
inroads – The SIGCSE Bulletin 46 Volume 39, Number 2, 2007 June

Putting the Science into Computer Science: Treating Introductory
Computer Science as the Study of Algorithms

Justin Solomon
Computer Science Department

Stanford University
Stanford, California 94305 USA
Justin.Solomon@stanford.edu

Abstract
This paper describes why the study of algorithms should be a fundamental component of the standard
introductory computer science (CS) curriculum. By shifting the focus of basic CS classes from
implementation to concept, educators can greatly enhance student understanding and course relevance despite
rapidly-changing paradigms, technologies, and programming languages. Teaching algorithms also
encourages the development of other more generalized skills, including the scientific method,
problem-solving, modeling, and technical communication.

Keywords: CS I, algorithms, introductory computer science, programming, science

1. Introduction
Despite its title, the “Introductory Computer Science”
course taught in high schools and colleges nationwide is
losing focus. As the fundamental computer science (CS)
curriculum has evolved, emphasis has been placed on
achieving a breadth of miscellaneous skills and knowledge
necessary to succeed in computer engineering at the
expense of developing a mastery of concepts basic to
computer science, the most important of which are rooted
in the scientific method and the algorithmic thought
process. This approach has led to coursework
characterized by rote memorization and other repetitive
exercises designed to help students absorb the specific
aspects of a particular programming language or paradigm,
neglecting problem-solving skills or concepts fundamental
to understanding the “science” of computers. Absent this
focus, introductory CS courses miss an important
opportunity to reinforce generalized technological or
scientific literacy skills that would benefit students
regardless of career choice or new developments in
technology. One possible solution to these problems is to
redirect the CS curriculum and make the study of
algorithmic problem solving a fundamental component of
the standard introductory computer science course.

2. Situation
Students in introductory CS courses often are overwhelmed
by minute details that lack a unifying theme. Bogged down
in the specifics of a particular language or paradigm, they

fail to see the larger implications of each unit within the
computer science curriculum as a whole. Because many
courses have followed industry trends in choosing more
and more advanced languages for introductory instruction,
from BASIC to Pascal to C++ to Java, the details and
specifics of writing and compiling a simple program have
become more complicated than ever. With these new
languages also come newer and more complex
programming paradigms that students must learn in parallel
with basic skills. For instance, some CS textbooks
introduce Object-Oriented Programming (OOP) in the first
few chapters without motivation or a notion of simpler data
structures. Instruction covering these details of a
programming environment or language may be useful for
students entering the workforce immediately after taking an
introductory course. If they enter the field in a more
reasonable amount of time, however, the particular
paradigms or constructs they learned are likely to have
evolved while more basic skills remain the same.

This approach to computer science education has led to
increased disinterest in computer science as a career or
research field. In his 1996 study, Richard O’Lander of St.
John’s University found that the strongest factors affecting
students’ “apprehension about majoring in Computer
Science” were their perception of their computing ability
and enthusiasm towards computing [4]. Given that neither
of these criteria was directly related to the quality or
accessibility of computer science instruction available to
the students, one might predict that ten years later, as

Reviewed Papers

mailto:Justin.Solomon@stanford.edu

inroads – The SIGCSE Bulletin 47 Volume 39, Number 2, 2007 June

teaching methods for computer science were developed and
the technology became available to make instruction more
appealing, student interest and confidence might increase.
Yet, in a 2006 survey, students still had little idea of what a
computer science major entails. In fact, young men
looking toward computer science listed an interest in
developing games as their primary reason for their choice
of major, while young women desired to use their computer
skills in another field [2]. Neither of these reasons
expressed any understanding of the vast majority of careers
available in the computing field, nor did they reveal the
value of an introductory course in presenting the basic skill
set necessary for success in the area.

To understand both the breadth and depth of a field as
new as computer science, students must achieve an
understanding of the study of computers as a theoretical
and scientific endeavor. While computer engineering
certainly is a valuable career goal, it differs from computer
science in that CS explores wholly unsolved problems
while CE works within the context of an existing system
for solutions to specific needs. Thus, a skill fundamental to
computer science courses that may be overlooked in
engineering curricula is the study of algorithms, or
computational methods for solving problems. These
methods can be expressed independently of a particular
programming language, making them useful for a wide
variety of applications. A student who learns a
programming language or paradigm can survive until the
industry switches to another language or paradigm; a
student who has a thorough knowledge of the formation
and expression of algorithms has a usable skill throughout
shifts in specific technologies or languages.

