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In this document, I outline a few challenging algorithmic problems arising in my re-
search on optimal transportation. I have attempted to pose these problems in “dis-
crete” language. It easily could be the case that they admit straightforward solutions—
which is great news!—or that you can do little more than the obvious algorithm. Any
and all guidance from members of the theory community is welcome.

1 Earth Mover’s Distances

I will begin with a review of the earth mover’s distance (EMD) between discrete probability distribu-
tions. This distance is the basic tool for many techniques in vision, graphics, and learning; efficient
optimization of this distance wider and higher-dimensional applications of this machinery.

We will denote the n-dimensional probability simplex as Sn, defined as follows:

Sn ≡ {x ∈ [0, 1]n : 1>x = 1}.

Suppose we are given two distributions p, q ∈ Sn as well as a matrix of distances between bins
D ∈ (R+)n×n. Then, the earth mover’s distance between p and q is given by the optimal value of the
following linear program:

EMDD(p, q) ≡ minT∈Rn×n ∑ij DijTij
such that T1 = p

T>1 = q
T ≥ 0.

The matrix T is known as a transportation matrix and should be thought of as the amount of mass
moved from bin i of p to bin j of q. This problem is nothing more than an instance of bipartite match-
ing or multi-commodity flow. See [3] for the paper that coined the term “earth mover’s distance” and
for a proof that it satisfies the triangle inequality under certain conditions on D.

The theory of optimal transportation deals with a continuous analog of EMD for distributions p, q
on Rn or on a manifold. Of particular interest is the Wasserstein distanceWr, defined by taking D(x, y)
to be the r-th power of the geodesic distance between x and y; the r-th root of this quantity is a
distance for any r ≥ 1.

EMD can be computed in polynomial time using any of a number of well-known techniques.
To maximize efficiency of methods in this domain, however, we will ask questions of the following
flavor:

• If we know D is structured (e.g. contains pairwise Euclidean distances between points or shortest-
path distances on a graph), can we evaluate EMDD more efficiently?
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• How can EMD be incorporated into larger optimization problems?

• What conditions on D can help characterize the behavior of EMD?

Each of these questions leads to challenging algorithmic and mathematical problems whose resolu-
tion may have practical impact.

2 Graph EMD with Quadratic Ground Distance

Suppose we are given a (connected) graph G = (V, E) and take n = |V|. Then, we can think of
p, q ∈ Sn as distributions over the vertices of G.

If Dvw for v, w ∈ V is given by the shortest-path distance between v and w along G, then EMD
can be evaluated using an alternative linear program:

W1(p, q) =
minF∈R|E| ‖F‖1

such that pv −
[
∑(v→w)∈E Fv→w

]
+

[
∑(w→v)∈E Fw→v

]
= qv ∀v ∈ V.

We denote this distances asW1, since it is analogous to the 1-Wasserstein distance in the continuous
theory. This linear program puts one signed flow Fe on each directed edge e = (v → w) ∈ E.
The objective is the total amount of flow along the entire graph, and the constraints specify that F
transforms p into q. This alternative formulation is preferable for many applications because the
number of unknowns scales with |E| rather than with |V|2. This change can represent considerable
savings when the graph is sparse, that is, |E| � |V|2.

The theory of Wasserstein distances, however, is best understood when D contains ground dis-
tances squared. In our case, this would imply the form Dvw = d(v, w)2, if d(·, ·) represents shortest-
path distances along G. This new optimization problem is more likely to be strictly convex, ensuring
stronger uniqueness for the transportation matrix and related properties.

Squaring the ground distance, however, loses the simplified flow-based formulation discussed
above. This leads to our first question:

Can EMD with ground distance that is quadratic in graph distance be com-
puted in a way that scales like |E|?

It may be advisable to approach this problem first by assuming a particular form for G, e.g. star or
line graphs. Even these cases admit nontrivial structure.

3 Spectral/Hodge Approximation ofW1

Let us return to the case of computing EMD when D contains shortest-path distances (not squared)
on a graph. We can define a difference operator ∇ ∈ {−1, 0, 1}|E|×n as follows:

∇ev ≡


−1 when e = (v→ w)

1 when e = (w→ v)
0 otherwise.

This matrix allows us to simplify notation considerably:

W1(p, q) =
minF∈R|E| ‖F‖1
such that p− q = ∇>F.
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As a differential geometer, my intuition for ∇ is that it acts as a discrete gradient operator. That is,
if g ∈ Rn is a per-vertex “function,” then ∇g is its per-edge gradient. If this analogy carries through,
the transpose ∇>—or adjoint, in continuous language—can be thought of as a discrete divergence
operator acting on vector fields. Notice that unlike the case of vector fields on Rn, it is not clear what
the proper operator should be to measure curl on a graph.

In [5], we are able to approximate EMD on triangulated surfaces using a continuous version of
the divergence-based formulation explained in the previous paragraphs. Our approximation has the
favorable property of satisfying the triangle inequality even after aggressive approximation. It would
be interesting if we can carry out a similar trick on graphs.

To approximate EMD, we use the Hodge decomposition of a vector field. This decomposition shows
that any vector field on a surface can be written as a sum of three parts: a divergence-free part, a curl-
free part, and a harmonic part (for surfaces with holes). This decomposition plays a fundamental role
in the differential topology of smooth manifolds (search term: “De Rham cohomology”).

