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Abstract

Probability distributions and histograms are nat-

ural representations for product ratings, traffic

measurements, and other data considered in many

machine learning applications. Thus, this pa-

per introduces a technique for graph-based semi-

supervised learning of histograms, derived from

the theory of optimal transportation. Our method

has several properties making it suitable for this

application; in particular, its behavior can be char-

acterized by the moments and shapes of the his-

tograms at the labeled nodes. In addition, it can be

used for histograms on non-standard domains like

circles, revealing a strategy for manifold-valued

semi-supervised learning. We also extend this

technique to related problems such as smoothing

distributions on graph nodes.

1. Introduction

Graph-based semi-supervised learning is an effective ap-

proach for learning problems involving a limited amount

of labeled data (Singh et al., 2008). Methods in this class

typically propagate labels from a subset of nodes of a graph

to the rest of the nodes. Usually each node is associated

with a real number, but in many applications labels are more

naturally expressed as histograms or probability distribu-

tions. For instance, the traffic density at a given location

can be seen as a histogram over the 24-hour cycle; these

densities may be known only where a service has cameras

installed but need to be propagated to the entire map. Prod-

uct ratings, climatic measurements, and other data sources

exhibit similar structure.

While methods for numerical labels, such as Belkin &
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Niyogi (2001); Zhu et al. (2003); Belkin et al. (2006); Zhou

& Belkin (2011); Ji et al. (2012) (also see the survey by Zhu

(2008) and references therein), can be applied bin-by-bin to

propagate normalized frequency counts, this strategy does

not model interactions between histogram bins. As a result,

a fundamental aspect of this type of data is ignored, leading

to artifacts even when propagating Gaussian distributions.

Among first works directly addressing semi-supervised

learning of probability distributions is Subramanya &

Bilmes (2011), which propagates distributions represent-

ing class memberships. Their loss function, however, is

based on Kullback-Leibler divergence, which cannot cap-

ture interactions between histogram bins. Talukdar & Cram-

mer (2009) allow interactions between bins by essentially

modifying the underlying graph to its tensor product with a

prescribed bin interaction graph; this approach loses prob-

abilistic structure and tends to oversmooth. Similar issues

have been encountered in the mathematical literature (Mc-

Cann, 1997; Agueh & Carlier, 2011) and in vision/graphics

applications (Bonneel et al., 2011; Rabin et al., 2012) involv-

ing interpolating probability distributions. Their solutions

attempt to find weighted barycenters of distributions, which

is insufficient for propagating distributions along graphs.

The goal of our work is to provide an efficient and theoreti-

cally sound approach to graph-based semi-supervised learn-

ing of probability distributions. Our strategy uses the ma-

chinery of optimal transportation (Villani, 2003). Inspired

by (Solomon et al., 2013), we employ the two-Wasserstein

distance between distributions to construct a regularizer

measuring the “smoothness” of an assignment of a proba-

bility distribution to each graph node. The final assignment

is produced by optimizing this energy while fitting the his-

togram predictions at labeled nodes.

Our technique has many notable properties. As certainty in

the known distributions increases, it reduces to the method

of label propagation via harmonic functions (Zhu et al.,

2003). Also, the moments and other characteristics of the
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propagated distributions are well-characterized by those

of the labeled nodes at minima of our smoothness energy.

Our approach does not restrict the class of the distributions

provided at labeled nodes, allowing for bi-modality and

other non-Gaussian properties. Finally, we prove that under

an appropriate change of variables our objective can be

minimized using a fast linear solve.

Overview We first motivate the problem of propagating

distributions along graphs and show why naı̈ve techniques

are ineffective (§2). Given this setup, we develop the Wasser-

stein propagation technique (§3) and discuss its theoretical

properties (§3.1). We also show how it can be used to

smooth distribution-valued maps from graphs (§3.2) and

extend it to more general domains (§4). Finally, after provid-

ing algorithmic details (§5) we demonstrate our techniques

on both synthetic (§6.1) and real-world (§6.2) data.