As a fundamental component of an introductory CS
course, the study of algorithms encourages generalized
scientific skills to be used in any number of fields.
Whereas the particulars of most programming languages
can be counterintuitive, algorithms, like most other
scientific or mathematical processes, tend to be
straightforward (although not necessarily easy) to express
and analyze. This allows students to understand the
important distinction between concept and implementation,
one that often eludes first-year programmers. The
fundamental speed of a computer program lies not within
the particular sequence of commands outlined in a
program, but rather the algorithm it uses; a “Quick Sort”
will run faster that a “Bubble Sort” in sorting long lists of
numbers regardless of whether it was written in C++ or
Java or the fact that the Quick Sort takes more lines.

Forming a computer science class based on the study
of algorithms emphasizes the scientific and analytical
aspects of the field above the nitty-gritty details that can
obfuscate a greater meaning. Although it may take serious
adjustments to a programming curriculum, this change will
lead to greater student achievement and understanding and
perhaps to student retention in computer science.

3. Introducing Algorithms
Shifting focus from implementation to algorithms will take
a corresponding shift in curriculum structure. To this end,
perhaps the most fundamental skill in the study of
algorithms is the development of a link between the
intuitive and the formal. For instance, consider the “convex
hull” problem. This relatively simple geometric problem is
difficult to express formally but appeals to the intuitive
sense. Consider this standard description from Skiena’s
The Algorithm Design Manual [5]:

Input Description: A set S of n points in d-dimensional
space.
Problem description: Find the smallest convex
polygon containing all the points of S.

Clearly, this description would not be appealing to the
typical CS I student, who may or may not be able to
produce a concrete example of a convex hull given a set of
points graphed on a plane. In the intuitive sense, however,
the convex hull problem becomes clear, at least in two or
three dimensions: Given a set of nails protruding from a
board, what shape will be formed when a rubber band is
stretched around the entire figure? As an example,
consider the diagram of a convex hull, represented by a
black line around a set of green points in Figure 1.

This description may be less formal or rigorous than
that given by Skiena, but serves to communicate a concept
that may be difficult to understand otherwise. The sign of a
strong algorithms student is one who can communicate
problems and their solutions fluently in either mode, formal
or intuitive, and can translate between one and the other.1

This example also illuminates another key concept in
teaching algorithms: the modes of communication of

1
For those who are interested, one simple, albeit not optimally efficient,

solution of the convex hull problem is the Gift Wrapping algorithm, which
is described on any number of websites.

Figure 8: A convex hull

Reviewed Papers

inroads – The SIGCSE Bulletin 48 Volume 39, Number 2, 2007 June

problems and their solutions. Problems may be best
expressed using a mathematical formula, a verbal
description, a diagram, a tactile demonstration, or any
different mode. Knowing which to choose helps a student
become a better communicator within the computing
environment, which is typified in the professional world by
collaboration between developers who often are separated
by considerable physical distances.

Yet another skill gained from the study of algorithms
is modeling. Students may be presented with a situation in
need of automation or computerized assistance and asked
how they would contribute. By separating key information
and isolating a particular problem to solve, the student may
be able effectively to reduce a seemingly complex set of
relationships to a statement no more complicated than that
given above for the convex hull problem. The ability to
identify and suggest generalized solutions to particular
algorithmic problems can help students find underlying
simplicity in difficult problems or, as often happens in
computer science, reduce a new problem to one that
already has been solved. In fact, sometimes the process of
modeling itself can bring about interesting observations by
serendipity. For example, what started as a lousy model for
rabbit reproduction became one of the most studied
problems in mathematics: the Fibonacci sequence [6].

Once a problem has been expressed and modeled, the
scientific method becomes an invaluable tool for the
systematic examination of possible algorithmic solutions.
For almost any problem, there exists any number of viable
solutions; for this reason, the most intuitive or obvious
solution may not necessarily be the best. Consider three
possible methods for sorting numbers:

• The Random Juggle: repeatedly shuffle the list of
numbers, each time checking if they are in order – O(?)

• The Bubble Sort or Shell Sort: systematically compare
pairs of numbers selected from the list and swap them to
be in order relative to each other – O(n2)

• The Heap Sort: split the list of numbers into “piles” of
one number each; repeatedly merge these piles, each
time maintaining order, until all the numbers have
merged into one list – O(n log n)

Although each of these methods is indeed valid, they are
listed above in order of efficiency. A student wishing to
verify this fact could initiate a virtual experiment,
implementing each and measuring its speed in terms of
number swaps or time taken to sort a particular list. The
results of such an experiment also can be checked using
theoretical methods, such as the asymptotic runtime of each
algorithm (listed above). This efficient approach to
algorithm design is representative the scientific method,
which is valuable for any number of fields.

