a particular caustic pattern (image courtesy of EPFL Computer Graphics and Geometry
Laboratory and Rayform SA).

Domain adaptation. Many basic statistical and machine learning algorithms make a false as-
sumption that the “training” and “test” data are distributed equally. As an example where this
is not the case, suppose we wish to make an object recognition tool that learns how to label the
contents of a photograph. As training data, we use the listings on an e-commerce site like Ama-
zon.com, which contain not only a photographs of a given object but also text describing it. But,
while this training data is extremely clean, it is not representative of possible test data, e.g. gath-
ered by a robot navigating a shopping mall: Photographs collected by the latter likely contain
clutter, a variety of lighting configurations, and countless other confounding factors. Algorithms
designed to compensate for the difference between training and test data are known as domain
adaptation techniques.

[CFTR17] uses optimal transport to design a stable domain adaptation tool. The basic idea is to
view the training data as a point cloud in some Euclidean space Rd. For instance, perhaps d could
be the number of pixels in a photograph; the location of every point in the point cloud determines
the contents of the photo, and as additional information each point is labeled with a text name.
The test data is also a point cloud in Rd, but thanks to the confounding factors listed above perhaps
these two points clouds are not aligned. [CFTR17] proposes using optimal transport to align the
training data to the test data and to carry the label information along, e.g. attempting to align the
space of Amazon.com photos to the space of shopping mall photos. Once the training and test
data are aligned, it makes sense to transfer information, classifiers, and the like from one to the
other.

Engineering design. Optimal transport has found application in design tools for many engi-
neering tasks, from reflector design [Oli87, Wan96] to aerodynamics [Pla12]. One intriguing paper
uses optimal transport to design transparent objects made of materials like glass, which can focus
light into caustics via refraction [STTP14]. By minimizing the transport distance between the light
rays by the glass and a desired black-and-white image, they can “shape” the distribution of light
as it comes out of a window. An example caustic design computed using their method is shown
in Figure 9.

4 One Problem, Many Discretizations

Computational optimal transport is a relatively new discipline, and as such techniques for solving
the optimal transport problem and in particular computing Wasserstein distances are still a topic
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of active research. So far, it appears that no “one size fits all” approach has been discovered;
rather, different applications and scenarios demand different numerical techniques for optimal
transport.

Several desiderata inform the design of an algorithm for optimal transport:

• EFFICIENCY: While L1 distances and KL divergences are computable using closed-form for-
mulas, optimal transport distance computation requires solving an optimization problem.
The cost of solving this problem relative to the cost of direct computation of transport’s sim-
pler alternatives is largely the reason why optimal transport has not reached a higher level of
popularity in the applied world. But scenario is changing: New high-speed algorithms for
large-scale transport are nearly competitive with more traditional alternatives while bring-
ing to the table the geometric structure unique to transport world.

• STABILITY: A theme in the numerical analysis literature is stability, the resilience of a com-
putation to small changes in the input. Stability of the minimal transport objective value
and/or its accompanying transport map can be a challenging topic. Linear program dis-
cretizations of continuum optimal transport problems tend to resemble (9) above, a linear
program whose optimal solution T provably has the sparsity of a permutation matrix; this
implies that a small perturbation of v or w may result in a discrete change of T’s sparsity
structure.

• STRUCTURE PRESERVATION: Transport is well-studied theoretically, and one could reason-
ably expect that key properties of transport in the infinite-dimensional case are preserved
either exactly or approximately when they are computed numerically. For instance, Wasser-
stein distances enjoy a triangle inequality, and Eulerian formulations of transport have con-
nections to gradient flows and other PDE. Provable guarantees that these structures are pre-
served in discretizations of transport help assure that nothing critical is lost in the process of
approximating transport distances algorithmically.

One reason why there are so many varied algorithms available for numerical OT is that the prob-
lem can be written in so many different ways (see §2.4). A basic recipe for designing a transport al-
gorithm is to choose any one of many equivalent formulations of transport—all of which yield the
same optimal value in theory—, discretize any variables that are otherwise infinite-dimensional,
and design a bespoke optimization algorithm to solve the resulting problem, which now has a fi-
nite number of variables. The flexibility of choosing which version of transport to discretize usually
is tuned to the geometry of a given application, desired properties of the resulting discretization,
and ease of optimizing the discretized problem. The reality of choosing a discretization to facili-
tate ease of computation reflects a tried-and-true maxim of engineering: “If a problem is difficult
to solve, change the problem.”

In this section, we roughly outline a few discretizations and accompanying optimization algo-
rithms for numerical OT. Our goal is not to review all well-known techniques for computational
transport thoroughly but rather to highlight the breadth of possible approaches and to give a few
practical pointers for implementing state-of-the-art transport algorithms at home.

