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Abstract

Modeling and understanding low- and high-dimensional data is a recurring theme in

graphics, optimization, learning, and vision. Abstracting away application domains re-

veals common threads using geometric constructs like distances, similarities, and curva-

tures. This shared structure suggests the possibility of developing geometric data process-

ing as a discipline in itself.

To this end, this thesis introduces optimal transportation (OT) as a versatile component

of the geometric data processing toolkit. Originally proposed for minimizing the cost of

shipping products from producers to consumers, OT links probability and geometry using

distributions to encode geometric features and developing metric machinery to quantify

their relationships.

To transition OT from theory to practice, we show how to solve previously intractable

OT problems efficiently on discretized domains and demonstrate a wide range of ap-

plications enabled by this new machinery. We illustrate the advantages and challenges

of OT for geometric data processing by outlining my recent work in geometry process-

ing, computer graphics, and machine learning. In each case, we consider optimization

aspects of the OT problem for relevant geometric domains—including triangulated sur-

faces, graphs, and subsets of Euclidean space—and then show how the resulting machin-

ery can be used to approach outstanding problems in surface correspondence, modeling,

and semi-supervised learning.
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“I will approach this question as one approaches a

hippopotamus: stealthily and from the side.”

- R. Mahony
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Chapter 1

Introduction and Preliminaries

Algorithms for processing modeled shapes and algorithms for processing clouds of data

points usually are treated as unrelated solutions to unrelated problems. Superficially, we

can apply tactile and spatial intuition to processing shapes as surfaces, while noisy and

abstract data may be more understandable through mathematical and statistical formality.

Hence, three-dimensional shapes are treated in the geometry processing and vision liter-

atures, while data analysis and pattern extraction are categorized as topics for machine

learning and related disciplines.

Shape processing and high-dimensional data processing, however, use remarkably

similar geometric language to state objectives and procedures. Three-dimensional objects

and datasets both contain distinctive feature points connected by regions of varying curva-

ture. Both encode intrinsic notions of proximity and distance along a domain rather than

through the surrounding volume. And, both can be edited plausibly by stretching and

bending motions.

Merging our understanding of these and other forms of input suggests the necessity

and broad application of geometric data analysis, considered in the following two senses:

Geometric data
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Modifier

analysis:
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Noun

The analysis of geometric data

Geometric
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Modifier

data analysis:
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Noun

Data analysis using geometric techniques

With these related but distinct applications in mind, a natural research program is to

1



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 2

develop machinery widening the scope of “geometric data analysis” from a specialized

branch of statistics (see e.g. [Kir00, RR06]) to a broad field encapsulating the mathematical

theory, algorithms, and computational applications of shape processing applied to abstract

datasets and scans of physical objects alike.

1.1 Motivation

Geometric commonalities are emerging between many branches of computer science, in-

dicating the timeliness of a unified approach. For example, Laplacians in graph the-

ory [Chu96], semi-supervised learning [ZGL03], and computer graphics [SCV14] all by

construction exhibit nearly identical properties inspired by classical geometric PDE. Ker-

nel methods from statistics [HSS08] have analogous structure and properties to kernel em-

beddings used for matching scans of objects [SOG09]. Hamiltonian Monte Carlo sampling

for probabilistic models [Nea11] requires the same geometric integrators as numerical sim-

ulations seeking to emulate qualitative properties of physical phenomena [SD06].

These examples and many others embody a fundamental shift in the geometric ma-

chinery developed for computer science applications. The earliest geometric challenges in

computer science arguably were combinatorial, leading to the development of “computa-

tional geometry” as its own discipline. Algorithms for spatial subdivision, triangulation,

topological sweep, and other tasks fundamental to computational geometry largely pro-

cess collections of simple geometric primitives like points, line segments, and triangles.

In this context, the challenge is to optimize time, space, and approximation complexity of

operations organizing and processing this type of data.

While many challenging and application-critical problems remain in computational ge-

ometry, the proliferation of cameras and three-dimensional scanning devices for inputting

low-dimensional shapes as well as the development of technology for gathering and ex-

ploring high-dimensional data have inspired a new context for geometry and computa-

tional shape processing. These and other datasets are fundamentally different from those

considered in computational geometry, often times exhibiting redundancy, noise, and sam-

pling issues limiting the applicability of exact computation.

Typical challenges in this context involve modeling rather than algorithm develop-

ment. In particular, this new species of geometric computation draws inspiration not only

from classical geometry but also from modern mathematical tools including differential
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geometry, geometric partial differential equations (PDE), and variational calculus. These

sophisticated tools from continuous mathematics are well-suited to modeling shapes be-

yond Platonic solids, whose distinguishing features are characterized by nonconvexity,

singularities, curvature, diffusion structure, distance metrics, embedding, and so on.

Development of computational tools accompanying these fine-grained continuous mod-

els yields a new class of research problems. Key themes in this discipline include:

• Modeling: Modern geometry and topology provide expansive languages for prob-

lems involving shape analysis in its various incarnations. Selecting among the count-

less pieces of machinery that may be relevant to a given computational problem is

itself a formidable challenge. On the theoretical side, the subtleties of different geo-

metric structures provide trade-offs between simplicity and expressiveness, between

generality and applicability to a given problem, and so on. On the practical side,

choosing models with an eye for the likelihood of accompanying stable, intuitive,

and computationally feasible numerical methods requires intuition that can be at

odds with purely theoretical consideration of modeling problems.

• Discretization: Deciding upon and analyzing a theoretical model is insufficient in

the context of geometric data analysis. To bring the model to practical fruition, it

must be discretized in a form amenable to storage and computational manipulation.

This discretization is a critical decision fundamentally affecting the behavior of ge-

ometric algorithms. For example, in computer graphics, there exist many ways to

store a two-dimensional surface embedded in three dimensions, e.g., as a triangle

mesh, using a subdivision structure, or as a level set of an implicit function. Contexts

in which these different discretizations are valuable contrast considerably; triangle

meshes are well-suited to discretization of smoothing geometric flows via finite el-

ements, subdivision leads to smooth surfaces that are attractive for rendering, and

level set methods have shown considerable success for physical simulation.

• Optimization: Countless geometric problems can be posed using variational lan-

guage, in which desirable features or quantities are derived as critical points of con-

strained or unconstrained optimization problems. After discretization, such varia-

tional problems form a class of difficult optimizations requiring specialized consid-

eration. Natural problems in differential geometry easily can become numerically

infeasible after applying what might appear to be reasonable discretizations. After
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x

g(x)

x

δ(x)

x

p(x)

Gaussian Sharpened Superposition

Figure 1.1: (left) A Gaussian distribution expresses the simplest geometric feature—a
point—on the one-dimensional x axis; (middle) sharpening the distribution about its mean
approaches a δ-function expressing the point with no uncertainty. Probabilistic language
is fundamentally broader, however, supporting (right) superposition of multiple features.

all, an optimization constraint requiring a point to be on a fixed geometric domain

like a surface likely will be nonconvex, assuming the domain itself is nonconvex.

Constructive proofs from differential geometry may or may not suggest stable com-

putational methods for these variational problems. For instance, the typical theo-

retical construction of harmonic maps between surfaces via heat flow presents fun-

damental challenges for discretization and convergence via finite elements (FEM),

the typical discretization accompanying triangle mesh structures used in computer

graphics [Bar05].

This long list of research challenges supports the development of geometric modeling as

a discipline within computer science that is more clearly orthogonalized from the partic-

ular application area or data type. This viewpoint contrasts significantly with the current

approach, in which discretizations and models from smooth geometry are adapted within

individual research areas, leading to considerable redundancy from one field to the next.

1.2 Probabilistic Geometry

As an initial step toward a general toolbox for geometric data processing, this thesis de-

velops algorithms for manipulating geometry through the use of probability distribu-

tions. This probabilistic framework will have many advantages over classical geometric

language—which involves individual points or geometric features—by incorporating un-

certainty, symmetry, and other phenomena endemic to noisy geometric measurements di-

rectly into the computational pipeline.

Figure 1.1 illustrates a simple example of using probabilistic language to express a ge-

ometric feature. In this case, we express features on a one-dimensional geometric domain,
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the real numbers R. One of many ways to think of a Gaussian distribution g(x) is as an

expression of a point, the simplest geometric feature, centered at the mean; the standard

deviation expresses the level of uncertainty in the location of the feature. Sharpening the

Gaussian about its mean approaches a delta function δ(x), which encodes the classical point

feature without any uncertainty. It is important to acknowledge, however, that the proba-

bilistic language is fundamentally broader than classical geometric features; for example,

two points features can be weighted and superposed into one distribution p(x).

More generally, suppose Σ ⊆ Rn is a geometric domain like a surface or volume. We

consider the space of probability measures Prob(Σ), where an element µ ∈ Prob(Σ) is a

measure taking subsets U ⊆ Σ to µ(U) ∈ [0, 1] with µ(Σ) = 1. Example probabilistic

expressions of geometric features on Σ include the following:

• A point p ∈ Σ can be encoded as a δ-distribution satisfying

δp(U)
def.
=

{

1 when p ∈ U

0 otherwise.

• If Γ is a surface, curve, or other geometric feature embedded in a higher-dimensional

space Σ, a distribution encoding Γ can be its intrinsic area measure, normalized so

µ(Γ) = 1.

• A set of k points p1, . . . , pk ∈ Σ can be encoded as a linear combination µ
def.
= ∑i δpi

.

Some, but not all, probability measures admit density functions. If µ ∈ Prob(Σ) admits

a density function ρ : Σ→ R+, then for all measurable U ⊆ Σ, we can write

µ(U) =
∫

U
ρ(x) dx.

It can be valuable to only consider the subset of measures in Prob(Σ) admitting density

functions. Some of our derivations will rely on a restriction to this space, although largely

it is for convenience rather than necessity from a mathematical perspective. That is, some

derivations will be written in terms of integrals to encourage intuition, although the corre-

sponding statement may hold from a more general measure-theoretic perspective.

A source of challenges in geometric data processing stems from potential nonconvexity

of the domain Σ. For example, any optimization with variables taking value on the unit

sphere Σ = S2 automatically has nonconvex constraints, as the exterior of a sphere is not
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x

ρ0(x)

x x x

ρ1(x)

t = 0 t = 1/3 t = 2/3 t = 1

Figure 1.2: Trivial interpolation between two probability distributions ρ0(x) and ρ1(x) as
(1− t)ρ0(x) + tρ1(x).

convex in R3. This geometric nonconvexity is a natural source of nonconvex optimization

problems; if we are studying the geometry of an arbitrarily bent surface or region in Rn,

should expect this structure to manifest itself in any processing operation.

Dealing with distributions in Prob(Σ) is one way around this issue. While Σ may not

be a convex shape, Prob(Σ) is a convex space, in the sense that (1− t)µ0 + tµ1 ∈ Prob(Σ)

for any t ∈ [0, 1] and µ0, µ1 ∈ Prob(Σ). This difference brings about totally different dis-

cretizations of optimization problems that are more amenable to standard optimization

tools. Whereas constraining a point p to be on Σ might be a specialized nonlinear con-

straint, if Σ is discretized into k pieces then typically elements µ ∈ Prob(Σ) roughly can

be discretized as vectors v ∈ [0, 1]k with 1⊤v = 1. The set of such vectors is the probability

simplex and is defined using linear inequality constraints on vectors of probability values.

