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Figure 1: In this illustrative example, we plot the Jacobian determinant over a hex as its bottom four vertices are twisted about the vertical
axis. The minimum Jacobian among the eight vertices vastly overestimates the minimum Jacobian in the interior of the hex, failing to capture
the invalidity which occurs in the red range of angles. Our SOS relaxation, in contrast, computes the true minimum.

Abstract

The validity of trilinear hexahedral (hex) mesh elements is a prerequisite for many applications of hex meshes, such as finite
element analysis. A commonly used check for hex mesh validity evaluates mesh quality on the corners of the parameter domain
of each hex, an insufficient condition that neglects invalidity elsewhere in the element, but is straightforward to compute. Hex
mesh quality optimizations using this validity criterion suffer by being unable to detect invalidities in a hex mesh reliably,
let alone fix them. We rectify these challenges by leveraging sum-of-squares relaxations to pinpoint invalidities in a hex mesh
efficiently and robustly. Furthermore, we design a hex mesh repair algorithm that can certify validity of the entire hex mesh.
We demonstrate our hex mesh repair algorithm on a dataset of meshes that include hexes with both corner and face-interior
invalidities and demonstrate that where naïve algorithms would fail to even detect invalidities, we are able to repair them. Our
novel methodology also introduces the general machinery of sum-of-squares relaxation to geometry processing, where it has
the potential to solve related problems.

1. Introduction

Hexahedral meshes have been shown to have superior numeri-
cal properties to tetrahedral meshes for solving various numerical
PDEs. This is especially true when comparing trilinear hexahedra
to linear tetrahedra [CK92, Wei94], but also extends to quadratic
bases in nonlinear elasto-plastic simulation [BPM∗95]. Motivated

by enhanced performance in simulation, significant effort has been
devoted toward automatic generation of high-quality hexahedral
meshes [NRP11]. These algorithms use a variety of construc-
tions and mathematical approaches, from frame fields [HTWB11,
SVB17,PBS20] to polycubes [FXBH16,THCM04,HJS∗14,HZ16],
to octrees [QZ12], to topology constraints [FM99,LZC∗18,CC19].
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Many metrics are used to evaluate hex mesh validity and qual-
ity. The Jacobian determinant of the trilinear map from a regular
unit cube to the hex element is a frequently-used validity metric
whose positivity guarantees injectivity of the map [Knu03]. An el-
ement’s validity (and sometimes quality) is typically assessed by
the minimum of the determinants at the corners, optionally nor-
malized by the edge lengths [XGC17, GPW∗17]. Positivity of this
summary metric, however, is insufficient to guarantee positivity of
the Jacobian determinant everywhere in the interior of the hex el-
ement [Knu90]. The degree to which vertex-based verification of
hex validity is insufficient is demonstrated in Figure 2. We visual-
ize a large region in the space of hexes where the hex is invalid,
but passes the vertex test. It is conjectured that having positive Ja-
cobian determinant on all six bi-quadratic faces of a hex element is
sufficient for positivity of the determinant on the interior [Knu90],
however this condition remains unproven and is not used in prac-
tice.

In this paper, we present a new perspective on the problem of
checking hex mesh validity. In contrast to previous work, which
relies on an iterative refinement strategy to localize points of in-
validity, we express the validity problem over the entire hex as a
polynomial optimization problem and solve it via the machinery of
sum-of-squares (SOS) programming. This makes for a simple-to-
implement validity check that produces a certificate of validity up
to numerical precision. Using the dual moment relaxation, we ob-
tain the point at which the Jacobian determinant is minimized; this
can then be used as a primitive in a simple mesh repair algorithm.
In summary, we

• formulate an SOS relaxation that computes the minimum Jaco-
bian determinant value inside a trilinear hex element;
• formulate a moment relaxation that computes the location of the

minimum Jacobian determinant; and
• using these new relaxations, design a global hex repair algorithm

whose success guarantees injectivity of the mesh elements.

2. Related Work

2.1. Hexahedral Mesh Validity

A full review of hex mesh evaluation methods is out of scope
for this paper. For an extensive report on the most popular hex
quality metrics, see [SEK∗07]. Many of these metrics are inter-
actively viewable on a database of hex meshes via [BPLC19]. A
correlation-based evaluation of these different metrics is presented
in [GHX∗17]. We will focus on metrics related to injectivity of the
trilinear map, i.e., those that use the Jacobian determinant.

A variety of methods propose heuristics for verifying positiv-
ity of the Jacobian determinant by evaluating volumes of sub-
tetrahedra [Gra99, Ush01, Vav03, Zha05]. The volume of the hexa-
hedron itself is also sometimes used [Ush01]. These metrics were
studied empirically in [Ush11] and found to be insufficient.

Past work on verifying positivity of the Jacobian determinant
over an entire hex relies on iterative refinement, i.e., branch-and-
bound. [DOS99] points out that the property that a Bézier function
lies in the convex hull of its control points allows one to bound the
Jacobian determinant. [HMESM06] applies this property in com-
bination with iterative refinement to check injectivity of triangular

Figure 2: Starting from the valid hex outlined with black edges,
we displace the yellow vertex within a ball and color the positions
that make the hex invalid. In the blue region, the hex has a corner
inversion. In the red region, the hex has a non-corner inversion,
and checking the Jacobian determinant at corners is insufficient to
detect its invalidity.

Bézier patches. [JRG12] develops a branch-and-bound approach
to computing validity of curvilinear elements. [JWR17] leverages
specific properties of hexahedral elements to improve efficiency
significantly. By recursively subdividing, the method progressively
tightens bounds on the minimal Jacobian determinant, relying on
[Ler08, Ler09] to prove that this subdivision scheme terminates.