4.1 Regularized Transport

We will start by describing entropically-regularized transport, a technique that has piqued the inter-
est of the machine learning community after its introduction there in 2013 [Cut13]. This technique
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has an explicit trade-off between accuracy and computational efficiency and has shown particu-
larly strong promise in the regime where a rough estimate of transport is sufficient. This regime
aligns well with the demands of “big data” applications, in which individual data points are likely
to be noisy—so obtaining an extremely accurate transport value would be overkill computation-
ally.

Regularization is a key technique in optimization and inverse problems in which an objective
function is modified to encode additional assumptions and/or to make it easier to minimize. For
example, suppose we wish to solve the least-squares problem minx ‖Ax− b‖2

2 for some A ∈ Rm×n

and b ∈ Rm. When A is rank-deficient or if m < n, an entire affine space of x’s achieve the
minimal value. To get around this, we could apply Tikhonov regularization (also known as ridge
regression), in which we instead minimize ‖Ax− b‖2

2 + α‖x‖2
2 for some α > 0. As α→ 0 a solution

of the original least-squares problem is recovered, while for any α > 0 the regularized problem is
guaranteed to have a unique minimizer; as α→ ∞, we have x → 0, a predictable but uninteresting
value. From a high level, we can think of α as trading off between fidelity to the original problem
Ax ≈ b and ease of solution: For small α > 0 the problem is near-singular but close to the original
least-squares formulation, while larger α makes the problem easier to solve.

The variables in the basic formulation of transport are nonnegative probability values, which do
not appear to be amenable to standard least-squares style Tikhonov regularization. Instead, en-
tropic regularization uses a regularizer from information theory: the entropy of a probability dis-
tribution. Suppose a probability measure has distribution function ρ(x). The (differential) entropy
of ρ is defined as

H[ρ] := −
∫

ρ(x) log ρ(x) dx. (19)

This definition makes two assumptions that are needed to work with entropy, that a probability
measure admits a distribution and that it is nonzero everywhere—otherwise log ρ(x) is undefined.
H[ρ] is a concave function of ρ that roughly measures the “fuzziness” of a distribution. Low
entropy indicates that a distribution is sharply peaked about a few points, while high entropy
indicates that it is more uniformly distributed throughout space.

The basic approach in entropically-regularized transport is to add a small multiple of −H[π] to
regularize the transport plan π in the OT problem. We will start by discussing the discrete prob-
lem (9), which after entropic regularization can be written as follows:

OTα(v, w; C) :=


minT∈Rk1×k2 ∑ij Tijcij + α ∑ij Tij log Tij

s.t. ∑j Tij = vi ∀i ∈ {1, . . . , k1}
∑i Tij = wj ∀j ∈ {1, . . . , k2}.

(20)

We are able to drop the T ≥ 0 constraint because log Tij in the objective function prevents negative
T values.

The objective function from (20) can be refactored slightly:

∑
ij

Tijcij + α ∑
ij

Tij log Tij = α ∑
ij

Tij

(
cij

α
+ log Tij

)
= α ∑

ij
Tij log

Tij

e−cij/α
= αKL(T|Kα). (21)

Here, we define a kernel Kα via (Kα)ij := e−cij/α. KL denotes the Kullback–Leibler divergence,
a distance-like (but asymmetric) measure of the similarity between T and K from information
theory; the definition of Kα is singular when α = 0, indicating that the connection to KL is only
possible in the α > 0 regime.
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Rk1×k2

∑j Tij = vi

∑i Tij = wj

Kα

T∗

Rk1×k2

∑j Tij = vi

∑i Tij = wj

Kα

(a) Projection (b) Alternating projection

Figure 10: (a) Intuition for the optimization problem (20) as a projection of Kα onto the prescribed
row sum and column sum constraints with respect to KL divergence (21). (b) The Sinkhorn al-
gorithm projects back and forth onto one set of constraints and then the other, converging to the
transport matrix T∗.

Equation (21) gives an intuitive explanation for entropy-regularized transport illustrated in Fig-
ure 10(a). The matrix K does not satisfy the constraints of the regularized transport problem (20).
Thinking of KL roughly as a distance measure, our job is to find the closest projection (with respect
to KL) of K onto the set of T’s satisfying the constraints ∑j Tij = vi and ∑i Tij = wj. With this
picture in mind, Figure 10(b) illustrates the Sinkhorn algorithm for entropy-regularized transport
derived below, which alternates between projecting onto one of these sets and then the other.

Continuing in our derivation, we return to (20) to derive first-order optimality conditions. Since (20)
is an equality-constrained differentiable minimization problem, it can be solved using a standard
multi-variable calculus technique: the method of Lagrange multipliers. There are k1 + k2 con-
straints, so we need k1 + k2 Lagrange multipliers, which—following the derivation of (11)—we
store in vectors φ ∈ Rk1 and ψ ∈ Rk2 . The Lagrange multiplier function here is:

Λ(T; φ, ψ) := ∑
ij

Tijcij + α ∑
ij

Tij log Tij + ∑
i

φi

(
vi −∑

j
Tij

)
+ ∑

j
ψj

(
wj −∑

i
Tij

)
= 〈T, C〉+ α〈T, log T〉+ φ>(v− T1) + ψ>(w− T>1)

Here, 〈·, ·〉 indicates the element-wise inner product of matrices, the log is element-wise, and 1

indicates the vector of all ones. Taking the gradient with respect to T gives the following first-
order optimality condition:1

0 = ∇TΛ = C + α11> + α log T − φ1> − 1ψ>

=⇒ log T =
(φ− α1)1>

α
+

1ψ>

α
+ log Kα where Kα := exp[−C/α]

=⇒ T = diag[p]Kαdiag[q] where p := exp
[

φ− α1

α

]
and q := exp

[
ψ

α

]
.