1.3 Geometric Properties of Distributions

We have argued that probability distributions provide an effective means for encoding

geometric features. If we wish to pose geometric problems in terms of these distributions,

however, we must be able to analyze and manipulate these features using tools tuned for

the probabilistic context.

The algebra of probability distributions superficially resembles that of vectors in Rn

but in reality does not provide a sufficient means for manipulating geometric features. For

instance, suppose we are given two probability distributions ρ0(x) and ρ1(x) centered at

two points p0, p1 ∈ R. As a sample geometric operation, we might wish to recover points

(1− t)p0 + tp1 along the segment from p0 to p1 using purely probabilistic operations. As

illustrated in Figure 1.2, however, if we use the naı̈ve approach of interpolating distribu-

tions algebraically as (1− t)ρ0(x)+ tρ1(x), the result “teleports” mass from one peak to the
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x

ρ0(x)

x x x

ρ1(x)

t = 0 t = 1/3 t = 2/3 t = 1

Figure 1.3: Geometric interpolation between two probability distributions ρ0(x) and ρ1(x).

x

ρ0(x)
ρ1(x)
ρ2(x)

Figure 1.4: Three nearly equidistant distributions ρ0(x), ρ1(x), and ρ2(x) with respect to
non-geometric measurements of probabilistic divergence.

other rather than shifting it horizontally. Instead, from a geometric standpoint, we might

wish for interpolatory behavior more similar to that illustrated in Figure 1.3; although this

can be accomplished by interpolating means of Gaussian distributions, when ρ(x) is not

described by a parametric model it is less clear how to recover such behavior.

This lack of geometric structure manifests itself in many measurements within the

probabilistic pipeline. As the most fundamental example of a geometric measurement,

consider the task of measuring distance between probability distributions in a way that

respects the geometry of the underlying domain, e.g. the three distributions over R in Fig-

ure 1.4. The hope is to construct a measure of distance between distributions that roughly

recovers distances between the peaks, at least in the case that the distributions are centered

about individual points.

Two well-known candidate measures of probabilistic divergence are the L1 distance

and Kullback-Leibler (KL) divergence, written in one dimension as

‖ρ0 − ρ1‖1 =
∫ ∞

−∞
|ρ0(x)− ρ1(x)| dx

and KL(ρ0|ρ1) =
∫ ∞

−∞
ρ0(x) ln

ρ0(x)

ρ1(x)
dx.
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These divergences essentially take a pointwise measure of divergence at each x ∈ R,

|ρ0(x) − ρ1(x)| for the L1 distance and ρ0(x) ln
ρ0(x)
ρ1(x)

for KL, and integrate it over the do-

main. They have the advantage of being computable in closed-form and are accompanied

with strong theoretical understanding within the contexts of Lebesgue theory and infor-

mation theory, respectively.

These pointwise divergences, however, are ill-suited for geometric tasks. In particular,

all three distributions ρ0, ρ1, and ρ2 in Figure 1.4 are nearly equidistant with respect to these

and related measures. Methods like kernelization [HSS08] can incorporate some local geo-

metric information, but do so in a weak way that does not scale with straight-line distance

as the means of these distributions are moved farther and farther apart.

1.4 Optimal Transportation

The non-geometric drawbacks of distributional divergences highlighted in §1.3 are well-

known, at least in the theoretical community, and a few potential resolutions exist for this

problem. Of primary importance is the theory of optimal transportation between probability

distributions, which builds a theory of probability from a distance measure between dis-

tributions incorporating distances along a geometric domain. Here, we summarize a few

key points of this theory relevant to our computational discussion in future chapters; we

refer the reader to [Vil03] for more detailed treatment.

Suppose M is a manifold with or without boundary; our goal is to compute a distance

between any two probability distributions over M. That is, we seek a positive definite,

real-valued function Prob(M) × Prob(M) → R+ satisfying the triangle inequality. The

primary distance function of interest in optimal transportation is the p-Wasserstein dis-

tance, computed as follows.

Given two probability distributions µ0, µ1 ∈ Prob(M), a “transportation plan” for

transporting the mass distribution described by µ0 to that described by µ1 is a probability

distribution π on the product space M×M, where we interpret π(U × V) as the amount

of mass to be displaced from U to V. To ensure that all the mass in µ0 is transported to µ1,

we impose the constraints

π(U ×M) = µ0(U) ∀U ⊆ M

π(M×V) = µ1(V) ∀V ⊆ M.
(1.1)
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Now, let Π(µ0, µ1) denote the set of transportation plans satisfying these constraints, and

let d(·, ·) be the geodesic distance function on M. Then, for p ≥ 1, we define the p-

Wasserstein distance as the optimal value

Wp(µ0, µ1)
def.
=

[

inf
π∈Π(µ0,µ1)

∫∫

M×M
d(x, y)p dπ(x, y)

]1/p

. (1.2)

Wp can be interpreted as the cost of the optimal plan transporting the mass of µ0 to that

of µ1, when moving mass from x to y costs d(x, y)p. If we use Eπ[·] to denote expecta-

tions with respect to π, the p-th power ofWp(µ0, µ1) can be understood as minimizing an

expectation with respect to π:

W
p
p (µ0, µ1)

def.
= inf

π∈Π(µ0,µ1)
Eπ[d(·, ·)

p]. (1.3)

When d(·, ·) is a distance, the p-Wasserstein distance satisfies all metric axioms and has

several attractive theoretical properties—see [Vil03, §7] for details.

Discrete approximations of this distance that are suited for computational applications

are difficult to obtain due to computational complexity. For instance, a discretization of

π ∈ Π(µ0, µ1) in (1.2) requires a quadratic number of optimization variables, since π(x, y)

is a function of two positions x, y ∈ M. Additionally, if we are to use general optimization

machinery to computeWp(µ0, µ1), we must be able to precompute or approximate d(x, y)

for any pair x, y ∈ M before even posing the linear program. This scaling, which appears

in many known discretizations ofWp, is prohibitively expensive for large meshes.

Computational challenges aside, there are a few special cases of Wp of interest in the

context of geometric data processing, highlighted below. These special cases will form the

foundation for algorithms and applications we consider in future chapters.

1.4.1 Earth Mover’s Distance

One special case of the p-Wasserstein distance occurs in the discrete case. Suppose p, q ∈

[0, 1]n are histograms over n bins, satisfying 1⊤p = 1⊤q = 1. Furthermore, suppose for

i, j ∈ {1, . . . , n}, we are given a value Dij ∈ R+ measuring the distance between bin i and

bin j; this matrix will serve the role of the geodesic distance function d(·, ·) in (1.2). Then,
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the earth mover’s distance (EMD) between p and q is defined as follows:

EMD(p, q)
def.
=



























minT ∑ij DijTij

s.t. T ≥ 0

T1 = p

T⊤1 = q.

(1.4)

The optimization variable T represents a discrete transportation plan, and the constraints

are discrete analogs of the marginalization constraints in (1.1).

This distance, coined and introduced to the vision community in [RTG00], is com-

monly applied as a metric for comparing histogram-based image and shape descriptors,

most popularly the SIFT descriptor of image keypoints [Low99]. The metric structure of p-

Wasserstein distances in (1.2) depends critically on the distance structure of the underlying

geodesic distance function d(·, ·), but the discrete formulation in (1.4) makes no assump-

tion on the matrix D. A proof of the triangle inequality for EMD(·, ·) when D is a metric

matrix is given in [CA14] by adapting a proof from the continuous theory of optimal trans-

portation.

1.4.2 One-Wasserstein Distance

The one-Wasserstein distance might be thought of as the most direct analog of the earth

mover’s distance from §1.4.1 to distributions over surfaces. Now, the distance matrix D is

replaced a a pairwise geodesic distance function d(·, ·). The resulting problem (1.2) with

p = 1 is measure-theoretical in nature, but is stated essentially using a continuous linear

program and benefits from similar analysis.

Both discrete and continuous versions of the one-Wasserstein distance benefit from

structure in the matrix of transportation costs D or d(·, ·). In particular, suppose y ∈ M is

on the shortest path from x ∈ M to z ∈ M. Then, the cost of moving mass from x to z is

identical to the cost of moving mass first from x to y and subsequently from y to z; this

is a reflection of the fact that d(x, z) = d(x, y) + d(y, z). We will leverage this property to

formulate efficient methods for evaluating the one-Wasserstein distance in future chapters.

A similar property does not hold for the two-Wasserstein distance, since

d(x, z)2 = [d(x, y) + d(y, z)]2 ≥ d(x, y)2 + d(y, z)2.
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We will use “one-Wasserstein distance” and “earth mover’s distance” interchangeably in

considering the case of distributions over continuous domains.

The one-Wasserstein distance can be computed in closed-form when M = R, the real

line. Suppose we are given a distribution ρ(x). We define its cumulative distribution function

CDFρ(x) as the integral

CDFρ(x)
def.
=
∫ x

−∞
ρ(x̄) dx̄.

Then,

W1(ρ0, ρ1) =
∫ ∞

−∞
|CDFρ0(x)−CDFρ1

(x)| dx. (1.5)

Sadly, it is hard to define cumulative distance functions in greater than one dimension, and

this formula is not easily extended to other domains.

1.4.3 Two-Wasserstein Distance

Many computational applications of optimal transportation focus on the one-Wasserstein

distance, due to its introduction to the vision community in [RTG00] and intuitive link to

discrete minimum-cost flow problems. This situation contrasts with the theory of optimal

transportation, which focuses on the p > 1 and in particular p = 2 cases.

The two-Wasserstein distance arguably is the best understood transportation distance

from a theoretical perspective:

W2
2 (µ0, µ1)

def.
= inf

π∈Π(µ0,µ1)

∫∫

M×M
d(x, y)2 dπ(x, y).

This distance inherits favorable properties from the Hilbert space structure of the L2 inner

product. One way to see a potential connection is to define a π-weighted inner product

over M×M as

〈 f , g〉π
def.
=
∫∫

M×M
f (x, y)g(x, y) dπ(x, y).

A similar product can be defined when f , g are replaced by vector fields when M is a

surface. Then, the objective for computingW2 can be written 〈d, d〉π. As an example math-

ematical application of this added structure, [JKO98] and subsequent papers use it to pose

PDEs like the Fokker-Planck equation as gradient flows in the Wasserstein metric, leading

to stable numerical integrators for this challenging problem.

Similarly to (1.5), the two-Wasserstein distance between one-dimensional distributions
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ρ0(x) and ρ1(x) can be calculated in closed form:

W2
2 (ρ0, ρ1) =

∫ 1

0
(CDF−1

ρ0
(x)−CDF−1

ρ1
(x))2 dx.

These formulas make the connection to functional analysis more concrete: The two-Wasserstein

distance corresponds to an L2 norm on inverse CDF space, while the one-Wasserstein dis-

tance corresponds to an L1 norm on non-inverted CDFs. Regretfully, this connection is

obscured in higher dimensions and on non-Euclidean domains.