2.2. Hexahedral Mesh Repair

Mesh quality improvement is a long-studied topic with a variety
of heuristics ranging from smoothing [Knu99, ZBX09, QZW∗10,
HZX18] to boundary relaxation [RGRS14] to extending tetrahe-
dral mesh quality improvement methods to hex meshes [Knu00,
WSR∗12]. [LXZQ13] combines surface fairing and pillowing to
improve hex mesh quality. [LSVT15] measures the quality of a
hex mesh from the volumes of tetrahedra surrounding its directed
edges and use that information to derive a mesh quality optimiza-
tion strategy. [XGC17] explicitly fixes regions of negative Jacobian
determinant by applying boundary relaxations, untangling proce-
dures, and a non-inverting volume deformation. This method, how-
ever, only computes Jacobian determinants at vertices. As we men-
tion above, approaches using only vertex based inversion detec-
tion cannot detect all inverted hex elements, let alone correct them.
[BDK∗03] aggregates many mesh quality improvement methods
into the Mesquite library. Of the hex mesh repair algorithms men-
tioned above, none guarantees validity of the final mesh—even
on the condition that the algorithm terminates. [TGRL13] untan-
gles curvilinear meshes by optimizing conservative bounds on the
Jacobian determinant within each element (relying on the Bézier
basis–convex hull property referenced in § 2.1). This method can
guarantee validity of mesh elements, but does not compute the min-
imum Jacobian or its location.

2.3. Sum-of-squares and Semidefinite Relaxation

Sum-of-squares (SOS) relaxation is a general technique for approx-
imating solutions to polynomial optimization problems—that is,
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optimization problems whose objective and constraint functions are
polynomials in the variables. A comprehensive review of this field
is presented in [BPT12]. We present mathematical constructions
relevant to this paper in § 3.

SOS relaxation is an example of a general technique called con-
vex relaxation, in which an optimization problem is extended from
a nonconvex domain to a larger convex one with the hope that
the global optimum to the convex problem will yield a global op-
timum of the original problem. Among relaxations, SOS relax-
ations are expecially practical because they yield semidefinite op-
timization problems (SDP), which are solvable in polynomial time
via interior-point methods [Ali95,NN94,BBV04] or rank-deficient
first-order methods [BM03,BVB18,CM19]. The simplest example
of SOS relaxation transforms quadratically constrained quadratic
programs (QCQP) to SDP. Perhaps the most famous computational
application of QCQP–SDP relaxation is the approximation algo-
rithm for MAX-CUT in [GW95]. Graphics and geometry process-
ing research has employed semidefinite relaxation to solve prob-
lems as varied as rotation synchronization [Sin11], point cloud reg-
istration [MDK∗16], consistent mapping [HG13], point cloud en-
capsulation [AHMS17], and even frame field optimization for hex
meshing [PBS20].

QCQP–SDP relaxations can be viewed as the first level of a hi-
erarchy of ever-richer SOS relaxations yielding ever-larger SDPs.
This is known as the Lasserre hierarchy [Las01] of moment
relaxations. Higher-degree SOS relaxations have many computa-
tional applications, including robust optimization [BTEGN09], ro-
bust control [ZDG96], Lyapunov stability [Par00,PP02], and quan-
tum separability [BCY11], among others detailed in §3 of [BPT12].
To the authors’ knowledge, this paper is among the first in computer
graphics to use the full SOS relaxation hierarchy.

3. Preliminaries

The sum-of-squares theory is vast and rich in connections to al-
gebraic geometry, combinatorics, and complexity theory. For com-
pleteness, we introduce the notions relevant to our work here and
refer the reader to [BPT12] for a deeper introduction.

3.1. Notation

The ring of real polynomials on n variables is R[xxx] = R[x1, . . . ,xn].
R[xxx]d will denote polynomials of degree at most d. We will some-
times write a polynomial of degree d in the compact form

p(xxx) = ∑
|α|≤d

pαααxxxααα,

where ααα = (α1, . . . ,αn) is a multi-index, i.e., xxxααα := ∏i xαi
i and

|ααα| := ∑i αi.

3.2. SOS Polynomials

The simplest polynomial optimization problem asks whether a
given polynomial is nonnegative on all of Rn. The set of nonnega-
tive polynomials of (even) degree 2d in n variables is denoted Pn,2d .
Geometrically, Pn,2d is a proper cone in R[x1, . . . ,xn]2d . How can
we decide membership in this set? An algorithmic answer to this

question begins with the observation that the square of any polyno-
mial will evaluate to a nonnegative number:
Definition 3.1 (SOS Polynomials). A real polynomial
q(x1, . . . ,xn) ∈ R[x1, . . . ,xn] of even degree is a sum-of-squares
(SOS) polynomial if it can be written as

q(x) = ∑
i

qi(x)2 (1)

for some polynomials qi for i = 1 to n and x = (x1, . . . ,xn).

The set of SOS polynomials of degree 2d in n variables is denoted
Σn,2d . We will write Σn =

⋃
d Σn,2d . Since any SOS polynomial is

nonnegative, Σn,2d ⊆ Pn,2d .

While deciding positivity—membership in Pn,2d—is NP-hard in
general (see [BPT12] §3.4.3, [GV01]), deciding membership in
Σn,2d amounts to an SDP. In particular, rewriting (1) makes this
equivalence explicit:

q(x) =

q1(x)
...

qm(x)


>q1(x)

...
qm(x)

= [xxx]>d

qqq1
...

qqqm


>qqq1

...
qqqm


︸ ︷︷ ︸

Q

[xxx]d

=
〈

Q, [xxx]d [xxx]
>
d

〉
,

(2)

where [xxx]d is the basis of monomials of degree up to d, qqqi is the vec-
tor of coefficients of qi in this basis, and 〈,〉 denotes the Frobenius
inner product. (2) says that the coefficients of a SOS polynomial q
can be written in terms of a positive semidefinite matrix Q.