Here, diag[v] indicates the diagonal matrix whose diagonal is v. The key result is the boxed equa-
tion, which gives a formula for the unknown transport matrix T in terms of two unknown vectors

1Readers uncomfortable with this sort of calculation are strongly encouraged to take a look at the useful “cheat
sheet” document [PP08].
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p and q derived by changing variables from the Lagrange multipliers φ and ψ. There are mul-
tiple choices of p and q in terms of φ and ψ that all give the same “diagonal rescaling” formula
including some that are more symmetric, but this detail is not important.

Next we plug the new relationship T = diag[p]Kαdiag[q] into the constraints of (20) to find

p⊗ (Kαq) = v
q⊗ (K>α p) = w.

(22)

Here, ⊗ denotes the elementwise (Hadamard) product of two vectors or matrices. These formulas
determine the unknown vector p in terms of q and vice-versa.

The formulas (22) directly suggest a state-of-the-art technique for entropy-regularized optimal
transport, known as the Sinkhorn algorithm. This extremely succinct algorithm successively up-
dates estimates of p and q. Iteration k is given by the update formulas (� denotes elementwise
division)

pk+1 ← v� (Kαqk)

qk+1 ← w� (K>α pk+1).

It can be implemented in fewer than ten lines of code! The basic approach is to update p in terms
of q using the first relationship, then q in terms of p using the second relationship, then p again,
and so on. Using essentially the geometric intuition provided in Figure 10(b) for this technique
and explored in-depth in [BCC∗15], one can prove that diag[p]Kαdiag[q] converges asymptotically
to the optimal T at a relatively efficient rate regardless of the initial guess.

Several advantages distinguish the Sinkhorn method from its peers in the numerical optimization
world. Most critically, beyond its ease of implementation, this algorithm is built from simple
linear algebra operations—matrix-vector multiplies and elementwise arithmetic—that parallelize
well and can be carried out extremely quickly on modern processing hardware. One modern
spin on Sinkhorn shows how to shave off even more calculations while preserving its favorable
convergence rate [AWR17].

Beyond inspiring a huge body of follow-on work in machine learning and computer vision, the
Sinkhorn rescaling algorithm provides a means to adapt optimal transport to discrete domains
suggested in [SDGP∗15]. So far, our description of the Sinkhorn method has been generic to any
cost matrix C. Adding geometric structure to the problem gives it a strong interpretation using
heat flow and suggests a faster way to carry out Sinkhorn iterations on discrete domains.

Suppose that the transport cost C is given by squared pairwise distances along a discretized piece
of geometry such as a triangulated surface, denoted Σ; this corresponds to computing a regu-
larized version of the 2-Wasserstein distance (10). The dual variables p and q can be thought
of as functions over Σ, discretized e.g. using one value per vertex. Then, the kernel Kα has ele-
ments

(Kα)ij = e−d(xi ,xj)
2/α,

where d(xi, xj) denotes the shortest-path (geodesic) distance along the domain from vertex i to
vertex j.

To start, if our domain is flat, or Euclidean, then (Kα)ij = e−‖xi−xj‖2
2/α for points {xi}i ⊆ Rn. Con-

sidered as a function of the xi’s, we recognize Kα up to scale as a Gaussian (or normal distribution,
or bell curve) in distance. Multiplication by Kα is then Gaussian convolution, an extremely simple
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operation that can be carried out algorithmically using methods like the Fast Fourier Transform
(FFT). In other words, rather than explicitly computing and storing the matrix Kα as an initial step
and computing matrix-vector products Kα p and Kαq (note Kα is symmetric in this case) in every
iteration of the Sinkhorn algorithm, in this case we can replace these products with convolutions
gσ ∗ p and gσ ∗ q, where ∗ denotes convolution and gσ is a Gaussian whose standard deviation is
determined by the regularizer α. This is completely equivalent to the Sinkhorn method that explic-
itly computes the matrix-vector product, while eliminating the need to store Kα and improving
algorithmic speed thanks to fast Gaussian convolution. Put more simply, in the Euclidean case
multiplication by Kα is more efficient than storing Kα since we can carry out the former implic-
itly.