2. Preliminaries and Motivation

2.1. Label Propagation on Graphs

We consider generalization of the problem of label prop-

agation on a graph G = (V,E). Suppose a label func-

tion f is known on a subset of vertices V0 ⊆ V , and we

wish to extend f to the remainder V \V0. The classical

approach of Zhu et al. (2003) minimizes the Dirichlet en-

ergy ED[f ] :=
∑

(v,w)∈E ωe(fv − fw)
2 over the space of

functions taking the prescribed values on V0. Here ωe is

the weight associated to the edge e = (v, w). ED is a

measure of smoothness; therefore the minimizer matches

the prescribed labels with minimal variation in between.

Minimizing this quadratic objective is equivalent to solv-

ing ∆f = 0 on V \V0 for an appropriate positive definite

Laplacian matrix ∆ (Chung & Yau, 2000). Solutions of this

system are well-known to enjoy many regularity properties,

making it a sound choice for smooth label propagation.

2.2. Propagating Probability Distributions

Suppose, however, that each vertex in V0 is decorated with

a probability distribution rather than a real number. That

is, for each v ∈ V0, we are given a probability distribution

ρv ∈ Prob(R). Our goal now is to propagate these distri-

butions to the remaining vertices, generating a distribution-

valued map ρ : v ∈ V 7→ ρv ∈ Prob(R) associating a

probability distribution with every vertex v ∈ V . It must

satisfy ρv(x) ≥ 0 for all x ∈ R and
´

R
ρv(x) dx = 1.

In §4 we consider the generalized case ρ : V → Prob(Γ)
for alternative domains Γ including subsets of Rn; most of

the statements we prove about maps into Prob(R) extend

naturally to this setting with suitable technical adjustments.

In the applications we consider, such a propagation process

should satisfy a number of properties:

Figure 1. Propagating prescribed probability distributions (in red)

to interior nodes of path graph identified with the interval [0, 1]:
(a) naive approach; (b) statistical approach; (c) desirable output.

• The spread of the propagated distributions should be

related to the spread of the prescribed distributions.

• As the prescribed distributions in V0 become peaked

(concentrated around the mean), the propagated dis-

tributions should become peaked around the values

obtained by propagating means of prescribed distribu-

tions via label propagation (e.g. Zhu et al. (2003)).

• The computational complexity of distribution propaga-

tion should be similar to that of scalar propagation.

The simplest method for propagating probability distribu-

tions is to extend Zhu et al. (2003) naı̈vely. For each x ∈ R,

we can view ρv(x) as a label at v ∈ V and solve the Dirich-

let problem ∆ρv(x) = 0 with ρv0
(x) prescribed for all

v ∈ V0. The resulting functions ρv(x) are distributions be-

cause the maximum principle guarantees ρv(x) ≥ 0 for all

x and
´

R
ρv(x) dx = 1 for all v ∈ V since these properties

hold at the boundary (Chung et al., 2007).

It is easy to see, however, that this method has short-

comings. For instance, consider the case where G is

a path graph representing the segment [0, 1] and the la-

beled vertices are the endpoints, V0 = {0, 1}. In this

case, the naı̈ve approach results in the linear interpolation

ρt(x) := (1 − t)ρ0(x) + tρ1(x) at all intermediate graph

vertices for t ∈ (0, 1). The propagated distributions are

thus bimodal as in Figure 1a. Given our criteria, however,

we would prefer an interpolation result closer to Figure 1c,

which causes the peak in the boundary data simply to slide

from left to right without introducing variance as t changes.

An alternative strategy for propagating probability distribu-

tions over V given boundary data on V0 is to use a statistical

approach. We could repeatedly draw an independent sam-

ple from each distribution in {ρv : v ∈ V0} and propagate

the resulting scalars using a classical approach; binning the

results of these repeated experiments provides a histogram-

style distribution at each vertex in V . This strategy has

a similar shortcomings to the naı̈ve approach above. For

instance, in the path graph example, the interpolated distri-

bution is trimodal as in Figure 1b, with nonzero probability

at both endpoints and for some v in the interior of V .
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Of course, the desiderata above are application-specific.

One key assumption is that the spread of the distributions

is preserved, which differs from existing approaches which

tend to blur the distributions. While this property is not

intrinsically superior, in a way the experiments in §6 validate

not only the algorithmic effectiveness of our technique but

also this assumption about probabilistic data on graphs.

3. Wasserstein Propagation

Ad hoc methods for propagating distributions based on meth-

ods for scalar functions tend to have a number of drawbacks.