1.5 Optimization over Wasserstein Distance

Regardless of the shape of M and choice of p ∈ R, the optimization in (1.2) for p-Wasserstein

distances is essentially a linear program that can be minimized using convex machinery.

This observation provides potential for relaxation of otherwise non-convex and difficult-

to-discretize problems in classical geometry.

As a simple example, suppose we are given m points x1, . . . , xm ∈ M and wish to find

their barycenter with respect to the shortest-path distance d(·, ·) on M to the p-th power. A

variational approach to finding such a point might be to solve the following minimization:

min
x∈M

m

∑
k=1

d(x, xk)
p.

This problem is non-convex whenever M is non-convex. Instead, however, we could solve

the following convex problem in Wasserstein distances:

min
ρ(x)∈Prob(M)

m

∑
k=1

W
p
p (ρ, δxk

).

This minimization finds the barycenter of a set of δ-functions centered at the xk’s, treated

as distributions rather than points.

The Wasserstein barycenter with δ-function constraints can be considered a relaxation

of the original barycenter problem. In particular, if ρ(x) is constrained to be a δ-function,

then the point it encodes necessarily will be the desired barycenter. When this δ con-

straint is relaxed, however, the optimal ρ(x) may not be a δ-function; in this case, it is less

clear that we can read off the optimal solution to the original problem. Unlike analogous



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 13

problems constructed using information-theoretic notions of probabilistic divergence, e.g.

minimizing a sum of KL divergences rather than transportation distances, we prove in

Chapter 5 that there exist reasonable conditions under which the relaxation is tight, that

is, under which the optimal ρ(x) is indeed a δ-function. Furthermore, empirical evidence

indicates that extracting peaks of ρ when it is not a δ-function is a reasonable heuristic for

the general barycenter problem.

This example illustrates a larger theme in the application of optimal transportation to

geometric data processing. The original geometric barycenter problem has relatively few

variables but is non-convex by construction. Contrastingly, the problem can be relaxed

to a larger-scale optimization, in this case over distributions rather than points, with the

potential of optimality in restricted cases.

There are many ways to derive this relaxation from geometric features to distributions.

For instance, in the context of graphical models, a similar optimization appears as the re-

laxed version of an a posteriori problem with pairwise potentials proportional to d(x, y)p.

Precise characterization of when these relaxations are expected to succeed largely remains

an open problem, with increased relevance given recent developments in numerical opti-

mization over Wasserstein space.

1.6 Related Work

Having established the basic language and challenges of optimal transportation, we now

briefly highlight existing computational techniques for transportation drawn from differ-

ent research fields. In future chapters, we will introduce additional background material

pertaining to the particular discussion at hand.

The original formulation of optimal transportation, introduced in [Kan42], involves a

linear program connecting a pair of distributions. The cost of moving density from one

point to another is specified using a fixed dense matrix of pairwise costs. As outlined

in [BDM09], a variety of linear program solvers and dedicated combinatorial schemes have

been devised for this problem. These methods scale up to a few thousand variables and

were applied to graphics applications in [BvdPPH11] and in [LD11]. They do not scale

to large domains such as images with millions of pixels, however, and are not tailored

for advanced problems like barycenter computation. Assorted approximations of EMD

truncate large distances [PW09] or are specialized to discrete domains like graphs [Tak10].
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Specific instances of optimal transportation can be efficiently solved by leveraging

tools from computational geometry. The transportation cost from continuous to point-

wise measures, for instance, can be computed either via multiscale algorithms [Mér11,

STTP14] or through Newton iterations on Euclidean spaces [dGBOD12, ZSG+13]. More

recently, this Newton-based approach for optimal transportation was extended to discrete

surfaces [dGMMD14]. Transportation distances between point clouds and line segments

also were approximated in 2D based on a triangulation tiling of the plane and greedy

point-to-segment clustering [dGCSAD11]. Another line of work proposes a dynamical

formulation for optimal transportation with an additional time variable. Most promi-

nently, for squared distance costs, Benamou and Brenier [BB00a] compute transportation

distances by minimizing the cost of advecting one distribution to another in time; Chap-

ter (2) presents a related technique for one-Wasserstein distances.

In graphics and vision, EMD and its optimal transportation counterparts have been

applied to a variety of problems. EMD was first introduced to the vision community

in [RTG00] and since has been used to compare histograms and other descriptors. More

recently, [BvdPPH11] applies approximations of optimal transportation to interpolate be-

tween BRDFs, intensity histograms, and other simple distributions; similar problems are

considered in [BRPP14] after defining the barycenter of a set of distributions with respect

to approximated transportation distances. [dGCSAD11, dGBOD12] compute transporta-

tion distances from two-dimensional point sets for application in shape processing and

blue noise generation, while [MMdGD11] employs a similar formulation to triangulation

problems. These distances also have been applied to geometry analysis [LD11, LPD11],

spherical parameterization [DT10], and matching [Mém11, SNB+12]. None of these ap-

proaches, however, is able to compute EMDs or related distributional distances intrinsic to

meshed geometry without aggressive approximation or restriction to a simpler domain.

1.7 Overview

This dissertation explores the application of optimal transportation, most prominently

evaluation of and optimization over Wasserstein distances, to solve practical problems

in geometric data processing. We will focus on a representative applications drawn from

relevant research areas:
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• Computer graphics: Evaluation of distances between points and features on geomet-

ric domains comprises a basic operation in computer graphics systems for model-

ing shapes and scenes as well as navigating collections of modeled data. Further-

more, interpolation between signals over images and shapes is a key problem in

computer graphics sharing structure with the “displacement interpolation” structure

of Wasserstein space.

• Surface correspondence: Optimizing for a map from one surface into another is a key

step in pipelines for geometry processing and medical imaging. Relaxing point-to-

point maps to a probability-valued space reveals tractable, convex problems for map-

ping that incorporate uncertainty and symmetry into the fundamental representation

of correspondences.

• Semi-supervised learning: Many problems in semi-supervised learning can be posed as

propagation of distribution-valued data over a graph domain; modeling in this space

naturally leads to optimization problems involving Wasserstein distances. Further-

more, through constructions similar to the basic example in §1.5, the same machinery

suggests a general pipeline for manifold-valued learning.

In each case, we will consider the fundamental challenges of evaluating and manipulating

geometric features as probability distributions over the relevant domain. Once we estab-

lish stable computational tools, we will sample the applications of this machinery as part

of larger systems for understanding signals on geometric domains.

We will begin by considering algorithms for evaluatingW1 (Chapter 2) andW2 (Chap-

ter 3) as well as derived quantities. These chapters mainly focus on the computational

challenges of transportation problems. Applications discussed in these chapters are rela-

tively direct extensions of the algorithms under consideration. In the remaining chapters,

we show how to apply Wasserstein distances to models for more complex computational

problems. Chapter 4 uses these distances to develop theoretical models for mapping be-

tween surfaces, yielding a flexible probabilistic framework that incorporates uncertainty

and symmetry into the registration pipeline. Chapter 5 uses optimal transportation to ap-

proach a problem in semi-supervised machine learning for predicting histogram-valued

labels on graphs. Finally, Chapter 6 concludes with a broader discussion of future chal-

lenges in applied optimal transportation and processing of geometric data.



Chapter 2

Earth Mover’s Distance on

Triangulated Surfaces

A common task in geometry processing is the computation of various classes of distances

between points on or inside a discrete surface. For example, many shape matching algo-

rithms need clues about the relative positioning and orientations of features to be matched,

which can be obtained from pairwise feature distances. It is desirable for such distances

to be true metrics, intrinsic, globally shape-aware, smooth, and insensitive to noise and

topology changes, without inducing considerable distortion on the underlying metric. In

particular, the level sets of the distance function should be evenly spaced, in a visual sense,

along the surface.

Early approaches to defining and computing intrinsic distances do not satisfy all of

these requirements. Despite their central place in classical differential geometry, geodesic

distances have many shortcomings for computational applications, such as being sensitive

to noise and topology and not being globally shape-aware, that is, not conforming to ge-

ometric features of the surface as distances increase [LRF10]. Spectral distances [CLL+05,

FPRS07, LRF10] overcome these shortcomings but can be unintuitive with unevenly-spaced

isocontours. The drawbacks of geodesic and spectral distances indicate that a hybrid ap-

proach is needed. The approximation of geodesic distance formulated in [CWW13] is an

important step in this direction. While these approximations are smoothed versions of the

geodesic distance that are robust and globally shape-aware, they may not be symmetric or

satisfy the triangle inequality.

16
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db dg d0
W d100

W

Figure 2.1: (left) Biharmonic (db) and geodesic distances (dg) from the foot of a camel
model; (right) distances computed using our approach with 0 (d0

W ) and 100 (d100
W ) spec-

tral terms. Unlike db, even our most aggressive spectral approximation d0
W has smooth,

isotropic, and evenly-spaced level sets, while adding spectral terms makes our distance
converge to dg. We visualize distances from a single source vertex to all others by color,
with blue indicating small distance and red indicating large distance. We also include
isocontours at equally-spaced intervals, shown in black.

In this chapter, we introduce a novel hybrid approach for computing a variety of sur-

face distances that have all of the desired properties. The key idea is to consider the more

general problem of computing distances between probability distributions supported on

the mesh. Hence, our goal is to compute the earth mover’s distance, or one-Wasserstein

distance, between distributions represented as functions on mesh vertices. Once we have a

means to compute the EMD between general distributions, we then consider various spe-

cializations including computation of a class of surface distances generalizing the geodesic

distance.

The computation of the EMD along a surface could be performed using a brute force

linear programming approach. This approach, however, not only is computationally in-

feasible on reasonably-sized meshes but also leads to a “chicken-and-egg problem,” since

such a formulation requires precomputing all pairwise geodesic distances between mesh

vertices. Therefore, one of our contributions is to make use of an alternative differential

formulation of EMD that can be discretized using finite elements (FEM). Furthermore,

a spectral expansion of the optimization variables reveals successive approximations to

EMD that are fast to compute and are themselves distance metrics.

Our approach has several benefits. First, our family of distances is general and provides
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a principled and efficient way to compute distances between probability distributions sup-

ported on various types of features. Second, if we consider δ-distributions centered on sur-

face points, we obtain a family of distances that ranges from the geodesic distance (since

the EMD between two δ-distributions reduces to geodesic distance) to a novel spectral

distance. The latter is perceptual convincing (Figure 2.1) despite having a simple formu-

lation in terms of the Green’s function of the Laplace-Beltrami operator. Third, inspired

by [RLF09], we develop a means of extending our distances from the surfaces to the sur-

rounding volume, obtaining a pointwise distance metric on R3 that reduces to geodesic

distance when the selected points are on the surface. Finally, our machinery enables a

number of applications to problems in path planning, surface analysis, and other fields.

2.1 Related Work

Existing approaches to defining and computing intrinsic distances broadly can be catego-

rized as “primal” or “dual.” A primal approach operates on the surface mesh directly to

obtain exact or approximate distances. For example, [MMP87, SSK+05] apply such an ap-

proach for finding exact geodesic distances (i.e. lengths of shortest paths constrained to lie

on the mesh), while [KS98, CHK13] approximate geodesic distances to achieve faster run

times. As discussed in [LRF10], however, despite their connection to classical differential

geometry, geodesics have a number of shortcomings for computational applications, such

as being sensitive to noise and topology and not being globally shape-aware.