When Σ is curved, we can use a mathematical sleight of hand modifying the entropic regularizer
slightly to improve computational properties while maintaining convergence to the true optimal
transport value as the regularizer goes to zero. We employ a well-known property of geodesic
distances introduced in theory in [Var67] and applied to computing distances on discrete domains
in [CWW13]. This property, known as Varadhan’s formula, states that geodesic distance d(x, y) be-
tween two points x, y on a manifold can be recovered from heat diffusion over a short time:

d(x, y)2 = lim
t→0

[−2t lnHt(x, y)].

Recall that the heat kernel Ht(x, y) determines diffusion between x, y ∈ Σ after time t. That is, if
ft satisfies the heat equation ∂t ft = ∆ ft, where ∆ denotes the Laplacian operator, then

ft(x) =
∫

Σ
f0(y)Ht(x, y) dy.

Connecting to the previous paragraph, the heat kernel in Euclidean space is exactly the Gaussian
function! Hence, if we replace the kernel Kα with the heat kernel Hα/2 in Sinkhorn’s method,
in the Euclidean case nothing has changed. In the curved case, we get a new approximation of
Wasserstein distances introduced as “convolutional Wasserstein distances.”

All that remains is to convince ourselves that we can compute matrix-vector productsHt · p when
Ht is the heat kernel of a discretized domain Σ that is not Euclidean. Thankfully, armed with
material from other chapters in this tutorial, this is quite straightforward in the context of discrete
differential geometry. In particular, the well-known cotangent approximation of the Laplacian ∆
can be combined with standard ordinary differential equation (ODE) solution techniques to carry
out heat diffusion in this case using sparse linear algebra. We refer the reader for [SDGP∗15] for
details of one implementation that uses DDG tools extensively.

4.2 Eulerian Algorithms

Entropically-regularized transport works with the Kantorovich formulation (7). This may be
one of the earliest and most intuitive definitions of optimal transport, but this in itself is not a
strong argument in favor of tackling this formulation numerically. As a point of contrast, we now
explore a completely different approximation of Wasserstein distances that can be useful in low-
dimensional settings, built from the Eulerian (fluid mechanics) formulation of the 2-Wasserstein
distance W2

2 (16). Historically, this method pre-dates the popularity of entropically-regularized
transport and has distinct advanges and disadvantages: It explicitly computes a time-varying
displacement interpolation of a density “explaining” the transport but in the process must solve
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a difficult boundary-value PDE problem. Beyond the original paper [BB00], we recommend the
excellent tutorial [Pey10] that steps through an implementation of this technique in practice.

We make a few more simplifications to the continuum formulation before discretizing it. We start
by making a quick observation: for any vector J ∈ Rn and ρ > 0 we have

‖J‖2
2

2ρ
=

{
supa∈R,b∈Rn aρ + b> J

s.t. a + ‖b‖2
2

2 ≤ 0.

Hence, we can write the optimization problem (17) with additional variables as

infJ,ρ supa,b

∫ 1
0

∫
Rn [a(x, t)ρ(x, t) + b(x, t)> J(x, t)] dA(x) dt

s.t. ρ(x, 0) ≡ ρ0(x) ∀x ∈ Rn

ρ(x, 1) ≡ ρ1(x) ∀x ∈ Rn

∂ρ(x,t)
∂t = −∇ · J(x, t) ∀x ∈ Rn, t ∈ (0, 1)

a(x, t) + ‖b(x,t)‖2
2

2 ≤ 0 ∀x ∈ Rn, t ∈ (0, 1).

Next, we introduce a dual potential function φ(x, t) similarly to the derivation of (12) to take care
of all but the last constraint:

infJ,ρ supa,b,φ

∫ 1
0

∫
Rn

[
a(x, t)ρ(x, t) + b(x, t)> J(x, t) + φ(x, t)

(
∂ρ(x,t)

∂t +∇ · J(x, t)
)]

dA(x) dt
+
∫

Rn [φ(x, 1)(ρ1(x)− ρ(x, 1))− φ(x, 0)(ρ0(x)− ρ(x, 0))] dA(x)
s.t. a(x, t) + ‖b(x,t)‖2

2
2 ≤ 0 ∀x ∈ Rn, t ∈ (0, 1).

(23)
Let’s simplify some terms in this expression. First, using integration by parts we have∫ 1

0
φ(x, t)

∂ρ(x, t)
∂t

dt = [ρ(x, 1)φ(x, 1)− ρ(x, 0)φ(x, 0)]−
∫ 1

0
ρ(x, t)

∂φ(x, t)
∂t

dt

We also can integrate by parts in x to show∫
Rn

φ(x, t)∇ · J(x, t) dA(x) = −
∫

Rn
J(x, t)>∇φ(x, t) dA(x).

Note this simplification works equally well if we replace Rn with the box [0, 1]n with periodic
boundary conditions. Incorporating these two integration by parts formulae into our objective
function yields a new one:∫

Rn

{∫ 1

0

(
ρ(x, t)

[
a(x, t)− ∂φ(x, t)

∂t

]
+ J(x, t)>[b(x, t)−∇φ(x, t)]

)
dt− φ(x, 0)ρ0(x) + φ(x, 1)ρ1(x))

}
dA(x)

We now make some notational simplifications. Define z := {ρ, J} and q := {a, b} with inner
product

〈z, q〉 :=
∫

Rn

∫ 1

0
(a(x, t)ρ(x, t) + b(x, t)> J(x, t)) dt dA(x).