Therefore, we tackle this problem using a technique de-

signed explicitly for the probabilistic setting. To this end,

we formulate the semi-supervised problem at hand as the

optimization of a Dirichlet energy for distribution-valued

maps generalizing the classical Dirichlet energy.

Similar to the construction in (Subramanya & Bilmes, 2011),

we replace the square distance between scalar function val-

ues appearing in the classical Dirichlet energy (namely the

quantity |fv − fw|
2) with an appropriate distance between

the distributions ρv and ρw. Rather than using the bin-by-bin

KL divergence, however, we use the Wasserstein distance

with quadratic cost between probability distributions with

finite second moment on R. This distance is defined as

W2(ρv, ρw) := inf
π∈Π(ρv,ρw)

(
¨

R2

|x− y|2 dπ(x, y)

)

1/2

where Π(ρ0, ρ1) ⊆ Prob(R2) is the set of probability distri-

butions π on R
2 satisfying the marginal constraints

ˆ 1

0

π(x, y) dx = ρw(y) and

ˆ 1

0

π(x, y) dy = ρv(x) .

The Wasserstein distance is a well-known distance metric

for probability distributions, sometimes called the quadratic

Earth Mover’s Distance, and is studied in the field of optimal

transportation. It measures the optimal cost of transporting

one distribution to another, given that the cost of transporting

a unit amount of mass from x to y is |x− y|2. W2(ρv, ρw)
takes into account not only the values of ρv and ρw but

also the ground distance in the sample space R. It already

has shown promise for search and clustering techniques (Ir-

pino et al., 2011; Applegate et al., 2011) and interpolation

problems in graphics and vision (Bonneel et al., 2011).

With these ideas in place, we define a Dirichlet energy for a

distribution-valued map from a graph into Prob(R) by

ED[ρ] :=
∑

(v,w)∈E

W2
2 (ρv, ρw) , (1)

along with the notion of Wasserstein propagation of

distribution-valued maps given prescribed boundary data.

WASSERSTEIN PROPAGATION

Minimize ED[ρ] in the space of distribution-valued

maps with prescribed distributions at all v ∈ V0.

3.1. Theoretical Properties

Solutions of the Wasserstein propagation problem satisfy

many desirable properties that we will establish below. Be-

fore proceeding, however, we recall a fact about the Wasser-

stein distance. Let ρ ∈ Prob(R) be a probability distribution.

Then its cumulative distribution function (CDF) is given by

F (x) :=
´ x

−∞
ρ(y) dy, and the generalized inverse of the

its CDF is given by F−1(s) := inf{x ∈ R : F (x) > s}.

Then the following result holds.

Proposition 1. [Villani (2003), Theorem 2.18] Let ρ0, ρ1 ∈
Prob(R) with CDFs F0, F1. Then

W2
2 (ρ0, ρ1) =

ˆ 1

0

(F−1
1 (s)− F−1

0 (s))2 ds . (2)

By applying (2) to the minimization problem (1), we obtain

a linear strategy for our propagation problem.

Proposition 2. Wasserstein propagation can be character-

ized in the following way. For each v ∈ V0 let Fv be the

CDF of the distribution ρv. Now suppose that for each

s ∈ [0, 1] we determine gs : V → R as the solution of the

classical Dirichlet problem

∆gs = 0 ∀ v ∈ V \ V0

gs(v) = F−1
v (s) ∀ v ∈ V0 .

(3)

Then for each v, the function s 7→ gs(v) is the inverse CDF

of a probability distribution ρv . Moreover, the distribution-

valued map v 7→ ρv minimizes the Dirichet energy (1).

Proof. Let X be the set of functions g : V × [0, 1] → R

satisfying the constraints gs(v) = F−1
v (s) for all s ∈ [0, 1]

and all v ∈ V0. Consider the minimization problem

min
g∈X

ÊD(g) :=
∑

(u,v)∈E

ˆ 1

0

(gs(u)− gs(v))
2 ds .