Returning to the discrete problem, using simple linear algebra arguments rather than differential
topology, we can always write F as:

F = ∇ f + G,

where f ∈ Rn, G ∈ R|E|, and ∇>G = 0. Then, we can simplify the constraint forW1 by substitution:

∇>F = ∇>(∇ f + G) = ∇>∇ f + 0 = ∆ f ,

where we have defined ∆ ∈ Rn×n to be the graph Laplacian ∆ ≡ ∇>∇.
Substituting this formula back changes our optimization somewhat:

W1(p, q) =
min f∈Rn,G∈R|E| ‖G +∇ f ‖1

such that p− q = ∆ f
∇>G = 0.

An interesting thing happens here: The matrix ∆ is invertible (up to constant shift), so we can com-
pute the unknown variable f using matrix (pseudo-)inverses as:

f = ∆+(p− q).

This linear solve can be carried out very efficiently using either direct sparse solvers or an iterative
method like conjugate gradients. Hence, we only need to optimize with respect to G.

This leads to our first question in this section:

Is the optimization with respect to G any easier than the original problem?

Beyond this point, the connection to continuous mathematics begins to degrade. On a manifold,
we can write G in a spectral basis for divergence-free vector fields. This basis consists of large cir-
culating vector fields (corresponding to low eigenvalues) followed by vector fields with smaller and
smaller eddies. Writing G in such a basis allows us to remove the constraint altogether and solve an
L1 optimization problem. The next question is:

Is there a spectral basis for curl-free edge vector fields G (satisfying∇>G = 0)?

4 Advective Models forW2

Now, we return to the case of quadratic ground distances.
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Suppose M is a manifold or subset of Rk. Then, given two probability distribution functions
ρ0, ρ1 ∈ Prob(M), there are two completely equivalent but contrasting ways to compute the quadratic
Wasserstein distance W2. The essentially mimics the linear programming formulation above. The
second, introduced by Benamou and Brenier in [1], is to use a PDE-based formulation:

W2(ρ0, ρ1) =

minρ(x,t),J(x,t)
1
2

∫ 1
0

∫
M
‖J(x,t)‖2

ρ(x,t) dx dt

such that ∂ρ
∂t = ∇ · J
ρ(·, 0) = ρ0
ρ(·, 1) = ρ1
ρ(·, t) ∈ Prob(M) ∀t ∈ [0, 1].

This convex optimization intuitively can be thought of as follows:

• ρ(x, t) is a probability distribution over M at each time t. At time t = 0, ρ = ρ0 and at time
t = 1, ρ = ρ1. It should be identified with mass.

• J(x, t) is a vector field on M that can change with time that advects ρ from ρ0 to ρ1 (the first
constraint). It should be thought of as the momentum of ρ as it moves along M.

• Over all the possible ways to advect from ρ0 to ρ1, we wish to choose the one that does so with
minimal work (momentum squared divided by mass—equivalent to “ 1

2 mv2”).

The original formulation in [1] uses slightly different variables by writing the problem above in terms
of mass ρ and velocity v ≡ J/ρ.

This formulation can be more easy to work with in a computational setting, because it scales
linearly instead of quadratically in M (but now we must subdivide time t ∈ [0, 1] as well!). It also
has led to important developments in the theory of optimal transportation. Hence, an interesting
research direction might be the following:

Does a similar advective distance exist for distributions over graph vertices?
Is it computable without approximation?

We provide a partial resolution in [4], which works backward from Benamou and Brenier’s formu-
lation to a transportation distance on Sn but in doing so introduces a continuous time variable that
must be discretized (and hence approximated) using numerical ODE.

5 Barycenters and Propagation Problems

Our final problems involve optimizations in which EMD is incorporated into a larger energy func-
tional. Suppose we are given a set of distributions p1, p2, . . . , pm ∈ Sn. Then, the barycenter problem
can be defined as:

minp∈Sn ∑k EMD(p, pk).

See [2] for a recent paper with a continuous optimization method for computing these barycenters.
Our paper [6] uses a similar optimization for a semi-supervised learning problem. Suppose

G = (V, E) is a graph with a given subset of vertices V0 ⊆ V. For each v ∈ V0, we are given a
probability vector (over some other space with a fixed ground distance matrix D) p0(v). Then, this
paper proposes the following optimization for filling in the missing distributions associated with
vertices in V\V0:

minp(v):V→Sn ∑(v,w)∈E EMDD(p(v), p(w))
such that p(v) = p0(v) ∀v ∈ V0

p(v) ∈ Sn ∀v ∈ V.
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Our paper focuses on properties of this optimization in a continuous context, in particular character-
izing the means, variances, and sparsities of the interpolated p’s.

These large-scale optimizations contain EMD as a subproblem and hence can scale very poorly!
For this reason, we simultaneously would like to understand the best optimization techniques as well
as what happens at the minima of the two energies above:

What is the fastest way to solve the barycenter and semi-supervised learning
problems above? Can the speed be improved if we know more about the
pairwise distance matrix D in the formula for EMD?

Is it possible to solve the barycenter problem in time proportional to |V|
rather than |E| or |V|2? For this question, I am concerned with scaling in the
“source” graph size rather than the number of bins n (which may not equal
either |V| or |E|).

Can the sparsity of the computed p’s be bounded by the sparsity of the
fixed pk’s (or p0(v)’s)?

The last problem is likely to require some conditions on the matrix D in the optimization for EMD.
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