Furthermore, define

F(q) :=

{
0 if a(x, t) + ‖b(x,t)‖2

2
2 ≤ 0 ∀x ∈ Rn, t ∈ (0, 1)

∞ otherwise.
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G(φ) :=
∫

Rn
(φ(x, 0)ρ0(x)− φ(x, 1)ρ1(x)) dA(x)

These functions are both convex. These functions, plus our simplifications and a sign change,
allow us to write (23) in a compact fashion as:

− sup
z

inf
q,φ

[F(q) + G(φ) + 〈z,∇x,tφ− q〉] , (24)

where ∇x,tφ := {∂φ/∂t,∇xφ}.

Blithely assuming strong duality, namely that we can swap the supremum and the infimum, we
arrive at an alternative interpretation of (24). In particular, we can view z as a Lagrange multiplier
corresponding to a constraint q = ∇x,tφ. From this perspective, we actually can find a saddle
point (max in z, minimum in (q, φ)) of the augmented Lagrangian Lr for any r ≥ 0:

Lr(φ, q, z) := F(q) + G(φ) + 〈z,∇x,tφ− q〉+ r
2
〈∇x,tφ− q,∇x,tφ− q〉.

The extra term here effectively adds zero to the objective function, assuming the constraint is
satisfied.

The algorithm proposed in [BB00] iteratively updates estimates (φ`, q`, z`) by cycling through the
following three steps:

φ`+1 ← arg min
φ

Lr(φ, q`, z`)

q`+1 ← arg min
q

Lr(φ
`+1, q, z`)

z`+1 ← z` + r(q`+1 −∇x,tφ
`+1).

The first two steps update some variables while holding the rest fixed to the best possible value.
The third step is gradient step for z. This cycling algorithm and equivalent formulations has many
names in the literature—including ADMM [BPC∗11], the Douglas–Rachford algorithm [DR56,
LM79], and the Uzawa algorithm [Uza68]—and is known to converge under weak assumptions.

The advantage of this algorithm is that the individual update formulae are straightforward. In
particular, the φ update is equivalent to solving a Laplace equation

∆x,tφ
`+1 = ∇x,t · (z` − rq`),

where ∆x,t is the Laplacian operator in time and space. The q update decouples over x and t,
amounting to projecting ∇x,tφ

`+1 + z`/r onto the constraints in the definition of F(q) with respect
to L2, a one-dimensional problem solvable analytically. And, the z update is already in closed-
form.

So far, we have described the Benamou–Brenier algorithm using continuum variables, but of
course at the end of the day we must discretize the problem for computational purposes. The
most straightforward discretization assumes ρ0 and ρ1 are supported in the unit square [0, 1]n,
which is broken up into a m×m× · · · ×m grid, and further discretizes the time variable t ∈ [0, 1]
into p steps. Then, all degrees of freedom (φ, q, z) can be put on the grid vertices and inter-
polated in between using multilinear basis functions; this leads to a finite element (FEM) dis-
cretization of the problem that can be approached using techniques discussed in earlier chapters.

24 Draft: 01/08/2018, 12:00 Noon



An alternative grid-based discretization and accompanying optimization algorithm is also given
in [PPO14].

The use of PDE language makes this dynamical formulation of transport seem attractive as po-
tentially compatible with machinery like discrete exterior calculus (DEC) [Hir03], which could
define a discrete notion of transport on simplicial complexes like triangle meshes that discretize
curved surfaces. This remains an open problem for challenging technical reasons.2 Principally,
discretizing the objective function ‖J‖2

2/ρ on a triangle mesh is tricky because scalar quantities like
ρ typically are discretized on vertices or faces while vectorial quantities like J are better suited for
edges. Evaluating ‖J‖2/ρ then requires averaging J or ρ so that the two end up on the same sim-
plices. If this problem is overcome, it still remains to prove a triangle inequality for discretizations
of the Wasserstein distance resulting from such an approach. Some recent papers with analogous
constructions on graphs [Maa11, SRGB16] suggest that such an approach may be possible.

While the Benamou–Brenier dynamical formulation of transport is the best known, it is worth not-
ing that the Beckmann problem (18) for the 1-Wasserstein distance W1 more readily admits dis-
cretization using the finite element method (FEM) while preserving a triangle inequality. Details
of such a formulation as well as an efficient optimization algorithm are provided in [SRGB14a].
The reason (18) is easier to discretize is that the time-varying aspect of transport is lost in this for-
mulation: All that is needed is a single vector J(x) per point x. What makes this problem easy to
discretize and optimize is its downfall application-wise: Interpolation with respect toW1 between
two densities µ0 and µ1 is given by the uninteresting solution µt = (1− t)µ0 + tµ1, which does
not displace mass but rather “teleports” it from the source to the target.