The solution of this optimization for each s is exactly a solu-

tion of the classical Dirichlet problem (3) on G. Moreover,

the maximum principle implies that gs(v) ≤ gs′(v) when-

ever s < s′, which holds by definition for all v ∈ V0, can be

extended to all v ∈ V (Chung et al., 2007). Hence gs(v) can

be interpreted as an inverse CDF for each v ∈ V form which

we can define a distribution-valued map ρ : v 7→ ρv. Since

ÊD takes on its minimum value in the subset of X consisting

of inverse CDFs, and ÊD coincides with ED on this set, ρ is

a solution of the Wasserstein propagation problem.
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Distribution-valued maps ρ : V → Prob(R) propagated by

optimizing (1) satisfy many analogs of functions extended

using the classical Dirichlet problem. Two results of this

kind concern the mean m(v) and the variance σ(v) of the

distributions ρv as functions of V . These are defined as

m(v) :=

ˆ ∞

−∞

xρv(x) dx

σ2(v) :=

ˆ ∞

−∞

(x−m(v))2ρv(x) dx .

Proposition 3. Suppose the distribution-valued map ρ :
V → Prob(R) is obtained using Wasserstein propagation.

Then for all v ∈ V the following estimates hold.

• infv0∈V0
m(v0) ≤ m(v) ≤ supv0∈V0

m(v0).

• 0 ≤ σ(v) ≤ supv0∈V0
σ(v0).

Proof. Both estimates can be derived from the following

formula. Let ρ ∈ Prob(R) and let φ : R → R be any

integrable function. If we apply the change of variables

s = F (x) where F is the CDF of ρ in the integral defining

the expectation value of φ with respect to ρ, we get

ˆ ∞

−∞

φ(x)ρ(x) dx =

ˆ 1

0

φ(F−1(s)) ds .

Thus m(v) =
´ 1

0
F−1
v (s) ds and σ2(v) =

´ 1

0
(F−1

v (s) −
m(v))2 ds where Fv is the CDF of ρv for each v ∈ V .

Assume ρ minimizes (1) with fixed boundary constraints

on V0. By Proposition 2, we then have ∆F−1
v = 0 for all

v ∈ V . Therefore ∆m(v) =
´ 1

0
∆F−1

v (s) ds = 0, so m is

a harmonic function on V . The estimates for m follow by

the maximum principle for harmonic functions. Also,

∆[σ2(v)] =

ˆ 1

0

∆(F−1
v (s)−m(v))2 ds

=
∑

(v,v′)∈E

ˆ 1

0

(

a(v, s)− a(v′, s)
)2

ds

≥ 0 — where a(v, s) := F−1
v (s)−m(v),

since ∆F−1
v (s) = ∆m(v) = 0. Thus σ2 is a subharmonic

function and the upper bound for σ2 follows by the maxi-

mum principle for subharmonic functions.

Finally, we check that if we encode a classical interpola-

tion problem using Dirac delta distributions, we recover

the classical solution. The essence of this result is that

if the boundary data for Wasserstein propagation has zero

variance, then the solution must also have zero variance.

Proposition 4. Suppose that there exists u : V0 → R such

that ρv(x) = δ(x−u(v)) for all v ∈ V0. Then, the solutions

of the classical Dirichlet problem and the Wasserstein prop-

agation problem coincide in the following way. Suppose that

f : V → R satisfies the classical Dirichlet problem with

boundary data u. Then ρv(x) := δ(x−f(v)) minimizes (1)

subject to the fixed boundary constraints.

Proof. The boundary data for ρ given here yields the bound-

ary data gs(v) = u(v) for all v ∈ V0 and s ∈ [0, 1) in

the Dirichlet problem (3). The solution of this Dirichlet

problem is thus also constant in s, let us say gs(v) = f(v)
for all s ∈ [0, 1) and v ∈ V . The only distributions whose

inverse CDFs are of this form are δ-distributions; hence

ρv(x) = δ(x− f(v)) as desired.

3.2. Application to Smoothing

Using the connection to the classical Dirichlet problem in

Proposition 2 we can extend our treatment to other dif-

ferential equations. There is a large space of differential

equations that have been adapted to graphs via the discrete

Laplacian ∆; here we focus on the heat equation, considered

e.g. in Chung et al. (2007).

The heat equation for scalar functions is applied to smooth-

ing problems; for example, in R
n solving the heat equation

is equivalent to Gaussian convolution. Just as the Dirichlet

equation on F−1 is equivalent to Wasserstein propagation,

heat diffusion on F−1 is equivalent to gradient flows of

the energy ED in (1), providing a straightforward way to

understand and implement such a diffusive process.