3.3. SOS on a Compact Domain

The central theorem in the theory of SOS programming is the Pos-
itivstellensatz. Given any polynomial optimization problem on a
domain defined by polynomial equality and inequality constraints,
it guarantees that the global solution can be computed by an SOS
relaxation of sufficiently high degree—i.e., by a sufficiently large
SDP. Because our polynomial optimization problem is over the unit
cube, we use Putinar’s simpler variant of the Positivstellensatz for
compact domains [Put93].
Definition 3.2 (Nonnegative Locus). Given a set of real polynomi-
als G= {g1, . . . ,gm}⊂R[x1, . . . ,xn], the nonnegative locus of G is
the set of points on which all the polynomials in G are nonnegative:

P(G) = {xxx ∈ Rn : g1(xxx)≥ 0, . . . ,gm(xxx)≥ 0}. (3)

Definition 3.3 (Quadratic Module). Given G = {g1, . . . ,gm} ⊂
R[x1, . . . ,xn], the quadratic module of G is

Q(G) = {p(xxx) : p(xxx) = s0(xxx)+
m

∑
i=1

si(xxx)gi(xxx), si ∈ Σn}. (4)

We will use Q2d(G) to denote the slice of Q(G) consisting of
polynomials p that admit a decomposition with degs0 ≤ 2d and
degsi ≤ 2d−deggi for each i ∈ {1, . . . ,m}.

It is clear that any polynomial in Q(G) is nonnegative on P(G).
One might hope that the converse is true—that any polynomial
which is positive on P(G) could be written in the special form (4).
Putinar’s theorem states exactly this when Q(G) is Archimedean.

c© 2020 The Author(s)
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Definition 3.4 (Archimedean). A quadratic module Q(G) is
Archimedean if there exists a polynomial q(xxx) ∈ Q(G) such that
P({q}) is compact. In this case, we have P(G)⊆ P({q}) also com-
pact, and so q serves as an algebraic certificate of the compactness
of P(G). For the purposes of this paper, we will also refer to P(G)
as an Archimedean set.

Once Q(G) is verified to be Archimedean, one can apply Theo-
rem 3.1.
Theorem 3.1 (Putinar’s Positivstellensatz [Put93]; see also
[BPT12], Theorem 3.138). Let S = P(G) = P({g1, . . . ,gm}) be an
Archimedean set defined by the polynomial inequalities gi(xxx) ≥ 0.
Then any polynomial p(xxx) that is strictly positive on S is in Q(G),
i.e., there exists a decomposition

p(xxx) = s0(xxx)+
m

∑
i=1

si(xxx)gi(xxx), (5)

with SOS polynomials si ∈ Σn,2d , for high enough degree d.

3.4. Moment Relaxation

Suppose we want to find the global minimum of a polynomial
p ∈ R[x1, . . . ,xn] on a domain S. This problem is nonconvex, but
it can be rewritten as a convex problem by the following measure
relaxation, in which we replace evaluation at a point by integration
against an arbitrary probability measure:

p∗S := min
µ∈P(S)

Eµ[p], (6)

where P(S) is the space of probability measures on S, and
Eµ[p] =

∫
S pdµ denotes integration against µ. Indeed, if xxx∗ =

argminxxx∈S p(xxx), then the atomic measure δxxx∗ minimizes (6)
[Las01]. That is, the measure relaxation (6) is exact.

Problem (6) optimizes over the infinite-dimensional space P(S),
making it intractable to solve directly. However, the objective func-
tion can be re-written to only depend on a finite set of real numbers
computed from µ, namely moments of µ of degree ≤ d:

Eµ[p] = ∑
|α|≤d

pααα Eµ[xxxααα] = ∑
|α|≤d

pαααµααα, (7)

where d = deg p and µααα := Eµ[xxxααα] is the ααα-moment of µ.
Notation. We will writeMd for the vector space of moment vec-
tors of degree up to d and µµµ = MMM(µ) ∈M2d for the vector of mo-
ments of µ up to degree 2d. (7) gives a way to write expectations
of polynomials with respect to moment vectors without recourse to
measures; this is called pseudo-expectation and is written Eµµµ. We
may also index moments by monomials instead of multi-index ααα
e.g. µ(1,1,0) = µx1x2 .

If it were possible to express the constraint µ ∈ P(S) in terms
of moments, we could reduce (6) to a finite-dimensional problem.
In general, an arbitrary set of moments may not correspond to any
probability measure on S. Happily, when S is Archimedean, the
following theorem of Lasserre tells us that a finite number of con-
straints is sufficient to characterize the feasible set of moments for
a polynomial optimization of the form (6):
Theorem 3.2 ([Las01], Theorem 4.2). Suppose S = P(G) is
Archimedean. Let p(xxx) be a polynomial, and let p∗S := minxxx∈S p(xxx)
be its minimum on S, occurring at xxx∗ ∈ S. Let d be large enough

−2 −1 1 2 3

−2

−1

1

2

Figure 3: The optimal solution to the moment relaxation (8) is the
set of moments of an atomic measure supported at the global mini-
mum of the polynomial on the domain—in this case, δ2.

that p(xxx)− p∗S ∈ Q2d(G), which must exist by Theorem 3.1. Then
the following moment relaxation computes p∗S :

p∗S =



min
µµµ∈M2d

Eµµµ[p(xxx)]

s.t. Eµµµ[q(xxx)2]≥ 0, ∀q ∈ R[xxx]d
Eµµµ[q(xxx)2gi(xxx)]≥ 0, ∀q ∈ R[xxx]d−wi

Eµµµ[1] = 1,


(8)

where wi = ddeggi/2e. Moreover, the moment vector δδδ∗ :=MMM(δxxx∗)
is a global minimizer of (8).