Another PDE-based approach to optimal transport is worth noting and has strong connections to
the theory of transport without connecting to fluid flow. Recall the Monge formulation of optimal
transport on Rn in equation (3), which seeks a map φ(x) that pushes forward one distribution
function ρ0(x) onto another ρ1(x). A famous result by Brenier [Bre91] shows that φ can be writ-
ten as the gradient of a convex potential Ψ(x): φ(x) = ∇Ψ(x). Using H to denote the Hessian
operator, this potential satisfies the Monge-Ampère PDE

det(HΨ(x))ρ1(∇Ψ(x)) = ρ0(x), (25)

a second-order nonlinear elliptic equation that is extremely challenging to solve in practice. A
few algorithms, e.g. [OP89, LR05, BFO10, FO11, BFO14], tackle this nonlinear system head-on,
discretizing the variables involved and solving for Ψ.

4.3 Semidiscrete Transport

Our final example from the computational transport world uses yet another formulation of the
transport problem. This time, our inspiration is the one-dimensional semidiscrete problem, whose
solution is motivated from the formulation in equation (6). Our exposition of this problem closely
follows the excellent tutorial [LS17].

In this setting, optimal transport is computed from a distribution whose mass is concentrated at a
finite set of isolated points to a distribution with a known but potentially smooth density function.
Recall that in the one-dimensional case, we learned that each point of mass in the source is mapped
to an interval in the target. That is, the domain of the target density is partitioned into contiguous

2Interested readers are encouraged to contact the author of this tutorial for preliminary results on this problem!
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cells whose mass is assigned to a single source point. We will find that the higher-dimensional
analog is spiritually identical: Each point of mass in the source density is assigned to a convex
region of space in the target. This observation will suggest algorithms constructed from ideas in
discrete geometry extending Voronoi diagrams and similar constructions.

As in (6), suppose we are computing the 2-Wasserstein distance from a discrete measure µ :=
∑k

i=1 aiδxi , whose mass is concentrated at points xi ∈ Rn with weights ai > 0, to an absolutely
continuous measure ν with distribution function ρ(x). The dual formulation of transport (12) in
this case can be written

supφ,ψ ∑k
i=1 aiφ(xi) +

∫
Rn ψ(y)ρ(y) dA(y)

s.t. φ(x) + ψ(y) ≤ c(x, y) ∀x, y ∈ Rn.

Notice the objective in this case “does not care” about values of φ(x) for x 6∈ {xi}k
i=1. Define

φi := φ(xi). By this observation, we can write a problem with only one continuum variable:

supφ,ψ ∑i aiφi +
∫

Rn ψ(y)ρ(y) dA(y)
s.t. φi + ψ(y) ≤ c(xi, y) ∀y ∈ Rn, i ∈ {1, . . . , k}.

In a slight abuse of notation, for the rest of this section we will think of φ as a vector φ ∈ Rk rather
than a function φ(x). Given the supremum, we might as well choose the largest ψ possible that
satisfies the constraints. Hence,

ψ(y) = inf
i∈{1,...,k}

[c(xi, y)− φi].

This leads to a final optimization problem in a finite set of variables φ1, . . . , φk:

W2
2 (µ, ν) = sup

φ∈Rk
∑

i
aiφi +

∫
Rn

ρ(y)
(

inf
i∈{1,...,k}

[c(xi, y)− φi]

)
dA(y)

= sup
φ∈Rk

∑
i

[
aiφi +

∫
Lagc

φ(xi)
ρ(y)[c(xi, y)− φi] dA(y)

]
(26)

Here, Lagc
φ(xi) indicates the Laguerre cell corresponding to xi:

Lagc
φ(xi) := {y ∈ Rn : c(xi, y)− φi ≤ c(xj, y)− φj ∀j 6= i}. (27)

The set of Laguerre cells yields the Laguerre diagram, a partition of Rn determined by the cost
function c and the vector φ; the φi’s effectively control the sizes of the Laguerre cells in the diagram.
When c(x, y) = ‖x− y‖2 is a distance function and φ = 0, the Laguerre diagram equals the well-
known Voronoi diagram of the xi’s that partitions Rn into loci of points Si corresponding to those
closer to xi than to the other xj’s [Aur91]. More importantly for the 2-Wasserstein distance, when
c(x, y) = 1/2‖x− y‖2

2, the Laguerre diagram is known as the power diagram, an object studied since
the early days of computational geometry [Aur87].

Since (26) comes from a straightforward simplification of the dual of the transport problem, it is
easy to see that it is concave in φ; a direct proof can be found in [AHA92]. This implies that a simple
gradient ascent procedure starting from any initial estimate of φ will reach a global optimum.
Define the objective function

F(φ) := ∑
i

[
aiφi +

∫
Lagc

φ(xi)
ρ(y)[c(xi, y)− φi] dA(y)

]
.
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The gradient can be computed using the partial derivative expression

∂F
∂φi

= ai −
∫

Lagc
φ(xi)

ρ(y) dA(y). (28)

Note this expression is predictable from the definition of F(φ); a similar formula exists for the sec-
ond derivatives of F. Setting the gradient (28) to zero formalizes an intuition for the optimization
problem (26), that it resizes the Laguerre cells by modifying the φi’s until the cell corresponding
to each xi contains mass ai:

ai =
∫

Lagc
φ(xi)

ρ(y) dA(y).