These shortcomings inspired the development of dual methods for distance computa-

tion. Dual distances lift the problem to an alternative space, such as the set of real-valued

functions on the mesh, where relationships between function values are used as proxies

for inferring distances on the underlying domain. The most popular dual distances are

spectral distances, such as the diffusion [CLL+05], commute time [FPRS07], and bihar-

monic [LRF10] distances. These distances can be unintuitive, however, with isocontours

that are unevenly-spaced along the surface. This artifact is a fundamental problem, be-

cause dual approaches achieve global shape-awareness and robustness by averaging over

many paths whose structure can depend on the curvature and local diameter of the sur-

face.

The drawbacks of completely primal or dual methods indicate that a hybrid approach
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integrating properties of both approaches may be called for. In [CWW13] an approxima-

tion of geodesic distance was formulated by integrating the normalized gradient field of

the heat kernel. This approximation gives smoothed versions of the geodesic distance

parameterized by the time parameter of the heat kernel. While robust and globally shape-

aware, these are not guaranteed to be true distance metrics. Another hybrid distance was

proposed in [PBDSH13], where geodesics between sampled vertices are embedded in Eu-

clidean space using multi-dimensional scaling (MDS). The embedding is interpolated to

the entire mesh by solving a biharmonic equation, and Euclidean distances in the embed-

ding space provide a distance measure on the entire mesh. Since it is generally impossible

to embed geodesic distances exactly into Euclidean space, this approach is likely to give

inconsistent results when run repeatedly.

2.2 Distance Computation

2.2.1 One-Wasserstein Distances from Flows

A remarkable observation from the theory of optimal transportation provides a differential

strategy for evaluating W1 under suitable regularity. Suppose M is a compact surface

and µ0, µ1 ∈ Prob(M) admit densities ρ0, ρ1 : M → R+. Then, the optimal value of the

following convex optimization yields the EMD between µ0 and µ1:

W1(µ0, µ1) =



























inf
J

∫

M
‖J(x)‖ dx

s.t. ∇ · J(x) = ρ1(x)− ρ0(x)

J(x) · n(x) = 0 ∀x ∈ ∂M.

(2.1)

This optimization computes a vector field J on M whose boundary ∂M has normal n(x)

using a convex energy with linear constraints. In the language of fluid dynamics, it can

be thought of as an Eulerian alternative to the Lagrangian formulation (1.2) when p = 1,

i.e. points x ∈ M watch probabilistic mass move past along flow lines of J(x). Indeed,

(2.1) first arose as the “Beckmann problem” in network flow [Bec52]. See [San13] for fur-

ther analysis of this problem and its connection to optimal transportation, and see [Vil03,

§1.2.3], [FM02], and [San09] for a broader discussion.
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Figure 2.2: Vector fields J transporting mass to a distribution concentrated on the nose of
a horse from a distribution on (left) one of its hooves, (middle) all four of its hooves, and
(right) its tail.

In this chapter, we use (2.1) as a starting point for the computation of a discrete approx-

imation of the 1-Wasserstein distance between two probability distributions on M. With

only one unknown J(x) per point x ∈ M, this optimization scales linearly with the size of

the mesh rather than the quadratic scaling of (1.2).

2.2.2 Properties of the 1-Wasserstein Distance

Given its definition via geodesic distances in (1.2), it comes as no surprise that the 1-

Wasserstein distance W1 is intricately linked with the metric structure of M even if it is

computed using differential techniques. Here we state some properties relevant to our

target applications in geometry processing and graphics.

The Beckmann problem recasts the transportation problem (1.2) in Eulerian language

as finding the direction of steady-state flow of mass from ρ0 to ρ1. The vector field J can be

thought of the velocity of this flow; examples of J computed using the discrete method in

§2.3 are shown in Figure 2.2. Since an optimal flow moves mass as efficiently as possible,

the following proposition is intuitively clear and follows from the first-order optimality

conditions for (2.1):

Proposition 1. Let J solve the optimization (2.1) with given densities ρ0, ρ1. Then, flow lines of J

are geodesics on M.

Proof. If we let λ : M→ R be a Lagrange multiplier function for the divergence constraint,

then the Lagrangian of (2.1) is given by

L(J, λ) =
∫

M

[

‖J(x)‖+ λ(x)(∇ · J(x) + ρ0(x)− ρ1(x))
]

dx.
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Let J be a critical point of the variational problem (2.1) and introduce a variation vector

field δJ. Assume δJ
∣

∣

∂M
≡ 0 so that the Neumann boundary condition is maintained. Also

assume δJ(x) = 0 whenever J(x) = 0. Taking the variation of the Lagrangian in the δJ

direction yields

0 =
d

dε
L(J + ε δJ, λ)

∣

∣

∣

∣

ε=0

=
∫

M
δJ(x)

[

J(x)

‖J(x)‖
−∇λ(x)

]

dx.

Since this holds for all δJ, we have shown ∇λ(x) = J(x)/‖J(x)‖ whenever J(x) 6= 0. This

shows that ‖∇λ(x)‖ = 1, and thus by the eikonal equation λ is a geodesic distance func-

tion [Arn03]; hence flows of J(x) are either constant or geodesics.

A feature of the 1-Wasserstein distance distinguishing it from p-Wasserstein distances

with p > 1 is that its optimal transportation plans are not unique [Vil03, §2.4.6]. That is,

it is known that mass is transported along geodesics, but not how far a particle of mass

travels along any given geodesic. One optimal plan obtained from J(x) is the Dacorogna-

Moser construction [Vil03, Chapter 5]. In this construction, we let J solve (2.1) and define

ρt
def.
= (1 − t)ρ0 + tρ1. Now we consider the flow z : [0, 1] × M → M of the ordinary

differential equation (ODE):

ż = −
J(z)

ρt(z)
. (2.2)

So, z produces a curve t 7→ z(t, x0) ∈ M satisfying the ODE with initial conditions z(0, x0) =

x0. Moreover, since the velocity of this curve is proportional to J, it is also a geodesic. The

Dacorogna-Moser plan takes the mass at each x0 ∈ M and moves it to z(1, x0).

Next, by definition the Eulerian velocity of the Dacorogna-Moser flow is Vt(x) =

−J(x)/ρt(x). Consequently, the transport equation
∂ρt

∂t +∇ · (ρtVt) = 0 satisfied by (ρt, Vt)

shows ∇ · J = ρ1 − ρ0. This tells us that if ρ0 is advected under the flow z, the resulting

time-dependent family of densities is ρt.

Finally, the following result shows that one can recover pointwise geodesic distances

from the 1-Wasserstein distance in the special case of infinitely sharply peaked δ-distributions.

Proposition 2. Let δp be a delta distribution centered at p ∈ M, and let χQ be the uniform

distribution supported on a subset Q ⊆ M. Let J be the solution of the optimization problem (2.1).

Then,
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1. The flow lines of J are geodesics from p to all points of Q.

2. As Q → {q} and χQ → δq appropriately, then W(δp, χQ) converges to the geodesic dis-

tance between p and q.

Proof. The first part is a consequence of Proposition 1 while the second part follows from

the weak convergence properties of Wasserstein distances and the fact that Wasserstein

distances between delta-distributions always reduce to geodesic distances since there is

only one transport plan in Π(δp, δq), namely the plan that assigns all the mass at p to q.

2.3 Simplification and Discretization

The formulation of EMD in (2.1) is amenable to discretization on triangle meshes, com-

monly encountered in graphics and geometry processing. In this section we propose a

discretization using finite elements (FEM) that admits straightforward optimization.

2.3.1 Vector Field Decomposition

The Helmholtz-Hodge decomposition shows that any vector field J on M can be written

as [Sch95, PP03]

J(x) = ∇ f (x) +R · ∇g(x) + h(x),

whereR is the linear operator that rotates a vector 90◦ clockwise in the tangent plane. The

“gradient part” of J is the vector field ∇ f , the “curl part” of J is the vector field R · ∇g,

and the “harmonic part” of J is the vector field h satisfying∇ · h(x) = 0 and∇× h(x) = 0.

In case ∂M 6= ∅, we must additionally impose Neumann boundary conditions on J. This

boundary condition reflects the fact that shortest-path curves cannot leave the surface, so

when they reach they boundary they must become tangential.

Substituting this decomposition into (2.1) and using the fact that∇ · (R ·∇g) = ∇ · h =
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0 yields the equivalent optimization

W1(µ0, µ1) =











































inf
f ,g,h

∫

M
‖∇ f (x) +R · ∇g(x) + h(x)‖ dx

s.t. ∆ f (x) = ρ1(x)− ρ0(x)

g(x) = 0 and ∂ f (x)/∂n = 0 ∀x ∈ ∂M

∇ · h(x) = 0 and ∇× h(x) = 0 .

(2.3)

This form shows that f is determined independently of the optimization by solving ∆ f =

ρ1 − ρ0 with Neumann boundary conditions; this equation has a solution since ρ0 and ρ1

integrate to 1. We therefore computeW1 in two steps, one for finding f and one for finding

g and h; moreover, eliminating f from the optimization leaves an essentially unconstrained

optimization for g and h.

2.3.2 Spectral Reduction

We further simplify (2.3) using the spectral decomposition of the Laplacian ∆. First, we

obtain a basis for functions on M by solving the eigenvalue problem ∆φi = λiφi with

Dirichlet boundary conditions φi|∂M = 0. The gradients and rotated gradients of these

functions comprise a basis for gradient and curl fields of M. Additionally, the set of har-

monic vector fields on M admits a basis with dimension equal to two times the genus of

M [TACSD06].

Denoting a combined basis for curl fields and for harmonic fields as ψ1, ψ2, ψ3, . . ., we

therefore can write the unknown vector field asR ·∇g+ h = ∑i ciψi where ci are unknown

coefficients. After solving ∆ f = ρ1 − ρ0 to precompute the vector field v = ∇ f , (2.3) can

be recast as the unconstrained optimization:

W1(µ0, µ1) = inf
{ci}

∫

M

∥

∥

∥

∥

v(x) + ∑
i

ciψi(x)

∥

∥

∥

∥

dx . (2.4)

This objective is convex in the unknowns ci. Boundary conditions are not needed because

they have been incorporated into the ψi’s.
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2.3.3 Discretization via Finite Elements (FEM)

Using triangle mesh geometry to discretize M, we express scalar functions f : M→ R with

one value per vertex interpolated to faces using piecewise linear “hat” functions. Vector

fields are piecewise constant per face, allowing for a gradient operator ∇ taking functions

on the vertices to vector fields on the faces.

We solve the Poisson equation ∆ f = ρ1 − ρ0 with Neumann boundary conditions for

f using a first-order finite elements approach as in [Say08]. This sparse linear solve can

be carried out at interactive rates without the need for spectral approximation. Then, we

compute the curl and harmonic components of J. For the curl vector fields, we examine

two options for choosing a basis as above, trading off between speed and quality. The most

accurate solutions are obtained simply by writing g with one value per vertex. Alterna-

tively, we can improve timings with some cost in accuracy by writing g in a truncated basis

of low-frequency eigenvectors of the Laplacian matrix ∆. We use a method like [TACSD06]

to compute a basis for harmonic vector fields.