It is worth examining Theorem 3.2 more closely. First, the relax-
ation (8) is an SDP. Each inequality constraint can be written as a
semidefinite constraint on a moment matrix. For example, the first
constraint in (8) is equivalent to Eµµµ[[xxx]d [xxx]

>
d ]� 0. In the univariate

case (n = 1), this is
µ0 µ1 µ2 . . . µd
µ1 µ2 µ3 . . . µd+1
µ2 µ3 µ4 . . . µd+2
...

...
...

. . .
...

µd µd+1 µd+2 . . . µ2d

� 0. (9)

Second, the relationship between Theorem 3.1 and Theorem 3.2
is precisely that of SDP duality [Las01]. This is why the same de-
gree d appears in both statements.

Third, as with Theorem 3.1, Theorem 3.2 says nothing about
how high the degree d may be. Indeed, as NP-hard problems may
be phrased as polynomial optimization problems, we should expect
that d may be up to exponentially large in the degrees of the ob-
jective p and constraints gi [GV01]. Even for a specific problem, it
is often hard to compute d in advance. When a large enough d is
chosen so that (8) holds, we say that the relaxation is exact or has
achieved exact recovery.

In case of exact recovery and when the minimizer is unique,
the minimizer can be computed directly from the zeroth and first
moments—as the mean of the (atomic) measure. Moreover, exact
recovery can be verified from the rank of the moment matrix

Eµµµ[[xxx]d [xxx]
>
d ] = [xxx∗]d [xxx

∗]>d ⇐⇒ rankEµµµ[[xxx]d [xxx]
>
d ] = 1. (10)
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We will use moment relaxation in § 4.3 to obtain the exact location
of the most distorted point in a hex element.

4. Detecting Invalid Hexahedral Elements

In this section, we introduce the machinery of SOS relaxation to the
problem of validating hexahedral mesh elements. This machinery
not only certifies elements as valid or invalid, but also finds the
most distorted point in each element, enabling an iterative mesh
repair algorithm in the following section.

4.1. Trilinear Hexahedral Element Quality

Definition 4.1 (Trilinear Hexahedron). A trilinear hexahedron is
specified by a map xxx : [0,1]3 → R3 that is linear in each coordinate
when the others are held fixed, i.e.,

xxx(λu0 +(1−λ)u1,v,w) = λxxx(u0,v,w)+(1−λ)xxx(u0,v,w). (11)

Such a map admits a decomposition

xxx(u,v,w) =
1

∑
i, j,k=0

xxx(i, j,k)Li jk(u,v,w), (12)

where Li jk are the real-valued Lagrange interpolation functions

Li jk(u,v,w) := ui(1−u)1−iv j(1− v)1− jwk(1−w)1−k. (13)

In other words, the trilinear hexahedron is completely characterized
by the positions of its vertices xxxi jk = xxx(i, j,k) ∈ R3.

The map xxx is locally injective at uuu = (u,v,w) if its Jacobian de-
terminant is positive, i.e.,

det(Dxxxuuu)> 0. (14)

Note that det(Dxxxuuu) is a polynomial of degree 5 in three variables,
where each monomial is at most quadratic in u, v, or w. Figure 1
features density plots of the Jacobian determinant for a sequence of
trilinear hexahedra.
Definition 4.2 (Valid Hexahedron). A hexahedron xxx is valid if it is
injective everywhere, i.e.,

det(Dxxxuuu) > 0, ∀uuu ∈ [0,1]3. (15)

We can relate the definition of hex validity to the language of § 3
by recognizing that checking validity of a hexahedron is a polyno-
mial feasibility problem. In particular, a hexahedron is valid if the
solution to the following polynomial optimization problem, which
seeks a bound on the determinant in (14), is positive:

λ∗ :=

max
λ

λ

s.t. det(Dxxxuuu)≥ λ, ∀uuu ∈ [0,1]3

 . (POP)

We will see in § 4.2 that through an SOS relaxation we can trans-
form (POP) into an SDP.

4.2. Applying the SOS Relaxation

We begin with the polynomial optimization formulation of the min-
imal Jacobian determinant problem as described by (POP). To re-
formulate this as an SOS optimization problem, we seek to ap-
ply Theorem 3.1. First, we construct the set of real polynomi-
als G = {g1, . . . ,g6} whose nonnegative locus is the unit cube
P(G) = [0,1]3:

g1(u,v,w) = u, g2(u,v,w) = 1−u,

g3(u,v,w) = v, g4(u,v,w) = 1− v,

g5(u,v,w) = w, g6(u,v,w) = 1−w.

(16)

To use Theorem 3.1, we must verify that Q(G) is Archimedean,
i.e., satisfies Definition 3.4. We choose q(xxx) = N−∑i x2

i , a polyno-
mial with compact nonnegative locus, to be our algebraic certificate
of compactness. It remains to verify that q(xxx)∈Q(G). Choosing the
SOS multipliers

s1(u,v,w) = (u−1)2, s2(u,v,w) = u2 +1,

s3(u,v,w) = (v−1)2, s4(u,v,w) = v2 +1,

s5(u,v,w) = (w−1)2, s6(u,v,w) = w2 +1,

(17)

we obtain,

3−u2− v2−w2 = ∑
i

si(u,v,w)gi(u,v,w), (18)

as required , with the choice N = 3. Then, by Equation (5), we have
det(Dxxxuuu)≥ λ for all ∀uuu ∈ P(G) if and only if

det(Dxxxuuu)−λ ∈ Q(G). (19)

We use this to rewrite (POP) as an SOS optimization:

λ∗ =


max
λ,si

λ

s.t. det(Dxxxuuu)−λ = s0(uuu)+∑
i

si(uuu)gi(uuu)

s0, . . . ,s6 ∈ Σ3,2d .