Proposition 5. Let ρ : V → Prob(R) be a distribution-

valued map and let Fv : [0, 1] → R be the CDF of ρv for

each v ∈ V . Then these two procedures are equivalent:

• Mass-preserving flow of ρ in the direction of steepest

descent of the Dirichlet energy.

• Heat flow of the inverse CDFs.

Proof. A mass-preserving flow of ρ is a family of

distribution-valued maps ρε : V → Prob(R) with ε ∈
(−ε0, ε0) that satisfies the equations

∂ρv,ε(t)

∂ε
+

∂

∂t

(

Yv(ε, t)ρv,ε(t)
)

= 0

ρv,0(t) = ρv(t)







∀ v ∈ V

where Yv : (−ε0, ε0) × R → R is an arbitrary function

that governs the flow. By applying the change of variables

t = F−1
v,ε (s) using the inverse CDFs of the ρv,ε, we find that

this flow is equivalent to the equations

∂F−1
v,ε (s)

∂ε
= Yv(ε, F

−1
v,ε (s))

F−1
v,0 (s) = F−1

v (s)







∀ v ∈ V .
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A short calculation starting from (1) now leads to the deriva-

tive of the Dirichlet energy under such a flow, namely

dED(ρε)

dε
= −2

∑

v∈V

ˆ 1

0

∆(F−1
v,ε ) · Yv(ε, F

−1
v,ε (s)) ds .

Thus, steepest descent for the Dirichlet energy is achieved

by choosing Yv(ε, F
−1
v,ε (s)) := ∆(Fv,ε(s)) for each v, ε, s.

As a result, the equation for the evolution of F−1
v,ε becomes

∂F−1
v,ε (s)

∂ε
= ∆(F−1

v,ε (s))

F−1
v,0 (s) = F−1

v (s)







∀ v ∈ V

which is exactly heat flow of F−1
v,ε .

4. Generalization

Our preceding discussion involves distribution-valued maps

into Prob(R), but in a more general setting we might wish

to replace Prob(R) with Prob(Γ) for an alternative domain

Γ carrying a distance metric d. Our original formulation

of Wasserstein propagation easily handles such an exten-

sion by replacing |x− y|2 with d(x, y)2 in the definition of

W2. Furthermore, although proofs in this case are consider-

ably more involved, some key properties proved above for

Prob(R) extend naturally.

In this case, we no longer can rely on the computational

benefits of Propositions 2 and 5 but can solve the propaga-

tion problem directly. If Γ is discrete, then Wasserstein dis-

tances between ρv’s can be computed using a linear program.

Suppose we represent two histograms as {a1, . . . , am} and

{b1, . . . , bm} with ai, bi ≥ 0 ∀i and
∑

i ai =
∑

i bi = 1.

Then, the definition of W2 yields the optimization:

W2
2 ({ai}, {bj}) = min

∑

ij

d2ijxij (4)

s.t.
∑

j

xij = ai ∀i
∑

i

xij = bj ∀j xij ≥ 0 ∀i, j

Here dij is the distance from bin i to bin j, which need not

be proportional to |i− j|.

From this viewpoint, the energy ED from (1) remains convex

in ρ and can be optimized using a linear program simply by

summing terms of the form (4) above:

min
ρ,x

∑

e∈E

∑

ij

d2ijx
(e)
ij

s.t.
∑

j

x
(e)
ij = ρvi ∀e = (v, w) ∈ E, i ∈ S

∑

i

x
(e)
ij = ρwj ∀e = (v, w) ∈ E, j ∈ S

∑

i

ρvi = 1∀v ∈ V ρvi fixed ∀v ∈ V0

ρvi ≥ 0 ∀v ∈ V, i ∈ S xij ≥ 0 ∀i, j ∈ S

where S = {1, . . . ,m}.

5. Algorithm Details

We handle the general case from §4 by optimizing the linear

programming formulation directly. Given the size of these

linear programs, we use large-scale barrier method solvers.

The characterizations in Propositions 2 and 5, however, sug-

gest a straightforward discretization and accompanying set

of optimization algorithms in the linear case. In fact, we

can recover propagated distributions by inverting the graph

Laplacian ∆ via a sparse linear solve, leading to near-real-

time results for moderately-sized graphs G.