In our discretization, (2.4) becomes the following optimization:

inf
{ci}

∑
t∈T

at

∥

∥

∥

∥

vt + ∑
i

ciψit

∥

∥

∥

∥

, (2.5)

where T is the set of triangles in M, each triangle t ∈ T has area at, ψit is the value of

the basis element ψi on triangle t, and vt is the gradient of the piecewise-linear f defined

above.

If we use a truncated eigenbasis for g, we are only approximating the distance W1.

Effectively this constrains certain coefficients ci of the expansion in (2.4) to zero, and thus

these approximations overestimateW1. Figure 2.3 illustrates convergence as the number of

eigenfunctions is increased; even a small spectral basis provides a strong approximation

ofW1.

2.3.4 Properties of the Discretization

Since we discretized (2.4) we can expect its properties to hold approximately for the dis-

cretization. We can, however, prove that one important property of the discretization holds

exactly, even with spectral approximation:

Proposition 3. Minima of (2.5) satisfy the triangle inequality for discrete probability distributions
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Curl Grad

+ =

ρ0, ρ1 Hodge decomposition

2 22 42 62

82 100 150 200

Approximations of J EMD convergence

Figure 2.3: (top left) Two distributions ρ0, ρ1 on a sphere colored yellow and blue; (top
right) the Hodge decomposition of the vector field J taking ρ0 to ρ1; (lower left) approx-
imations of J with more and more curl basis functions (basis size on lower right of each
sphere); (lower right) EMD between ρ0 and ρ1 as a function of basis size.

represented using one value per vertex on M, even if the bases for curl and harmonic vector fields

are truncated.

Proof. One can show directly that the quantity in the right hand side of (2.1) satisfies the

properties of a distance without appealing to the equivalence of (2.1) with the 1-Wasserstein

distance. That is, the right hand side of (2.1) is symmetric and non-negative, vanishing only

if J = 0 or ρ0 = ρ1. Moreover, the triangle inequality holds by the linearity of the diver-

gence operator (so if Jij satisfies ∇ · Jij = ρi − ρj then ∇ · (J12 + J23) = ρ1 − ρ2 + ρ2 − ρ3 =

ρ1− ρ3) and the fact that ‖ · ‖ itself satisfies the triangle inequality. The same considerations

now guarantee that the discrete approximations of (2.1) are also distance functions.

Thus, our approximations ofW1 are in fact distances in themselves.
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function WEISZFELD-WASSERSTEIN(ρ0, ρ1)
⊲ ρ0, ρ1 have one value per vertex
⊲ Concatenate Bt’s vertically to obtain B

f ← ∆+(ρ1 − ρ0) ⊲ Solve for gradient part
v←∇ f ⊲ Compute gradient vector field

ct ← 0 ∀t ∈ T ⊲ Initialize vector field to zero
for i← 1, 2, 3, . . . ⊲ Iterate until convergence

rt ← Btc + wt ∀t ∈ T ⊲ Compute residuals
R← [r1; r2; · · · ; r|T|] ⊲ Concatenate residuals

D← diag3(‖r1‖
− 1

2 . . . ‖r|T|‖
− 1

2 ) ⊲ Diagonal of inverse residual roots repeated 3×

c← c− (DB)+DR ⊲ Least-squares for next iterate

return Jt = vt + Btc ∀t ∈ T

Figure 2.4: Weiszfeld algorithm for optimizing W1, using the steps outlined in [Li98]; in
challenging test cases the least-squares solve can be regularized slightly for numerical sta-
bility. A+R denotes the least-squares solution X to the system AX ≈ R.

2.4 Optimization

We derive an algebraic form for (2.5) by assembling the coefficients ci into a vector c and

the vectors ψit for a given triangle t into the columns of a matrix At ∈ R3×k. After defining

wt
def.
= atvt and Bt

def.
= at At, (2.5) becomes the minimization problem

inf
{c}

∑
t

‖Btc + wt‖ .

In this form, our optimization problem attempts to minimize a sum of Euclidean norms.

This classical problem, known as the “geometric median” or “continuous location” prob-

lem, appears in the optimization literature and can be solved using a variety of techniques.

The most well-known classical approach is Weiszfeld’s algorithm, originally proposed

in [Wei37], an iteratively-reweighted least-squares technique with convergence guaran-

tees [Pla11]. Figure 2.4 states the algorithm adapted to our problem.

In Figure 2.5, we also provide a lightweight optimization method based on the alternat-

ing direction method of multipliers (ADMM) [BPC+11]; this new approach derived below

suffers from fewer conditioning problems and solves an identical linear system in each

iteration, allowing it to be pre-factored for all EMD computations on a surface.
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function ADMM-WASSERSTEIN(ρ0, ρ1)
⊲ ρ0, ρ1 have one value per vertex
⊲ Concatenate Bt’s vertically to obtain B

f ← ∆+(ρ1 − ρ0) ⊲ Solve for gradient part
v←∇ f ⊲ Compute gradient vector field

for i← 1, 2, 3, . . . ⊲ Iterate until convergence
zt ← Btc + wt −

yt

β ⊲ Update vector field J

αt ←

{

1− 1
β‖zt‖

β‖zt‖ > 1

0 otherwise

Jt ← atzt

c←
(

∑t B⊤t Bt

)−1
[

∑t B⊤t

(

yt

β + Jt − wt

)]

⊲ Update coefficients; can pre-factor

yt ← yt + β(Jt − Btc− wt) ⊲ Update dual

return Jt ∀t ∈ T

Figure 2.5: ADMM algorithm for optimizingW1, derived in the supplemental document,
with parameter β > 0.

To derive the ADMM approach, we define per-triangle vectors Jt and solve the follow-

ing equivalent problem:

infc,J ∑t ‖Jt‖

s.t. Jt = Btc + wt.

This constrained optimization has the augmented Lagrangian:

Lβ
def.
= ∑

t

[

‖Jt‖+ y⊤t (Jt − Btc− wt) +
β

2
‖Jt − Btc− wt‖

2

]

.

ADMM alternates between three steps detailed below:

J ← arg min
J

Lβ(J, c, y)

c← arg min
c

Lβ(J, c, y)

yt ← yt + β(Jt − Btc− wt).

J update. We can optimize Lβ over J independently for each face since the sum over t

decouples in this step. Defining J0
t = Btc + wt and henceforth in this section dropping the

t subscript, we wish to solve

min
J

[

‖J‖+ y⊤ J +
β

2
‖J − J0‖2

]

.
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This objective is convex, and we could run generic machinery. But in fact we can solve this

problem in closed form via the derivation below.

We can simplify the optimization objective by “completing the square:”

‖J‖+ y⊤ J +
β

2
‖J − J0‖2 = ‖J‖+ y⊤ J +

β

2
(‖J‖2 − 2(J0)⊤ J) + const.

= ‖J‖+
β

2
‖J‖2 + (y− βJ0)⊤ J + const.

= ‖J‖+
β

2

[

‖J‖2 +
2

β
(y− βJ0)⊤ J

]

+ const.

= ‖J‖+
β

2

[

‖J‖2 − 2z⊤ J
]

+ const.

= ‖J‖+
β

2
‖J − z‖2 + const.

Here, we defined z
def.
= − 1

β (y− βJ0). So, we equivalently can solve the following optimiza-

tion:

min
J

[

‖J‖+
β

2
‖J − z‖2

]

‘

In this form, it is clear we can write J = az for some a ∈ R (to prove this separate J into

components orthogonal and parallel to z; the former must be zero). Then, we can write

min
a

[

|a|‖z‖+
β

2
(a− 1)2‖z‖2

]

,

or equivalently

min
a

[

|a|+ d(a− 1)2
]

,

where d = β
2‖z‖. This final simplification is solvable using elementary techniques. Clearly

a ∈ [0, 1], so |a| = a. If f (a) = a + d(a− 1)2, then f ′(a) = 1 + 2d(a− 1) = 0 =⇒ a =

1− 1
2d . We have a > 0 ⇐⇒ 1− 1

2d > 0 ⇐⇒ d > 1/2. Hence, in the end we must have

a =

{

1− 1
2d d >

1
2

0 otherwise.

c update. For this update step, we can write:

0 = ∇cLβ = ∑
t

[

−B⊤t yt − βB⊤t (Jt − wt) + βB⊤t Btc
]

.
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Dividing by β and moving terms shows:

(

∑
t

B⊤t Bt

)

c = ∑
t

B⊤t

(

yt

β
+ Jt − wt

)

.

This is a small matrix solve if we use the Laplace-Beltrami basis, and it can be prefactored.

2.5 Pointwise Distances

In this section we consider the problem of computing intrinsic distances between points

on surface meshes. Using our machinery, we first introduce a family of pointwise distance

metrics dk
W (·, ·), with k = 0, . . . , nvert, and state their theoretical properties. Next, we in-

vestigate the practical properties of these distances, including their behavior on realistic

meshes, qualitative comparison to commonly used distances, and empirical sensitivity to

mesh perturbations.

To define the distance between two mesh points p, q ∈ M, we consider two distribu-

tions δp, δq ∈ Prob(M) that have mass only at p and q, resp.; discretely, these distribu-

tions are nonzero only at individual vertices. Then, we define a distance metric on M as

dW (p, q)
def.
= W1(δp, δq). We can compute this distance using spectral approximation as in

Section 2.3 with basis size k and denote this approximate distance by dk
W (·, ·). Note that

k = 0 corresponds to the case when the curl and harmonic terms are removed altogether.

Properties of our family of pointwise distances follow directly from our discussion in

previous sections. Both in the discrete and the continuous cases, dk
W (·, ·) is a true distance

metric for all values of k. Also, given any two points p, q ∈ M, we have

d0
W (p, q) ≥ d1

W (p, q) ≥ · · · ≥ dnvert
W (p, q) = dg(p, q),

where dg(·, ·) is a discretization of geodesic distance. This final distance may not coincide

exactly with the discrete geodesic distance along triangle faces but still satisfies symmetry,

the triangle equality, and a discretization of the eikonal equation simultaneously.

The initial member of our family, d0
W (·, ·), has a particularly simple form suitable for

efficient implementation. This distance can be computed as
∫

M ‖∇ f (x)‖ dx, where f sat-

isfies ∆ f = δp − δq. It follows that f (x) = G(x, p)− G(x, q), where G(·, ·) is the Green’s
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function of Laplace-Beltrami operator, establishing that:

d0
W (p, q) =

∫

M
‖∇xG(x, p)−∇xG(x, q))‖ dx.

We can compare d0
W to a state-of-art spectral distance, the biharmonic distance of [LRF10],

which can be written

db(p, q) =

(

∫

M
(G(x, p)− G(x, q))2 dx

)
1
2

.