There is any number of other skills that can be gleaned
from the study of algorithms as part of a computer science
course. More importantly, however, note the following
observation:

None of the skills described above includes the
words “computer” or “program.”

Students who master the design and implementation of
algorithms have gained an important skill regardless of
their particular career or educational choices. Just as
former students of geometry may or not remember the
proof of the Pythagorean Theorem, an intuition for its
implications can lead to better navigation of maps or roads.
Students who learn an algorithmic approach to problem-
solving are able to take difficult challenges, list the
underlying problems they present, and systematically solve
each methodically. These skills will be valuable in the
workplace as long as the computer industry can stay in
business.

4. Moving On
For the advanced student who finds himself or herself
intrigued by the study of algorithms during or after taking
the introductory computer science course, there is a wide
variety of resources available to extend such an interest. At
the college level, a more formalized approach to algorithms
is often taught as a second-year course for computer
science majors. Although this presents itself as a natural
option for college students, high school students need not
put off their studies until after graduation. Ideally, an
introduction to algorithms could be taught as a post-APCS
course for underclassmen who have already taken and
passed the AP Computer Science exam. Such course can
be taught comprehensively with a relatively low level of
mathematical sophistication, making it approachable after
only high school level math. This upper-level course may
become a viable option for high schools in which students
are taking college-level introductory courses earlier and
earlier.

When there is not enough interest or teaching support
for an entire algorithms course, motivated students still
have several possible options to pursue. For instance, the
USA Computing Olympiad (www.usaco.org) offers
training pages for learning specific algorithms and
programming techniques as well as monthly contests
during the school year that range from basic to highly
advanced levels. Top scorers from the advanced contests
are invited an annual “Training Camp,” where a team is
selected to represent the United States in the International
Olympiad in Informatics (IOI). Other opportunities for
team or individual algorithm and computer science work
include the American Computer Science League
(www.acsl.org), the Internet Problem Solving Contest
(ipsc.ksp.sk), and the Continental Math League
(www.continentalmathleague.hostrack.com). Each of these
programs offers opportunities for individual achievement
or teamwork in designing algorithms or programs to solve a
given problem, usually in limited time. This type of study
will most likely be more worthwhile for students interested

Reviewed Papers

http://www.usaco.org
http://www.acsl.org
http://www.continentalmathleague.hostrack.com

inroads – The SIGCSE Bulletin 49 Volume 39, Number 2, 2007 June

in pursuing college majors in computer science than
learning new languages or studying for a computer
certification exam likely to expire or become obsolete by
the time the student enters the workplace.

Even if a student’s study of algorithms stops at the
introductory computer science level, he or she will have
gained a fundamental and highly practical set of
problem-solving skills applicable to any number of fields.
Engineers, lawyers, artists, and doctors certainly employ

systematic approaches to problem-solving on a daily basis.
The ability to identify algorithmic problems within a
complex environment and formulate solutions will prove
beneficial within the context of computer programming or
any other situation. Given appropriate curriculum
adjustments, this skill naturally could be taught within an
introductory computer science classroom, leading to both a
greater understanding of CS itself and valuable connections
with other fields of study.

References
[1] Baldwin, D. Using Scientific Experiments in Early Computer Science Laboratories. In Proceedings of the Twenty-Third SIGCSE

Technical Symposium on Computer Science Education (SIGCSE 1992) (Kansas City, Missouri, USA). ACM Press, New York, NY,
1992, 102-106.

[2] Carter, L. “Why Students with an Apparent Aptitude for Computer Science Don’t Choose to Major in Computer Science.” In
Proceedings of the 37th SIGCSE Technical Symposium on Computer Science Education (SIGCSE '06) (Houston, Texas, USA). ACM
Press, New York, NY, 2006, 27-31.

[3] Moorman, P. and E. Johnson. “Still a Stranger Here: Attitudes Among Secondary School Students Towards Computer Science.” In
Proceedings of the Eighth Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE 2003)
(Thessaloniki, Greece). ACM Press, New York, NY, 2003, 193-197.

 [4] O’Lander, R. “Factors Effecting High School Student’s Choice of Computer Science as a Major.” In Proceedings of the Symposium
on Computers and the Quality of Life (CQL 1996) (Philadelphia, Pennsylvania, USA). ACM Press, New York, NY, 1996, 25-31.

[5] Skiena, S. The Algorithm Design Manual. New York: Springer-Verlag, 1998.
[6] Winston, P. and B. Horn. Lisp. Reading: Addison-Wesley Publishing, 1989.

Check out the new website of

<www.csab.org>

Reviewed Papers

http://www.csab.org