For a given graph G = (V,E) and subset V0 ⊆ V , we

discretize the domain [0, 1] of F−1
v for each v using a set

of evenly-spaced samples s0 = 0, s1, . . . , sm = 1. This

representation supports any ρv provided it is possible to

sample the inverse CDF from Proposition 1 at each si. In

particular, when the underlying distributions are histograms,

we model ρv using δ functions at evenly-spaced bin cen-

ters, which have piecewise constant CDFs; we model con-

tinuous ρv using piecewise linear interpolation. Regard-

less, in the end we obtain a non-decreasing set of samples

(F−1)1v, . . . , (F
−1)mv with (F−1)1v = 0 and (F−1)mv = 1.

Now that we have sampled F−1
v for each v ∈ V0, we can

propagate to the remainder V \V0. For each i ∈ {1, . . . ,m},

we solve the system from (3):

∆g = 0 ∀ v ∈ V \ V0

g(v) = (F−1)iv ∀ v ∈ V0 .
(5)

In the diffusion case, we replace this system with implicit

time stepping for the heat equation, iteratively applying

(I − t∆)−1 to g for diffusion time step t. In either case, the

linear solve is sparse, symmetric, and positive definite; we

apply Cholesky factorization to solve the systems directly.

This process propagates F−1 to the entire graph, yielding

samples (F−1)iv for all v ∈ V . We invert once again to

yield samples ρiv for all v ∈ V . Of course, each inversion

incurs some potential for sampling and discretization error,

but in practice we are able to oversample sufficiently to

overcome most potential issues. When the inputs ρv are

discrete histograms, we return to this discrete representation

by integrating the resulting ρv ∈ Prob([0, 1]) over the width

of the bin about the center defined above.

This algorithm is efficient even on large graphs and is easily

parallelizable. For instance, the initial sampling steps for

obtaining F−1 from ρ are parallelizable over v ∈ V0, and

the linear solve (5) can be parallelized over samples i. Direct

solvers can be replaced with iterative solvers for particularly
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Figure 2. Comparison of propagation strategies on a linear graph

(coarse version on left); each horizontal slice represents a vertex

v ∈ V , and the colors from left to right in a slice show ρv . (Sub-

ramanya & Bilmes, 2011) (KL) is shown only in one example

because it has qualitatively similar behavior to the PDF strategy.

large graphs G; regardless, the structure of such a solve is

well-understood and studied, e.g. in Krishnan et al. (2013).

6. Experiments

We run our scheme through a number of tests demonstrating

its strengths and weaknesses compared to other potential

methods for propagation. We compare Wasserstein propaga-

tion with the strategy of propagating probability distribution

functions (PDFs) directly, as described in §2.2.

6.1. Synthetic Tests

We begin by considering the behavior of our technique on

synthetic data designed to illustrate its various properties.

One-Dimensional Examples Figure 2 shows “displace-

ment interpolation” properties inherited by our propagation

technique from the theory of optimal transportation. The

underlying graph is a line as in Figure 1, along the vertical

axis. Horizontally, each image is colored by values in ρv .

The bottom and top vertices v0 and v1 have fixed distribu-

tions ρv0
and ρv1

, and the remaining vertices receive ρv
via one of two propagation techniques. The left of each

pair propagates distributions by solving a classical Dirichlet

problem independently for each bin of the probability dis-

tribution function (PDF) ρv, whereas the right of each pair

propagates inverse CDFs using our method in §5.

By examining the propagation behavior from the bottom to

the top of this figure, it is easy to see how the naı̈ve PDF

method varies from Wasserstein propagation. For instance,

in the leftmost example both ρv0
and ρv1 are unimodal, yet

when propagating PDFs all the intermediate vertices have

bimodal distributions; furthermore, no relationship is deter-

mined between the two peaks. Contrastingly, our technique

identifies the modes of ρv0
and ρv1 , linearly moving the

peak from one side to the other.

Boundary Value Problems Figure 3 illustrates our algo-

rithm on a less trivial graph G. To mimic a typical test case

for classical Dirichlet problems, our graph is a mesh of the

(a)

(b) (c)

Figure 3. PDF (b) and Wasserstein (c) propagation on a meshed

circle with prescribed boundary distributions (a). The underlying

graph is shown in grey, and probability distributions at vertices

v ∈ V are shown as vertical bars colored by the density ρv; we

invert the color scheme of Figures 2 and 4 to improve contrast.