The main ingredient needed to compute the derivatives of F is an algorithm for integrating ρ
over Laguerre cells. Hence, gradient ascent and Newton’s method applied to optimizing for φ cy-
cle between updating the Laguerre diagram for the current φ estimate, recomputing the gradient
and/or Hessian, assembling these into a search direction, and updating the current estimate of
φ. For squared Euclidean costs, these algorithms are facilitated by fast algorithms for computing
power diagrams, e.g. [Bow81, Wat81]. While convergence of gradient descent with line search
follows directly from concavity, [KMT16] proves that under certain assumptions a damped ver-
sion of Newton’s algorithm—which employs the Hessian in addition to the gradient to accelerate
convergence—exhibits global convergence.

Example techniques following this template include [CGS10], which proposed an early technique
for 2D problems; [Mér11], for semi-discrete transport to piecewise-linear distribution functions in
2D supported on triangle meshes improved using a multiscale approximation; and [Lév15], which
proposes semi-discrete transport to distributions in 3D that are piecewise-linear on tetrahedral
meshes. [DGBOD12] provides an early example of a Newton solver for 2D semidiscrete transport
using power diagrams and additionally uses derivatives of transport in the support points xi and
weights ai for assorted approximation problems.

Beyond providing fast algorithms for transport in the semidiscrete case, this formulation is also
valuable for applications incorporating transport terms. [DGCSAD11] employs semidiscrete trans-
port to a collection of distributions concentrated on line segments to reconstruct line drawings
from point samples; [DCSA∗14] proposes a similar technique for reconstructing triangulated sur-
faces from point clouds in R3. [GMMD14] defines a version of semi-discrete transport intrinsic to
a triangulated surface, which can be used for tasks like parameterizing the set of per-vertex area
weights in terms of the values φi.

5 Beyond Transport

Beyond improving tools for solving the basic optimal transport problem, some of the most exciting
recent work in computational transport involves using transport as a single term in a larger model.
In a recent tutorial for the machine learning community, we termed this new trend “Wassersteiniza-
tion” [CS17]: using Wasserstein distances to improve geometric properties of variational models
in statistics, learning, applied geometry, and other disciplines. Further extending the scope of ap-
plied transport, variations of the basic problem have been proposed to apply OT to objects other
than probability distributions.
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While a complete survey of these creative new applications and extensions is far beyond the scope
of this tutorial, we highlight a few interesting pointers into the literature:

• UNBALANCED TRANSPORT: One limitation of the basic model for optimal transport is that it
is a distance between histograms or probability distributions, rather than a distance between
functions or vectors in Rn—which may not integrate to 1 or may contain negative values.
This leads to the problem of unbalanced transport, in which mass conservation and/or positiv-
ity must be relaxed. Models for this problem range from augmenting the transport problem
with a “trash can” that can add or remove mass from distributions [PW09] to extensions of
dynamical transport to this case [CPSV16]. Making transport work for functions rather than
distributions while preserving the triangle inequality and other basic properties is challeng-
ing both theoretically and from a numerical perspective.

• BARYCENTERS: The idea of displacement interpolation we motivated using (17) suggests
a generalization to more than two distributions, known as the Wasserstein barycenter prob-
lem [AC11]. Given k distributions µ1, . . . , µk, the Wasserstein barycenter µbarycenter is defined
as the minimizer of the following optimization problem

µbarycenter := arg min
µ

k

∑
i=1
W2

2 (µ, µi). (29)

The Wasserstein barycenter gives some notion of averaging a set of probability distributions,
motivated by the observation that the average 1

k ∑k
i=1 xi of a set of vectors xi ∈ Rn is the min-

imizer arg minx ∑i ‖x − xi‖2
2. Barycenter algorithms range from extensions of the Sinkhorn

algorithm [BCC∗15, SDGP∗15] to methods that perform gradient descent on µ by differenti-
ating the distanceW2 in its argument [CD14]. Other algorithms are inspired by a connection
to multi-marginal transport [Pas15], a generalization of optimal transport involving a distri-
bution over the product of more than two measures. The optimization problem (29) is also
one of the earliest examples of “Wassersteinization,” in the sense that it is an optimization
problem for an unknown distribution µ including Wasserstein distance terms, contrasting
somewhat from the optimization problems we considered in §4 in which the unknown is the
transport distance itself.