Despite the resemblance, there are fundamental differences: In addition to taking gradi-

ents, our distance is based on an ℓ1 rather than ℓ2 norm. It is a classical result that ℓ2-norms

have smaller embedding capacity than ℓ1 in that a point set that can be embedded isomet-

rically into ℓ2 can also be embedded into ℓ1, but not vice versa [DL09]. In the context of

geodesic distances on manifolds, the main obstruction is that non-unique geodesics cannot

be supported by Euclidean distance. Indeed, every point x on a shortest geodesic connect-

ing points p and q satisfies dg(p, x) + dg(x, q) = dg(p, q), and under isometric embedding

into Euclidean space this means that the image of x lies on the segment connecting the im-

ages of p and q under the embedding. For example, geodesic distances on the sphere can

be embedded isometrically in ℓ1 (c.f. [DL09]) but not ℓ2, since considering all the geodesics

connecting the two poles it follows that the entire sphere must be mapped to a straight

segment. This helps explain why existing spectral distances, largely based on ℓ2 norms,

have nonintuitive disparately spaced isocontours. Contrastingly, we will see that d0
W has

isocontours that are relatively evenly spaced; we attribute this property to the larger em-

bedding capacity of ℓ1-norm and to the fact that it has much in common with the larger

optimization for dW .

Experiments. Figure 2.6 shows examples of dk
W for increasing k on a square, a sphere, a

half sphere, and a torus. Even the purely spectral distance d0
W has isotropic and evenly-

distributed isolines, especially close to the center point. For example, our distances on the

square have convex level sets, unlike the biharmonic distance db, which is biased toward

the boundary. Similarly, our distances do not stretch at the top of the torus like db. As k in-

creases, dk
W converges to geodesic distance even in the presence of holes and a nonempty
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db d0
W d5

W d10
W d25

W d50
W

Figure 2.6: Convergence of dk
W for increasing k and comparison with biharmonic distances

db [LRF10]. Some anisotropic behavior is specific to these “primitive” shapes, which have
spectra with repeated eigenvalues that cannot be grouped in multiples of five; this phe-
nomenon is unlikely on general shapes.

boundary; [CWW13, §3.4] determines boundary conditions experimentally since bound-

ary conditions for the Varadhan theorem only hold when t→ 0.

Figure 2.7 shows examples of d0
W , d100

W , geodesic distances, and biharmonic distances

[LRF10] on a variety of meshes. As can be seen from these images, d0
W and d100

W both enjoy

the best of both the “primal” and “dual” worlds. Like the biharmonic distance, our dis-

tances are smooth and follow the natural cross-sections of the shape even in more distant

areas. Similarly to geodesic distance, we find that even d0
W has isotropic and evenly-spaced

level sets even though it is the lowest-order approximation of dg; this is in contrast to bihar-

monic distance that may have unevenly-spaced isocontours at different parts of a mesh.

A few examples in Figure 2.7 typify the advantages of our new distances. On the boy

model, we can see that biharmonic distances are strongly anisotropic in the horizontal
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Figure 2.7: Level sets of distance functions on a variety of shapes.

direction and unevenly spaced away from the center point; on the other hand, geodesic

distances on the back of the same model have numerous artifacts due to a lack of differ-

entiability. The bearing model also shows similar anisotropy for db, while as k increases

our distances are able to capture level sets on the cap of the mesh. Our distances also are

stable in the hair of the bust model, maintaining a reasonable distribution and smoothness

despite high-frequency changes in geometry.

Figure 2.8 demonstrates the stability of d0
W and d100

W to common geometric perturba-

tions. Figure 2.8(a) shows the insensitivity of these distances to per-vertex noise. Here the

addition of Gaussian noise to the mesh leads to little change in the distance as evidenced

by the coloring and the isolines. Figure 2.8(b) confirms the theoretical isometry invariance

property of our distance — the isolines and coloring are in near correspondence between

the armadillo model and its nearly isometric deformation. Finally, Figure 2.8(c) shows in-

sensitivity to tessellation; the distance remains almost unchanged as the mesh is refined

considerably.

Figure 2.9 compares our technique to [CWW13]. Metric properties hold for our dis-

tances at all levels of spectral truncation even after discretization, while their smoothed
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d0
W

d100
W

No noise σ = 0.46ℓ σ = 0.80ℓ
(a)

(b)

(c)

d0
W d100

W

Figure 2.8: Sensitivity of d0
W and d100

W to geometric noise; vertices are perturbed using a
Gaussian distribution (standard deviation written in terms of the average edge length ℓ

of the original mesh). (b) Stability to isometric deformation; (c) stability to remeshing
(examples have 146, 598, and 9337 vertices, resp.).
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Figure 2.9: For fixed p, q ∈ M, distances using [CWW13] fail to satisfy the triangle in-
equality d(p, x) + d(x, q) ≥ d(p, q) at the red points x ∈ M, shown for various smoothing

parameters m; level sets of f (x)
def.
= min(d(p, x), d(q, x)) are shown in black. Contrastingly,

dk
W is guaranteed to satisfy the triangle inequality even after discretization; numerical ex-

periments in the bottom row confirm this relationship.
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Mesh nvert dg dh db d0
W d20

W d100
W

Bearing 3182 0.050 0.002 3.52 3.86 30.8 41.4
David 5197 0.096 0.003 10.09 6.18 86.5 121.2
Dog 3716 0.056 0.002 4.66 3.27 38.7 59.8
Teapot 3900 0.063 0.002 6.25 3.87 45.2 57.9
Man 10050 0.18 0.006 42.2 23.2 312.0 511.9

Table 2.1: Timing in seconds for selected experiments in Figure 2.7; the time represents
time taken to compute distances from a single source to all targets. In addition to geodesic
distances dg from fast marching, we include timings reported by the optimized C++ im-
plementation of [CWW13] as dh.

Mesh size M for dg M for dh M for db M for d0
W

nvert ntri 2 100 2 100 2 100 2 100

2k 4k 0.06 2.60 0.03 0.23 0.03 0.58 0.03 1.22
4k 9k 0.13 6.25 0.05 0.45 0.06 1.42 0.06 2.84
8k 16k 0.24 11.76 0.10 0.97 0.14 4.97 0.14 7.33

16k 32k 0.70 34.93 0.20 1.97 0.33 13.07 0.34 18.45
53k 105k 2.74 121.94 0.71 10.36 1.03 51.99 0.97 68.53

111k 222k 8.06 432.28 2.04 15.14 10.91 289.02 11.00 322.11

Table 2.2: Timing in seconds for all-pairs shortest paths between a sampling of M points.

geodesics at larger and larger diffusion times no longer benefit from an infinitesimal rela-

tionship with geodesic distances. This deviation can cause the triangle inequality to fail, as

shown in red. Their smoothed distances also are not symmetric, that is, they may not sat-

isfy d(a, b) = d(b, a). While averaging forward and backward distances repairs this issue,

it comes at the cost of considerably slower computation for tasks like finding the distance

from a single source to all targets, replacing a single linear solve with one for each target.

Computation time. Table 3.1 reports time to compute single-source distances, includ-

ing geodesic and biharmonic, for a variety of meshes on a 2.40GHz Intel Xeon processor

with 23.5GB RAM. The implementation is done in MATLAB, using the ADMM optimiza-

tion in Figure 2.5. Our new spectral distance d0
W is efficient to compute by factorizing

the Laplacian and performs similarly to the biharmonic distance; in fact, in this test d0
W

outperforms db considerably on larger meshes because it requires Green’s functions of

the Laplace-Beltrami operator rather than the denser bilaplacian operator. Computing

smoothed geodesic functions dk
W introduces computational cost scaling with the number

of eigenfunctions.

Table 2.2 compares timing of computing all-pairs distances between a subsample of
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points on assorted meshes using dg, db, and d0
W . As in Table 3.1, the linear solve step for

computing d0
W takes less time than that for db; integrating the derivative of the Laplace-

Beltrami Green’s function, however, requires an additional iteration over the faces of the

mesh, adding computation time for d0
W in this test. Here, db and d0

W compute one Green’s

function per source point and then only find pairwise distances between the prescribed

points; no such optimization is available for dg, which must compute distances to all ver-

tices from each source point.

2.6 Volumetric Distances

The problem of computing volumetric distances respecting a given boundary mesh arises

in a number of applications, e.g. path planning. Since the straightforward approach of

computing shortest paths within a 3D polyhedron is NP-hard [CR87], previous work in-

troduced an approach based on interpolating a prescribed distance on the boundary mesh

to the surrounding space inside and outside the shape [RLF09]. While this approach is

efficient, it requires an MDS-like embedding of prescribed pairwise distances and hence

cannot exactly interpolate the geodesic distance.

Here, we show how our machinery can be used to obtain a volumetric distance re-

producing geodesic distance when restricted to the boundary mesh. Like [RLF09], we

use barycentric coordinates but in a fundamentally different way—by considering them as

distributions and computing EMDs between them.

For a given point x in the interior of M, its barycentric coordinates with respect to a

mesh M with vertices vi, i = 1, . . . , nvert, are weights wi(x), i = 1, . . . , nvert. We recall three

properties of these weights: the Lagrange property wi(vj) = δij (the Kronecker delta); the

partition of unity property ∑i wi(x) = 1 with wi(x) ≥ 0; and the linear precision property

∑i wi(x)vi = x.

To compute our volumetric distance between p and q, we consider their barycentric

coordinates {wi(p)}nvert
i=1 and {wi(q)}

nvert
i=1 as distributions µp, µq ∈ Prob(M); this is possi-

ble due to the partition of unity property. Then, our distance is defined as dW (p, q)
def.
=

W1(µp, µq); as before, this is a true distance metric. If dW (p, q) = 0, then µp = µq, and so

p = q, because by linear precision property, barycentric coordinates determine the point

uniquely.

Our volumetric distance satisfies all of the relevant properties listed in [RLF09]. IfW1 is
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Figure 2.10: Examples of volumetric distances. The left image in each pair shows a sur-
face (Beethoven bust, spiral, octopus resp.) cut by two planes; the right image shows the
volumetric distance function on the two planes.

computed without approximation, dW (p, q) reduces to geodesic distance when p, q ∈ M;

indeed, due to the Lagrange property, in this case µp = δp, µq = δq, and we are back in

the setting of previous section. Furthermore, the following maximum principle holds: if

p and q have non-negative barycentric coordinates then the volumetric distance between

p and q is no more than the geodesic diameter of the boundary mesh, i.e. dW (p, q) ≤

maxx,y∈M dg(x, y); this bound follows directly from (1.2) by upper-bounding d(x, y). Also,

dW is bounded below by Euclidean distance, that is dW (p, q) ≥ ‖p− q‖.

Our differential definition (2.1) of dW continues to be a distance metric when we allow

µp and/or µq to have negative values in its density function, despite the weaker connec-

tion to the theory of optimal transportation. In fact, even our proof of the upper bound

dW (p, q) ≥ ‖p − q‖ remains valid. This relaxation allows us to consider any choice of

p, q ∈ R3 rather than restricting to the interior or convex hull of M, even if coordinates

become negative.

Experiments. In our experiments, we use mean value coordinates [JSW05]; these coordi-

nates can become negative both in the interior and exterior of M, but as noted above this

departure from Prob(M) does not raise any issues.

Figure 2.10 shows examples of this distance function in the space around a surface

mesh. As before, we select a single source point and then compute the distance to other

points in the volume near the object. We visualize these distances on two orthogonal

planes using the same color coding as in the previous section.