 (SOSP)

By Theorem 3.1, for a sufficiently high choice of degree 2d,† (POP)
and (SOSP) have equivalent solutions. As mentioned in § 3.2, the
seven SOS polynomial constraints are encoded by corresponding
coefficient matrices Ci via (2), making (SOSP) an SDP.

4.3. Obtaining the Most Distorted Point

To find the point uuu∗ ∈ [0,1]3 at which the determinant is minimized,
we can apply moment relaxation (see § 3.4).

λ∗ =



min
µµµ∈M2d

Eµµµ[det(Dxxxuuu)]

s.t. Eµµµ[q(uuu)2]≥ 0, ∀q ∈ R[uuu]d
Eµµµ[q(uuu)2gi(uuu)]≥ 0, ∀q ∈ R[uuu]d
Eµµµ[1] = 1.


(SOSD)

† s1, . . . , s6 actually only need to have degree 2d− 1, but since SOS poly-
nomials always have even degree, this is increased to 2d.

c© 2020 The Author(s)
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The resulting optimization problem is exactly the SDP dual to
(SOSP). By Theorem 3.2, when d is sufficiently high, exact recov-
ery occurs.

Recall from § 3.4 that when the moment relaxation is exact, the
optimal moment vector µµµ∗ is generically that of an atomic distri-
bution MMM(δuuu∗). We can check for exact recovery empirically by
testing the (numerical) rank of the moment matrix Eµµµ∗ [[uuu]d [uuu]

>
d ]

corresponding to µµµ∗, which should be one by (10). After verifying
exact recovery, we extract uuu∗ by computing the mean of the atomic
distribution directly from its first moments (see Figure 4):

uuu∗ = (µ∗u ,µ
∗
v ,µ
∗
w). (20)

Using the rank condition, it is possible to assay empirically the
degree d at which exact recovery first occurs. Our results (see Fig-
ure 5) indicate that exact recovery occurs at the lowest possible
degree, 2d = 4;‡ recall that the degree of det(Dxxxuuu) is 5. Indeed,
the second-largest eigenvalue of the moment matrix is zero up to
numerical error, providing strong empirical evidence of exact re-
covery (Figure 5). Based on this data, we conjecture that 2d = 4
is sufficient for exact recovery for any SOS program of the form
(SOSP), i.e., for a hex with arbitrary vertex positions. It is remark-
able that such a low degree is sufficient in practice to detect hex
invalidities—while any polynomial optimization problem admits
an SOS relaxtion, exact recovery is not generally guaranteed for
any fixed degree. This fortuitous low degree exact recovery means
that (SOSP) and (SOSD) are small SDPs, enabling our efficient
mesh repair algorithm in the following section.

4.4. Implementation

We solve optimization problems (SOSP) and (SOSD) using
Yalmip [Löf04] for SOS modeling and Mosek 9 [ApS19] to solve
the resulting SDPs. All results are computed on a 2019 MacBook
Pro with a quad-core 2.8 GHz Intel Core i7 and 16 GB RAM.

5. Hex Repair

In the previous section, we saw how SOS relaxations may be used
to check validity of hex elements and find where they are invalid.
Applied to a hex mesh, we can detect when individual elements
are invalid (see Figure 6). We now construct a simple mesh repair
algorithm built on this machinery.

5.1. Hex Element Repair

A distinguishing aspect of our SOS formulation is that it gives us
the point at which the minimum Jacobian determinant is realized
in a hex, rather than just coarse bounds. We can leverage this infor-
mation to design a simple algorithm that transforms invalid hexes
into nearby valid ones.

‡ Our relaxation differs slightly from the usual Lasserre hierarchy [Las01]
by having degree 2d for all constraints. See previous footnote.

Figure 4: For four select hexes, we show the locations of their min-
imum Jacobian determinants via (SOSD). The scalar Jacobian de-
terminant field is plotted as a color map over the hex element xxx
with yellow indicating a high value and dark blue indicating a low
value, with the minimum Jacobian determinant xxx(uuu∗) plotted as a
red point. In the insets we show the location of the minimum Jaco-
bian determinant on the parameter cube [0,1]3 as a red point.

Figure 5: (Top) The average and max second eigenvalue of the
moment matrix Eµµµ∗ [[uuu]d [uuu]

>
d ], as explained in § 4.3. We sample

1000 hexes and solve (SOSP) with polynomials s1, . . . ,s6 taken to
be varying even degrees from 4 to 8. Based on these results, we
conclude that 2d = 4 is sufficient for exact recovery of the solution.
(Bottom) For degree fixed at 2d = 4, we randomly generate 50000
hexes, solve (SOSP) and verify that their second eigenvalues are
zero to numerical precision.
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Figure 6: The torus mesh from [CC19], accessed via [BPLC19].
The mesh is colored based on the minimum Jacobian determi-
nant over that element, and in the cutaway every hex where
min det(Dxxx(u,v,w))≤ 0 is highlighted in red.

Let X be the 8×3 matrix

X =

xxx(0,0,0)
...

xxx(1,1,1)


of vertex positions of a single hex in lexicographic order—e.g.,
xxx(0,1,1) comes before xxx(1,0,0). Define the distance between two
hexes X1 and X2 to be the L2 distance between their vertex posi-
tions, i.e., ‖X1−X2‖F .

If the hex specified by vertices X is invalid, we repair it by alter-
nating between the following two steps until X is valid. First, we
solve for the location uuu∗ of the minimal Jacobian determinant via
the moment relaxation (SOSD). Then, we solve the following non-
linear optimization to move the vertices X until xxx is locally injective
at uuu∗.