Further generalizing the barycenter problem leads to a notion of the Dirichlet energy of a
map from points in one space to distributions over another [Bre03, Lav17], with applications
in machine learning [SRGB14b] and shape matching [SGB13, MCSK∗17]. An intriguing re-
cent paper also proposes an inverse problem for barycentric coordinates seeking weights
for (29) that “explain” an input distribution as a transport barycenter of others [BPC16].

• QUADRATIC ASSIGNMENT: The basic optimization problem for transport has an objective
function that is linear in the unknown transport matrix, expressing a preference for trans-
port maps that do not move any single particle of probabilistic mass very far. This model,
however, does not necessarily extract smooth maps, wherein distance traveled by any single
particle is less important than making sure that nearby particles in the source are mapped
to nearby locations in the target. Such a smoothness term leads to a quadratic term in the
transport problem and allows it to be extended to a distance between metric-measure spaces
known as the Gromov–Wasserstein distance [Mém11, Mém14], inspired by the better-known
but more rigid Gromov–Hausdorff distance. From an optimization perspective, Gromov–
Wasserstein computation leads to a “quadratic assignment” problem, known in the most
general case to be NP-hard [SG76]; practical instances of the problem in shape matching,
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however, can be tackled using spectral [Mém09] or entropy-based approximations [SPKS16]
and have shown promise for applications in shape matching. [PCS16] proposes a method
for averaging metric spaces using a barycenter formulation similar to (29).

• CAPACITY-CONSTRAINED TRANSPORT: Yet another extension of the transport problem comes
from introducing capacity constraints limiting the amount of mass that can travel between as-
sorted pairs of source and target points; in the measure-theoretic formulation, this amounts
to constraining transport plan to be dominated by another input plan [KM15]. This con-
straint makes sense in many operations-type applications and has intriguing theoretical
properties, but design of algorithms and discretizations for capacity-constrained transport
remains largely open although [BB00] provides one approach again extending Sinkhorn’s
algorithm.

• GRADIENT FLOWS AND PDE: Given a function f : M → R defined over a geometric space
M like a manifold, a gradient flow of f starting at some x0 ∈ M attempts to minimize f via
a “gradient descent” from x(0) := x0 expressed as an ordinary differential equation (ODE)
x′(t) = −∇ f (x(t)). Since OT puts a geometry on the space of distributions Prob(Rn) over
Rn, we can define an analogous procedure that flows probability distributions to reduce cer-
tain functionals [JKO98, San17]. For instance, gradient flow on the entropy functional (19)
in the Wasserstein metric leads to the heat diffusion equation ∂ρ/∂t = −∆ρ, where ∆ is
the Laplacian operator; that is, performing gradient descent on entropy in the Wasserstein
metric is exactly the same as diffusing the initial probability distribution like an unevenly-
heated metal plate. Beyond giving a variational motivation for certain PDE, this mathe-
matical idea inspired numerical methods for solving PDE that can be written as gradient
flows [Pey15, BCL16]. Recent work has even incorporated transport into numerical meth-
ods for PDE that cannot easily be written as gradient flows in Wasserstein space, such as
those governing incompressible fluid flow [LHO10, Mir15, dGWH∗15, MM16]. Gradient
flow properties can also be leveraged as structure to be preserved in discrete models of trans-
port; for instance, [Maa11] proposes a model for dynamical optimal transport on a graph
and checks that the gradient flow of entropy—now an ODE rather than a PDE—agrees with
a discrete heat equation.

• MATRIX FIELDS AND VECTOR MEASURES: Vector measures generalize probability measures
by replacing scalar-valued probability values µ(S) ∈ [0, 1] with values in other cones C. For
instance, a tensor-valued measure µ assigns measurable sets S to d× d postive semidefinite
matrices µ(S) ∈ Sd

+ while satisfying analogous axioms to those laid out for probability mea-
sures in §2.1. These tensor fields find application in diffusion tensor imaging (DTI), which
measures diffusivity of molecules like water in the interior of the human brain as a proxy for
directionality of white matter fibers; OT extended to this setting can be used to align multi-
ple such images. A few recent models extend OT to this case and propose related numerical
methods [NGT15, CGT17, PCVS17].

6 Conclusion

The techniques covered in this tutorial are just a few of many ways to approach discrete opti-
mal transport. New algorithms are proposed every month, and there is considerable room for
mathematical, algorithmic, and application-oriented researchers to improve existing methods or
make their own for different types of data or geometry. Furthermore, mathematical properties
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such as convergence and approximation quality are still being established for new techniques.
Many questions also remain in linking to other branches of discrete differential geometry, e.g. at
the most fundamental level defining a purely discrete notion of optimal transport compatible with
polyhedral meshes or simplicial complexes without requiring regularization and while preserving
structure from the smooth case.

These challenges aside, discrete optimal transport is demonstrating that OT holds interest far be-
yond mathematical analysis. New discretizations and algorithms bring down OT’s complexity to
the point where it can be incorporated into practical engineering pipelines and into larger models
without incurring a huge computational expense. Further research into this new discipline holds
unique potential to improve both theory and practice and eventually to bring insight into other
branches of discrete and smooth geometry.
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