Given p, q ∈ R3, we generate a path from p to q via gradient descent on dW (·, q) starting

at p. Since our distance is fast to compute, its gradient can be computed numerically in

relatively little time. Figure 2.11 shows examples of paths from such a process, stepped

using simple forward Euler integration. Remarkably, the paths are tuned to the geometry
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Figure 2.11: Paths constructed by gradient descent on the volumetric distance in the inte-
riors of surfaces.

of the boundary mesh and connect points in the interior without crossing M.

2.7 Additional Applications

Here we suggest some less obvious applications of W1 to assorted geometry problems.

These applications demonstrate the stability of our approach and suggest additional classes

of problems for which it can be a valuable tool.

Path planning. We can incorporate the convex energy forW1 into larger optimizations to

formulate applications of our distances to more complex problems. Although the methods

in Figures 2.4 and 2.5 no longer apply directly to the problems below, they are all convex

and can be optimized using interior point methods.

As an initial example, the distributions ρ0 or ρ1 can be promoted to optimization vari-

ables to solve path planning problems. For example, suppose M is a mesh of a floor plan

and that ρ0 approximates a distribution of occupants in different parts of M. To find the

most efficient way to move all the occupants to a restricted subset of points S ⊆ M, we can

solve the optimization

inf
ρ1

W1(ρ0, ρ1)

s.t. ρ1(x) = 0 ∀x 6∈ S

ρ1(x) ≥ 0 ∀x ∈ M
∫

M
ρ1(x) dx = 1.

(2.6)

Adding a small multiple of
∫

M ρ1(x)2 dx has a regularizing effect on ρ1 when smoothness
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ρ0 S ρ1 J f g

Figure 2.12: A distribution ρ0 on a maze; a set S ⊆ M of points marked in black; ρ1 from
optimizing (2.6); the corresponding field J; and the functions f , g : M → R such that
J = ∇ f +R · ∇g.

(a) (b)

Figure 2.13: (a) Fuzzy geodesic function between the two red points computed us-
ing [SCF10]; (b) vector field norms ‖J‖.

is desired.

Figure 2.12 shows this optimization applied to solving a maze. In this example, ρ0 is

concentrated at two different points on the maze M, which has two possible exits. The

optimization (2.6) matches the two points to their closest exits; this can be seen in the

vector field J, which traces a path from the starting points to their targets. We also show

the decomposition J = ∇ f + R · ∇g. Here, the gradient part ∇ f encodes large-scale

motions in the maze while the rotational part R · ∇g helps mass round corners in the

maze efficiently; the quality of f alone reflects a connection to path planning algorithms

using harmonic functions, e.g. [CBW90].

Fuzzy geodesics. Recall our intuition that the vector field J(x) is large at points x that see

mass move past as ρ0 advects toward ρ1 according to the optimal matching. Suppose ρ0

and ρ1 are concentrated near two points p0, p1 ∈ M, resp. Then, J(x) is large near geodesic

curves between p0 and p1.

Inspired by [SCF10], the norm ‖J(·)‖ : M → R provides a “fuzzy geodesic” function

related to the likelihood that a geodesic connecting points in the support of ρ0 to points in
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Figure 2.14: Distances computed from distributions (left) on the ears and tail of a pig model
and (right) from the collar of a human model.

the support of ρ1 should pass through x ∈ M. In particular, we can put small Gaussians

around p0 and p1 and record ‖J‖ resulting from optimizing (2.1); an example is shown in

Figure 2.13.

Distance to features. There are many ways to use our framework to formulate distances

that are aware of features rather than points. Most directly, to compute the distance from

p ∈ M to S ⊆ M, we can solve (2.6) with ρ0 concentrated at p and ρ1 restricted to have

support on S. A more efficient alternative, however, is suggested in the proof of Proposi-

tion 1. When computingW1, the Lagrange multiplier λ : M → R for the ∇ · J = ρ1 − ρ0

constraint satisfies the eikonal equation and hence is a geodesic distance. Thus, we can

compute a geodesic function λ that is aware of S by computingW1 between the uniform

distribution on M and a distribution concentrated on the feature of interest and using the

dual multipliers. Figure 2.14 shows this dual variable distance for computing distances to

multiple points on a surface and distances to a curve.

Anisotropic distances. As suggested in [San13], the integral
∫

M ‖J(x)‖ dx from (2.1) can

be replaced with a more general integral
∫

M ‖A(x) · J(x)‖ dx to yield anisotropic trans-

portation distances by modifying the metric of M. Figure 2.15 shows two examples in

which the function A is a nonnegative scalar guiding shortest paths to favorable areas or

avoiding obstacles. In particular, inspired by [LGNL10] we are able to compute distances

along a brain model that favor motion along ridges by weighting J using mean curvature.

More generally, matrix-valued A can be used favor diffusion in a single direction; we leave

consideration of the design of A to future work.
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(a) (b)

Figure 2.15: (a) The example from Figure 2.3 recomputed using weights on J shown on the
left; the resulting J avoids the high-weight area. (b; left) dW on a brain model; (b; right)
anisotropic distances weighted to favor mean curvatures similar to that of the source point;
the anisotropic distances on the brain model favor the gyri because the source point is on
top of a ridge.

Barycenters. [AC11] suggests minimizing a sum of transportation distances to find the

barycenter of a set of distributions on a surface. Rather than resorting to approximations,

e.g. in [BvdPPH11, BRPP14], our formulation ofW1 allows us to solve this problem directly

on a surface mesh.

Suppose we are given a set {ρ1, ρ2, . . . , ρk} ⊂ Prob(M). We can find a barycenter of

these distributions by solving

inf
ρ

k

∑
i=1

[W1(ρi, ρ)]2

s.t. ρ(x) ≥ 0 ∀x ∈ M
∫

M
ρ(x) dx = 1.

(2.7)

The distancesW1(ρi, ρ) are squared to imitate the units of the classical barycenter problem

between points on M.

Figure 2.16 shows two applications of this optimization. In the first example, the

barycenter of six distributions concentrated on the fingers and side of a hand model is

centered at the upper palm; this output accurately represents points equally close to those

favored by the six distributions. In the second example, a pointwise barycenter problem is

encoded probabilistically using delta distributions at four points on the surface. The opti-

mized ρ has sharp support, making it possible to isolate a single point as the barycenter.

We find empirically that the barycenter of a set of delta distributions is strongly peaked

about a single point but defer a discussion of theoretical sharpness properties future work.

In this case, however, the optimal optimization objective is exactly the sum of squared
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(a) Distributions (b) Barycenter (c) Pointwise

Figure 2.16: (a) Six probability distributions on a surface; (b) the barycenter of these dis-
tributions from (2.7); (c) the barycenter of the four blue points in red, computed using the
same technique.

geodesic distances from the barycenter to each of the input points. In this way, this strategy

reveals an alternative to [PBDSH13] for averaging sets of points on a surface.

2.8 Discussion and Conclusion

It is possible to envision many applications and extensions of the approaches to distance

computation presented in this chapter. As we have seen in many instances above, incorpo-

rating EMD and its spectral approximations into various geometric optimizations yields

meaningful intrinsic information about the surface that easily and efficiently can be incor-

porated into machinery for larger problems.

While the experiments in Figures 2.7, 2.9, and others show that our technique has de-

sirable properties compared to fast approximations, its runtime is limited thanks to the

iterative optimization. Adjustments to methods for computing dk
W could yield gains in ef-

ficiency. Approximating the least-squares solves for the Weiszfeld algorithm in Figure 2.4

may improve timing but more care is needed to guarantee convergence. The ADMM pa-

rameter β in Figure 2.5 could be adjusted automatically, e.g. via [HYW00], and alterna-

tive methods for geometric median problems may require fewer iterations [Li98, QSZ02,

ZTS03, PJ08]. More generally, the optimization (2.1) is a second-order cone program, which

can be minimized using commercial solvers.
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Our distances also could be extended in various ways. The EMD is the p = 1 mem-

ber of the class of p-Wasserstein distances between distributions. While we take advan-

tage of the simple structure of the p = 1 case, Wasserstein distances with p > 1 have

stronger regularity properties and can be evaluated using somewhat more involved flow

techniques [Vil03]. While some specialized numerical methods exist for this case, our FEM

discretization and spectral approximations may provide some insight into these problems

and their applications in graphics.

We have focused on solving the differential EMD optimization problem (2.1) on trian-

gle meshes, since they are the most common structures approached in geometry process-

ing, but our formulation largely is general and could be applied to other structures ad-

mitting differential operators. For example, [LLZ13, LZ13] and others present divergence,

gradient, and Laplacian operators acting directly on point clouds and hence easily can be

substituted into our formulation. More abstractly, [JLYY11] and others adapt Helmholtz-

Hodge structure to functions on graphs, revealing potential machine learning applications

of our work.

Even without these extensions, our distances stand alone as practical tools for geome-

try processing. Even the lowest-order approximations of our distances are stable, smooth,

and geometrically meaningful, and more accurate versions are easily evaluated using

the proposed iterative method. Given the innumerable existing uses of EMD, spectral

and geodesic distances, and volumetric distance, we are confident that differential earth

mover’s distances will be a useful and straightforward alternative for characterizing the

intrinsic geometry and relationships between features of surfaces.



Chapter 3

Convolutional Wasserstein Distances

The techniques in the previous chapter were specific to computingW1. This distance be-

tween distributions is geometrically meaningful, but optimizations like barycenter com-

putation from §2.7 required manipulation of somewhat unnatural quantities like W2
1 to

avoid a lack of strict convexity. In this chapter, we instead develop a numerical technique

for approximating the two-Wasserstein distance W2, which is better suited for optimiza-

tion problems in which the variable is a distribution minimizing a sum of transportation

distances. Rather than discretizing these distances directly, we will satisfy ourselves with

a regularized approximation.

3.1 Introduction

Recent developments show that incorporating two-Wasserstein distances into optimiza-

tion objectives yields powerful tools for manipulating distributions for tasks like density

interpolation, barycenter computation, and correspondence estimation. As a simple ex-

ample, suppose we are given two delta functions δx, δy centered at x, y ∈ R2. While the

Euclidean average (δx+δy)/2 is bimodal at x and y, solving for the distribution that min-

imizes the sum of squared two-Wasserstein distances to δx and δy yields a Dirac at the

midpoint (x+y)/2, thus offering a geometric notion of the midpoint of two distributions.

This behavior is specific to optimizations involving the p-Wasserstein distance with p > 1

rather than p ≥ 1; when p = 1, an analogous optimization admits multiple optima includ-

ing the undesirable Euclidean average.

43
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A limiting factor in two-Wasserstein distance evaluation is the complexity of the un-

derlying minimization problem. As with W1, the linear program describing W2 has a

quadratic number of variables and time complexity scaling at least cubically in the size of

the domain [Bc99]. A flow-based formulation forW2 similar to (2.1) exists, but it exhibits

quadratic scaling identical to the original problem due to the introduction of an additional

independent variable t ∈ [0, 1] [BB00b]:

W2(µ0, µ1)
2 =



























































inf
J,ρ

∫ 1

0

∫

M

‖J(x, t)‖2

ρ(x, t)
dx dt

s.t. ∇ · J(x, t) =
∂ρ(x, t)

∂t

J(x, t) · n(x) = 0 ∀x ∈ ∂M, t ∈ [0, 1]

ρ(x, 0) = ρ0(x) ∀x ∈ M

ρ(x, 1) = ρ1(x) ∀x ∈ M

(3.1)

Furthermore, this optimization problem involves a convex but nonlinear objective, requir-

ing e.g. semidefinite or cone constraints to solve it using standard optimization machinery.