Xk+1 =

argmin
X

‖X−Xk‖2
F

s.t. det(Dxxxuuu∗)≥ 0

 (R)

We alternate these two steps until the SOS relaxation (SOSP) cer-
tifies that X is a valid hex element. In practice, we solve (R) using
the default settings of Yalmip’s nonlinear optimizer. See Table 1
for a summary of iterations taken to repair hex elements of dif-
ferent meshes. We summarize the single hex repair procedure in
Algorithm 1.

5.2. Hex Mesh Repair

We now extend our simple repair algorithm to the entire hex mesh.
Schematically, we wish to deform a given mesh into a valid mesh
while also maintaining closeness to the original mesh, where close-
ness is measured by L2 distance between corresponding vertex po-
sitions. To that end, let VVV ∈ Rn×3 be the matrix of vertex positions

Algorithm 1 Hex Element Repair Π(X)

1: procedure Π(X0)
2: k← 1
3: Xk← X0
4: while X is not valid do
5: µµµ∗← argminµµµ (SOSD) given Xk

6: uuu∗← (µ∗u ,µ
∗
v ,µ
∗
w)

7: Xk+1←SOLVE-(R)(uuu∗,Xk)
8: k← k+1
9: end while

10: return Xk+1

11: end procedure

Algorithm 2 Hex Mesh Repair
1: procedure REPAIR-HEX-MESH(V0,ρ)
2: k← 1
3: V k←V0
4: while invalid hexes remain do
5: Zk

η←Π(HηXXXk), ∀η ∈ {1, · · · ,m}
6: V k+1

i ← 1
1+ρ·degi

(
V 0

i +ρ∑η∼i zzzk
ηi

)
7: k← k+1
8: end while
9: return V k+1

10: end procedure

for all vertices in the mesh. For each hexahedron η ∈ {1, . . . ,m},
let Hη ∈ {0,1}8×n select the vertices that appear in hex η in lex-
icographic order. So for each η, HηV ∈ R8×3 denotes the ordered
set of vertices of hex η.

With a balancing parameter ρ, our overall hex mesh repair prob-
lem takes the form

min
V
‖V −V 0‖2

F +ρ∑
η
‖Π(HηV )−HηV‖2

F , (21)

where Π(·) denotes the repair operation described in § 5.1.

To find a local minimum of (21), we alternate between repairing
individual hexes HηV and aggregating them together into V . We
detail the two alternating steps below and summarize our algorithm
in Algorithm 2. We find that ρ = 200 is sufficient to achieve high-
quality results in all our experiments.

Hex repair step. In this step, we split V into m independent 8×3
hex element matrices to be repaired in parallel, using the method in
§ 5.1. Let Zk

η be the repair of element η, i.e., Zk
η = Π(HηV k).

Vertex update step. We now aggregate the individually-repaired
hexes Zη to update V . Using Vi to denote the position of vertex i,
we compute

V k+1
i :=

1
1+ρ ·degi

(
V 0

i +ρ ∑
η∼i

zzzk
ηi

)
, (22)

where degi is the number of hexes adjoining vertex i, η∼ i denotes
hexes η containing vertex i, and zzzk

ηi is the row of Zk
η corresponding

to vertex i. The updated vertex gets set to a weighted average of its
initial position and its positions in the repaired hexes.
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Figure 7: The bunny example mesh from [Tak19], accessed via
[BPLC19]. (Top left) The original mesh, with each hex colored
based on its minimum Jacobian determinant, where purple indi-
cates a low value and yellow indicates a high value. (Top right)
The resultant mesh after running our repair algorithm, on the same
color map. Note that the previously invalid elements are now valid.
The empirical results of this experiment are show in Table 1. (Bot-
tom) We highlight points that moved more throughout the repair
algorithm in brighter red. The inset shows the most invalid section
of the hex, with invalid elements highlighted in red and vectors rep-
resenting the direction each vertex moved from the original mesh
to the repaired mesh.

Figure 7 depicts the results of our algorithm on the bunny mesh
from [Tak19], which initially has inversions severe enough that
boundary self-intersections are visible.

6. Experiments

In the previous section, we leveraged our ability to pinpoint inva-
lidities inside a hex element to derive an algorithm that repairs any
such invalidities. In this section, we demonstrate the capabilities of
our invalidity detection and hex repair algorithms empirically.

Figure 8: (Left) Histogram of the difference between the mini-
mum Jacobian determinant calculated by the SOS relaxation and
the true minimum value determined by dense sampling on 50000
randomly generated cubes. (Right) Histogram comparing the ra-
tio of minimum deteriminant to maximum determinant calculated
by our algorithm to the ratio calculated by [JWR17] via [GR09].
This ratio is useful for applications that accept completely inverted
elements.

6.1. Hex Validity

Exact recovery. We begin with empirical validation that our SOS
degree is high enough for exact recovery by testing our algorithm
on randomly sampled hexes. We sample a mix of valid and invalid
hexes by perturbing the vertices of the unit cube by an isotropic
Gaussian with σ = 0.3. Results of this experiment are visualized
in Figure 8. First, we compare the minimum Jacobian determinant
computed by our SOS relaxation with the minimum Jacobian de-
terminant computed by densely sampling the hex. For a sufficiently
dense sampling of the hex, we divide the parameter cube into 1003

smaller cubes and find the sub-cube whose center has lowest Jaco-
bian determinant. Then we further divide that sub-cube into another
1003 cubes. We verify that the difference between our SOS com-
puted minimum Jacobian and the densely sampled minimum Jaco-
bian is less than 1×10−7 for 50000 hexes. We also compare results
extracted by our method to those computed using [JWR17] as im-
plemented in Gmsh [GR09] and show that the difference is below
numerical precision on 1000 randomly sampled hexes. On these
hexes the average time our method takes to compute the minimal
Jacobian determinant and its location is 0.022 seconds. While our
method is slower than runtimes reported by [JWR17], our method
is additionally able to pinpoint the most invalid location within a
hex.