Propagated distributions in (b) and (c) are computed for all vertices

but for clarity are shown at representative slices of the circle.

(a) (b)

Figure 4. Comparison of PDF diffusion (a) and Wasserstein dif-

fusion (b); in both cases the leftmost distribution comprises the

initial conditions, and several time steps of diffusion are shown

left-to-right. The underlying graph G is the circle on the left.

unit circle, and we propagate ρv from fixed distributions

on the boundary. Unlike the classical case, however, our

prescribed boundary distributions ρv are multimodal. Once

again, Wasserstein propagation recovers a smoothly-varying

set of distributions whose peaks behave like solutions to

the classical Dirichlet problem. Propagating probability di-

rections rather than inverse CDFs yields somewhat similar

modes, but with much higher entropy and variance espe-

cially at the center of the circle.

Diffusion Figure 4 illustrates the behavior of Wasserstein

diffusion compared with simply diffusing distribution val-

ues directly. When PDF values are diffused directly, as time

t increases the distributions simply become more and more

smooth until they are uniform not only along G but also as

distributions on Prob([0, 1]). Contrastingly, Wasserstein dif-

fusion preserves the uncertainty from the initial distributions

but does not increase it as time progresses.

Alternative Target Domain Figure 5 shows an example

in which the target is Prob(S1), where S
1 is the unit cir-

cle, rather than Prob([0, 1]). We optimize the ED using the
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(a) (b)

Figure 5. Interpolation of distributions on S
1 via (a) PDF propaga-

tion and (b) Wasserstein propagation; in these figures the vertices

with valence 1 have prescribed distributions ρv and the remaining

vertices have distributions from propagation.

linear program in §4 rather than the linear algorithm for

Prob([0, 1]). Conclusions from this example are similar

to those from Figure 3: Wasserstein propagation identifies

peaks from different prescribed boundary distributions with-

out introducing variance, while PDF propagation exhibits

much higher variance in the interpolated distributions and

does not “move” peaks from one location to another.

6.2. Real-World Data

We now evaluate our techniques on real-world input. To

evaluate the quality of our approach relative to ground truth,

we will use the one-Wasserstein distance, or Earth Mover’s

Distance (Rubner et al., 2000), formulated by removing the

square in the formula for W2
2 . We use this distance, given on

Prob(R) by the L1 distance between (non-inverted) CDFs,

because it does not favor the W2 distance used in Wasser-

stein propagation while taking into account the ground dis-

tances. We consider weather station coordinates as defining

a point cloud on the plane and compute the point cloud

Laplacian using the approach of (Coifman & Lafon, 2006).

Temperature Data Figure 6 illustrates the results of a

series of experiments on weather data on a map of the United

States.1 Here, we have |V | = 1113 sites each collecting

daily temperature measurements, which we classify into

100 bins at each vertex. In each experiment, we choose a

subset V0 ⊆ V of vertices, propagate the histograms from

these vertices to the remainder of V , and measure the error

between the propagated and ground-truth histograms.

Figure 6a shows quantitative results of this experiment. Here

we show the average histogram error per vertex as a func-

tion of the percent of nodes in V with fixed labels; the fixed

vertices are chosen randomly, and errors are averaged over

20 trials for each percentage. The Wasserstein strategy con-

sistently outperforms naı̈ve PDF interpolation with respect

to our error metric and approaches relatively small error

with as few as 5% of the labels fixed.

Figures 6b and 6c show results for a single trial. We color

the vertices v ∈ V by the mean (b) and standard deviation

1National Climatic Data Center

(c) of ρv from PDF and Wasserstein propagation. Both

yield similar mean temperatures on V \V0, which agree with

the means of the ground truth data. The standard devi-

ations, however, better illustrate differences between the

approaches. In particular, the standard deviations of the

Wasserstein-propagated distributions approximately follow

those of the ground truth histograms, whereas the PDF strat-

egy yields high standard deviations nearly everywhere on

the map due to undesirable smoothing effects.