Numerical validity. By applying our method to hexahedral
meshes, we are able to detect invalid hex elements within them.
This is visualized on the torus mesh from [CC19] in Fig-
ure 6. We find that many elements in this mesh are invalid:
minuuu det(Dxxxuuu) ≤ 0. Invalid hexes on the torus are concentrated
near mesh singularities, which typically feature high distortion. In
addition to detecting invalidities, we are also able to repair them via
Algorithm 2.

Figure 9 depicts the results of our hex invalidity detection algo-
rithm on the bunny and torus meshes in the form of histograms
of minimal Jacobian determinant values per hex. The histograms
indicate that both meshes include inverted hexes. In addition to de-
tection of invalid hexes, this diagram serves as a diagnostic tool
for general quality of a hex mesh. Using our algorithm, we can
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Figure 9: Histograms of minimum Jacobians of hex elements for
the bunny and torus meshes respectively. Note that both meshes
exhibit inverted elements, which is detected by our algorithm. In
addition to detection of invalid hexes, this diagram serves as a diag-
nostic tool for general quality of a hex mesh. Using our algorithm,
we can build this aggregated view of hex element quality allowing
users to ensure that the quality of their least valid hex is bounded.

compute such an aggregated view of hex element quality allowing
users to ensure the quality of their least valid hex is above a desired
threshold.

Most distorted point. We use our SOS relaxation of the hex va-
lidity problem to compute the minimum Jacobian determinant on
various hexahedra. A few illustrative examples are shown in Fig-
ure 1. For visualization purposes we sample the Jacobian determi-
nant throughout the hex, but its minimal value is extracted by the
SOS relaxation (SOSD). In addition to finding the minimal value,
we show in Figure 4 that our method can extract the argmin via
Equation (20). This is guaranteed theoretically by exact recovery,
and visually by inspection of the colormap of the Jacobian deter-
minant in Figure 4. Note that the minimal Jacobian determinant
can occur on faces of the hex—thus any method that only checks
corners is insufficient. We repeat this experiment on a larger scale
using 50000 hexahedra and visualize their aggregated argmin loca-
tions on the parameter cube in Figure 10. This experiment reveals
a fascinating pattern: that the minimal Jacobian determinant con-
sistently lies on the boundary of the parameter cube. In addition to
empiricially verifying Knupp’s conjecture [Knu90], this suggests
a hidden multi-linearity in the Jacobian determinant or a form of
the maximum principle. We discuss this further in § 7 and leave
its exploration to future work. On the other hand, this experiment
reveals yet again that the most-distorted point may lie on a face,
rather than on a corner. Therefore, any methods that only check
validity on corners are insufficient for verifying hex validity.

interior face edge vertex

1

2

3

4

·104

Location of the most distorted point

#
of

H
ex

es

Figure 10: We sample 50000 randomly generated valid and invalid
hexes and compute the location of the minimal Jacobian determi-
nant. (Left) We plot their locations uuu∗ as a histogram on the pa-
rameter cube, where at the center of each bin we plot a sphere with
the radius scaled on a log scale based on the number of points that
fall into that bin. This shows a distinct pattern where the majority
of uuu∗ values are on edges of the parameter cube. (Right) We bucket
the uuu∗ values into four categories: interior, face, edge, and vertex.
While the majority of uuu∗ lie on corners, a significant amount lie on
edges and faces. Within a tolerance of 1×10−4 we find no values
of uuu∗ that lie on the interior of the cube. This empirically verifies
Knupp’s conjecture [Knu90] (see § 1).

6.2. Mesh Repair

In Figure 7 we can observe the method by which our algorithm
repairs a mesh, by applying small perturbations to the vertices in
order to find valid hexes with minimal vertex movement. While the
original mesh does not represent a physically realizable domain, the
repaired mesh does. Termination of our hex mesh repair algorithm
certifies local injectivity.

We show the progress of our hex mesh repair algorithm in Fig-
ure 11 on the torus and bunny meshes. The blue curve associ-
ated to the left y-axis indicates that the number of invalid hexes
decreases monotonically. The red curve associated to the right y-
axis indicates that the minimum Jacobian determinant increases
monotonically. Both meshes are repaired within 20 iterations of Al-
gorithm 2. Our algorithm detects no further invalidities, certifying
injectivity of the repaired meshes.

In Figure 12 we show the successful repair of a variety of meshes
from [BPLC19]. In the first column, invalid hexes of the input
meshes are highlighted in red. In the middle column, edges that
move over the course of repair are highlighted to indicate their
displacement. The final column shows the minimum Jacobian de-
terminant after repair. Our algorithm succeeds in repairing all in-
put meshes by concentrating perturbations in the neighborhoods
of invalid hexes. Input hexes that were valid are left relatively un-
touched, and the repaired meshes are valid.

Figure 14 depicts three meshes—the fertility from [XLZ∗19]
and the cat and dolphin from [GMD∗16]—featuring invalid el-
ements that cannot be detected by checking Jacobians at corners
alone. The arrows (not to scale) show how our mesh repair Algo-
rithm 2 displaces vertices to fully repair the meshes.
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Figure 11: Our mesh repair Algorithm 2 corrects the torus mesh from [CC19] in only 12 iterations and the bunny mesh from [Tak19] in
only 19 iterations. The number of invalid hexes remaining in the mesh is plotted in blue and is associated to the left y-axis. We also plot the
minimum Jacobian determinant in red and associate it to the right y-axis. In both cases the number of invalid hexes decreases monotonically,
and the minimum Jacobian determinant increases monotonically.
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Figure 12: (Left column) Input hex mesh with invalid hexes highlighted in red. (Middle column) Edges are highlighted in red by how much
they move during our mesh repair procedure. This visualization shows that the majority of movement is concentrated on edges adjacent to
invalid hexes, and that very little change is made to valid regions, as one might hope. (Right column) We show the Jacobian determinant as
a colormap over the fixed hex mesh. Meshes included here are torus and rockerarm from [BPLC19] and horse, block, elephant, and bust
from [XGC17]. We use ρ = 200 for all tests.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Marschner, Palmer, Zhang, & Solomon / Hexahedral Mesh Repair via Sum-of-Squares Relaxation

Figure 13: When repaired using the procedure detailed in § 5.2, the
boundary vertices can move (left). The procedure can be adjusted
to pin the boundary vertices in place (right). The red spheres are
centered at the final positions of vertices that move, and their radii
indicate the total displacement of those vertices.

Modifying the nonlinear hex element repair step Π(X) so that
boundary vertices are fixed yields repaired meshes that preserve
boundary geometry when such a solution exists (see Figure 13).

6.3. Comparison to Previous Methods

In Table 1 we show aggregate statistics of our hex mesh repair al-
gorithm. We show the number of inner iterations (iterations of Al-
gorithm 1), number of outer iterations (iterations of Algorithm 2),
number of SOS optimizations solved, and total repair time. In ad-
dition we compare the success of our mesh repair algorithm to the
method in [XGC17], which also aims to untangle hex meshes and
use non-inverting deformations to ensure injectivity. We find that
their method can exhibit instability on certain meshes. In contrast,
our mesh repair algorithm succeeds on all test meshes, and guaran-
tees injectivity through the theory of SOS relaxations.

7. Discussion and Conclusion

This work represents an important step toward broader application
of SOS relaxations in geometry processing, where both polynomi-
als and optimization are ubiquitous. Through this general machin-
ery, we enable users of hex meshes in 3D modeling and simulation
not only to quantify the validity of hex elements, but also to repair
invalid hex meshes. Our experiments reveal that many hex meshes
produced by modern automatic hex meshing algorithms have in-
valid elements that would disqualify them from use in finite ele-
ment analysis. While these problems might have previously gone
unnoticed, our mesh repair method can breathe new life into these
hex meshes.

There are a number of immediate extensions that take advantage
of the generality of SOS relaxation. For example, the Jacobian de-
terminant is not only a polynomial in the parameters (u,v,w), but si-
multaneously in the vertex positions xxxi jk. Suppose one could com-
pute the smallest value Λ that det(Dxxx) can take at a vertex such that

Figure 14: We show the success of our repair algorithm run on
the fertility, cat, and dolphin meshes from [BPLC19], all three of
which have no hexes that are invalid at the corners. The highlighted
red elements have invalidities in their interior, which we are able
to detect with our SOS relaxation. We also show overlaid on the
original mesh the direction in which our repair algorithm moves
each vertex.
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Mesh # hexes # invalid # outer iters # (SOSD) steps # (R) steps Repair time (min) # invalid after [XGC17]

bunny 2832 40 19 8173 123 4.05 0
torus 7380 121 12 21,157 1471 12.13 N/A
bust 5258 30 49 20,020 643 9.20 0
block 2520 19 11 5353 83 2.29 0
rockerarm 1858 11 7 2616 47 1.24 0
cat 2604 1 12 2818 22 1.41 4
fertility 21,016 20 21 24,998 1168 9.83 0
dolphin 4788 2 2 4838 3 2.45 8
horse 44,145 73 12 53,986 457 22.15 0
elephant 46,525 90 11 60,159 301 24.85 0

Table 1: We compare our hex mesh repair method to [XGC17], which untangles meshes with boundary relaxations and non-inverting
deformations. For our repair algorithm, we show aggregate statistics about our optimization, and runtime in seconds. For their algorithm,
we show if their algorithm successfully terminated, as well as the number of invalid hexes remaining at the end of their algorithm. While
their method sporadically fails to terminate or fails to repair the hex mesh, our algorithm succeeds on all test cases.

the hex is still valid. Then checking whether det(Dxxx) ≥ Λ at ver-
tices would provide a conservative validity guarantee. This would
save a great deal of computation as SDPs would only need to be
solved for the few elements that are likely to be invalid. The prob-
lem of finding Λ can be formulated as a polynomial optimization
problem and approached with the methods of SOS relaxation.

Another extension of our methodology would be to detect and re-
pair invalidities in different element types, including those of higher
polynomial degree. In theory this only results in a different degree
for the determinant, and/or support on a different reference ele-
ment. High level polynomial optimization tools like [Löf04] sup-
port modeling such extensions.

Similarly, the projection Π that we approximate (see § 5) can
be formulated as a polynomial optimization problem and relaxed
using SOS. Assuming it admits an exact relaxation of low enough
degree, we could use this convex projection to yield global guaran-
tees for the alternating mesh repair optimization in § 5 or a similar
ADMM method.

Knupp [Knu90] has conjectured that it is sufficient to check only
the faces of a hex for validity. Our empirical results strongly con-
firm this conjecture—the minimum Jacobian determinant occurs on
the boundary of every hex we have examined. In view of this ev-
idence, we expect it should not be too difficult to prove Knupp’s
conjecture formally. Verifying this conjecture would speed up hex
validity checks by reducing the degrees of polynomials involved.

By placing the hex validity problem within the framework of
SOS programming, we introduce the full power of this general ma-
chinery to computer graphics applications. We hope that the ge-
ometry processing community will find more exciting uses for it
wherever polynomials and optimization appear together.
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