Wind Directions We apply the general formulation in §4

to propagating distributions on the unit circle S
1 by consid-

ering histograms of wind directions collected over time by

nodes on the ocean outside of Australia.2

In this experiment, we keep approximately 4% of the data

points and propagate to the remaining vertices. Both the

PDF and Wasserstein propagation strategies score similarly

with respect to our error metric; in the experiment shown,

Wasserstein propagation exhibits 6.6% average error per

node and PDF propagation exhibits 6.1% average error per

node. Propagation results are illustrated in Figure 7a.

The nature of the error from the two strategies, however, is

quite different. In particular, Figure 7b shows the same map

colored by the entropy of the propagated distributions. PDF

propagation exhibits high entropy away from the prescribed

vertices, reflecting the fact that the propagated distributions

at these points approach uniformity. Wasserstein propaga-

tion, on the other hand, has a more similar pattern of entropy

to that of the ground truth data, reflecting structure like that

demonstrated in Proposition 3.

Non-Euclidean Interpolation Proposition 4 suggests an

application outside histogram propagation. In particular, if

the vertices of V0 have prescribed distributions that are δ

functions encoding individual points as mapping targets, all

propagated distributions also will be δ functions. Thus, one

strategy for interpolation is to encode the problem proba-

bilistically using δ distributions, interpolate using Wasser-

stein propagation, and then extract peaks of the propagated

distributions. Experimentally we find that optima of the

linear program in §4 with peaked prescribed distributions

yield peaked distributions ρv for all v ∈ V even when the

target is not Prob(R); we leave a proof for future work.

In Figure 8, we apply this strategy to interpolating angles on

S
1 from a single day of wind data on a map of Europe.3 Clas-

sical Dirichlet interpolation fails to capture the identification

of angles 0 and 2π. Contrastingly, if we encode the bound-

ary conditions as peaked distributions on Prob(S1), we can

interpolate using Wasserstein propagation without losing

structure. The resulting distributions are peaked about a sin-

2WindSat Remote Sensing Systems
3Carbon Dioxide Information Analysis Center

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/2012/
http://www.remss.com/missions/windsat
http://cdiac.ornl.gov/epubs/ndp/ndp026c/ndp026c.html
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(a)

(b)

(c)

Figure 6. We propagate histograms of temperatures collected over time to a map of the United States: (a) Average error at propagated sites

as a function of the number of nodes with labeled distributions; (b) means of the histograms at the propagated sites from a typical trial in

(a); (c) standard deviations at the propagated sites. Vertices with prescribed distributions are shown in blue and comprise ∼ 2% of V .

Ground truth PDF Wasserstein Ground truth PDF Wasserstein

(a) Histograms of wind directions (b) Entropy

Figure 7. (a) Interpolating histograms of wind directions using the PDF and Wasserstein propagation methods, illustrated using the same

scheme as Figure 5; (b) entropy values from the same distributions.

Ground truth PDF (19%) Wasserstein (15%)

Figure 8. Learning wind directions on the unit circle S
1.

gle maximum, so we extract a direction field as the mode of

each ρv . Despite noise in the dataset we achieve 15% error

rather than the 19% error obtained by classical Dirichlet

interpolation of angles disregarding periodicity.

7. Conclusion

It is easy to formulate strategies for histogram propagation

by applying methods for propagating scalar functions bin-

by-bin. Here, however, we have shown that propagating

instead inverse CDFs has a deep connections to the theory of

optimal transportation and provides superior results, making

it a strong yet still efficient choice. This basic connection

gives our method theoretical and practical soundness that is

difficult to guarantee otherwise.

While our algorithms show promise as practical techniques,

we leave many avenues for future study. Most prominently,

the generalization in §4 can be applied to many problems,

such as the surface mapping problem in Solomon et al.

(2013). Such an optimization, however, has O(m2|E|) vari-

ables, which is intractable for dense or large graphs. An

open theoretical problem might be to reduce the number of

variables asymptotically. Some simplifications may also be

afforded using approximations like (Pele & Werman, 2009),

which simplify the form of dij at the cost of complicating

theoretical analysis and understanding of optimal distribu-

tions ρv. Alternatively, work such as (Rabin et al., 2011)

suggests the potential to formulate efficient algorithms when

replacing Prob([0, 1]) with Prob(S1) or other domains with

special structure.

In the end, our proposed algorithms are equally as

lightweight as less principled alternatives, while exhibit-

ing practical performance, theoretical soundness, and the

possibility of extension into several alternative domains.
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