This chapter introduces a fast, scalable numerical framework for problems involving

two-Wasserstein distances over geometric domains. This work draws insight from recent

advances in machine learning approximating optimal transportation distances using en-

tropic regularization [Cut13]. We adapt this approach to continuous domains using faith-

ful finite elements discretizations of the corresponding optimization problems. This yields

a novel approach to optimal transportation without computing or storing pairwise dis-

tances on arbitrary shapes.

After discretization, our algorithm for approximating Wasserstein distances becomes

a simple iterative scheme with linear convergence, whose iterations require convolution

of vectors against discrete diffusion kernels—hence the name convolutional Wasserstein dis-

tance. We also leverage our framework to design methods for interpolation between dis-

tributions, computation of weighted barycenters of sets of distributions, and more com-

plex distribution-valued correspondence problems. Each of these problems is solved with

straightforward iterative methods scaling linearly in the size of the data and domain. We

demonstrate the versatility of our methods with examples in image processing, shape anal-

ysis, and BRDF interpolation.
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3.2 Related Work

The key contribution of this chapter is a framework for aggregating and averaging in-

formation from multiple densities using W2. Many of the tasks we consider have been

proposed in previous work, although the accompanying computational tools do not scale

to the applications we consider. Examples include barycenter computation [AC11], density

propagation over graphs [SRLB14], and computation of “soft” correspondence maps [SNB+12].

These problems are typically solved via a multi-marginal linear program [AC11, KP13],

which is infeasible for large-scale domains. One work-around approaches the dual of the

linear program using L-BFGS with subgradient directions [COO14], but this strategy suf-

fers from poor conditioning and noisy results.

Regularization provides a promising way to approximate solutions of transportation

problems and derived models. While interior point methods long have used barrier func-

tions to transform linear programs into strictly convex problems, entropic regularizers

in the particular case of optimal transportation provide several key advantages outlined

in [Cut13]. With entropic regularization, optimal transportation is solved using an iterative

scaling method known as the iterative proportional fitting procedure (IPFP) or Sinkhorn-

Knopp algorithm [DS40, Sin67], which can be implemented in parallel GPGPU architec-

tures and used to compute e.g. the barycenter of thousands of distributions [CD14].

Here, we leverage the efficiency of iterative scaling methods for entropy-regularized

transport and related problems, principally [Cut13, BCC+15]. By posing regularized trans-

port in continuous language, we couple the efficiency of these algorithms with discretiza-

tion on domains like surfaces and images. This change is not simply notational but rather

leads to much faster iteration through connection to Gaussian kernels on images and the

heat kernel of a surface; these kernels can be evaluated without precomputing a matrix of

pairwise distances. We demonstrate applications of the resulting methods for large-scale

transport on tasks relevant to computer graphics applications.

3.3 Preliminaries

We consider a compact, connected Riemannian manifold M rescaled to have unit volume

and possibly with boundary, representing a domain like a surface or image plane. We use
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d : M × M → R+ to denote the geodesic distance function, so d(x, y) is the shortest dis-

tance from x to y along M. We use Prob(M) to indicate the space of probability measures

on M and Prob(M × M) to refer to probability measures on the product space of M with

itself. To avoid confusion, we will refer to elements µ0, µ1, ... ∈ Prob(M) as marginals and

to joint probabilities π0, π1, ... ∈ Prob(M×M) as couplings.

We refer the reader to §1.4 for basics of optimal transportation on M. More specific to

our current discussion, the modified transportation problems we consider involve quanti-

ties from information theory, whose definitions we recall in the remainder of this section.

We additionally refer the reader to [CT06] for detailed discussion.

A coupling π is absolutely continuous with respect to the volume measure when it ad-

mits a density function p, so that π(U) =
∫

U p(x, y) dx dy , ∀U ⊆ M × M. To simplify

notation, we will use π to indicate both the measure and its density.

The (differential) entropy of a coupling π on M×M is defined as the concave energy

H(π)
def.
= −

∫∫

M×M
π(x, y) ln π(x, y) dx dy. (3.2)

By definition, H(π) = −∞ when π is not absolutely continuous, and H(π) = 0 when π is

a measure of uniform density π(x, y) ≡ 1.

Given an absolutely continuous measure π ∈ Prob(M×M) and a positive function K

on M×M, we define the Kullback-Leibler (KL) divergence between π and K as

KL(π|K)
def.
=
∫∫

M×M
π(x, y)

[

ln
π(x, y)

K(x, y)
− 1

]

dx dy. (3.3)

3.4 Regularized Optimal Transportation

In this section, we present a modification of two-Wasserstein distances suitable for compu-

tation on geometric domains. In our exposition, we first assume that the pairwise distance

function d(·, ·) is known and then leverage heat kernels to alleviate this requirement.

3.4.1 Entropy-Regularized Wasserstein Distance

Following e.g. [Cut13, BCC+15], we modify the objective of the optimal transportation

problem by adding an entropy term H(π) promoting spread-out transportation plans π.
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γ = 0 γ = 0.0001 γ = 0.001 γ = 0.01 γ = 0.1

Figure 3.1: Transportation plans with different values of γ, with 1D quadratic costs;
µ0, µ1 ∈ Prob([0, 1]) are shown on the axes.

The entropy-regularized 2-Wasserstein distance is then defined as:

W2
2,γ(µ0, µ1)

def.
= inf

π∈Π

[

∫∫

M×M
d(x, y)2 π(x, y)dxdy− γH(π)

]

, (3.4)

where we have used the shorter notation Π for Π(µ0, µ1). This regularized version of

optimal transport is often called the “Schrödinger problem,” and we refer to [Léo12] for

discussion of its connection to non-regularized transport, recovered as γ→ 0.

When γ > 0, the solution π to (3.4) is an absolutely continuous measure, since oth-

erwise the entropy term is indefinite. The term −H(π) also makes the objective strictly

convex, and therefore a unique minimizer exists. Figure 3.1 illustrates couplings π ob-

tained using increasing values of γ, resulting in increasingly smooth solutions.

We can associate the distance d(·, ·) to a kernel Kγ of the form:

Kγ(x, y) = e−d(x,y)2/γ, d(x, y)2 = −γ lnKγ(x, y). (3.5)

By combining (3.3), (3.4) and (3.5) algebraically, the entropy-regularized Wasserstein dis-

tance can be computed from the smallest KL divergence from a coupling π ∈ Π to the

kernel Kγ:

W2
2,γ(µ0, µ1) = γ

[

1 + min
π∈Π

KL(π|Kγ)

]

. (3.6)

This minimization is convex, due to the convexity of KL on the first argument π, with lin-

ear equality constraints induced by the marginals µ0 and µ1. As observed in the discrete

case [Cut13, BCC+15], it provides a new interpretation for the regularized transportation
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problem: the optimal plan π is the projection of the distance-based kernel Kγ onto Π, en-

forcing marginals while minimizing the loss of information quantified by KL divergence.

3.4.2 Wasserstein Distance via Heat Kernel

So far, our method requires a distance function d(·, ·) to construct Kγ. This assumption is

adequate for domains with analytical and fast algorithms for convolution against Kγ, like

the image plane. It becomes cumbersome, however, for arbitrary manifolds, since precom-

puting pairwise distances requires quadratic space and considerable computation time.

Instead, we propose an alternative to the distance-based kernel Kγ making our method

suitable for arbitrary domains.

DefineHt(x, y) to be the heat kernel determining diffusion between x, y ∈ M after time

t; in particular,Ht solves the heat equation ∂t ft = ∆ ft with initial condition f0 through the

map

ft(x) =
∫

M
f0(y)Ht(x, y) dy.

Similar to [CWW13], we associate the heat kernel Ht to the geodesic distance function

d(·, ·) based on the Varadhan’s formula [Var67], which states that the distance d(x, y) can

be recovered by transferring heat from x to y over a short time interval:

d(x, y)2 = lim
t→0

[−2t lnHt(x, y)] . (3.7)

Setting t
def.
= γ/2 in (3.7), we approximate the kernel Kγ as:

Kγ(x, y) ≈ Hγ/2(x, y),

and, as an implication, we can replace the convolution of an arbitrary function f against

Kγ by the solution of the diffusion equation for a time step t = γ/2 and with f as the initial

condition. We thus denoteW2,Ht
as the diffusion-based approximation ofW2

2,γ, i.e.:

W2
2,Hγ/2

(µ0, µ1)
def.
= γ

[

1 + min
π∈Π

KL(π|Hγ/2)

]

. (3.8)

Developing conditions for convergence ofW2
2,Hγ/2

as γ→ 0 is a challenging topic for future

research.

AlthoughW2,H andW2,γ are symmetric in µ0 and µ1, the self-distancesW2,H(µ, µ) and
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W2
2,γ(µ, µ) are never exactly zero for a given µ. We also observe that these values only

satisfy the triangle inequalities approximately, notably for small γ (see [Cut13, Theorem

1]). Hence, as in [CWW13], the regularized quantities we manipulate are not distances,

strictly speaking. These approximations are, however, a very small price to pay to obtain

algorithms scaling near-linearly with the size of the mesh.

3.5 Convolutional Wasserstein Distance

We now detail our numerical framework to carry out regularized optimal transportation

on discretized domains. Our method computes regularized Wasserstein distances by con-

structing optimal transportation plans through iterative kernel convolutions—we thus

name the results convolutional Wasserstein distances. In what follows, we use ⊘ and ⊗ to

indicate elementwise division and multiplication.

Requirements for computing convolutional distances are minimal:

• The domain M, discretized into n elements, with functions and densities represented

as vectors f ∈ Rn.

• A vector a ∈ Rn
+ of “area weights,” with a⊤1 = 1, defined so that

∫

M
f (x) dx ≈ a⊤ f .

• A symmetric matrix Ht discretizing the kernelHt such that

∫

M
f (y)Ht(·, y)dy ≈ Ht(a⊗ f ).

It is sufficient to know how to apply Ht to vectors, rather than storing it explicitly as

a matrix in R
n×n
+,∗ .

For images, the natural discretization is an n1 × n2 grid of pixels (so n = n1n2). In this

case, a
def.
= 1/n1n2 and Ht is the operator convolving images with a Gaussian of standard

deviation σ2 = γ. Notice that Varadhan’s theorem is not needed in this domain, since the

heat kernel of the plane is exactly a Gaussian in distance.

For triangle meshes, we take n to be the number of vertices and the area vector a as

lumped areas proportional to the sum of triangle areas adjacent to a given vertex. Given
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the cotangent Laplacian L ∈ Rn×n [Mac49] and a diagonal area matrix Da (Dv denotes the

diagonal matrix with elements in vector v), we discretize the heat kernel by solving the

diffusion equation via an implicit Euler integration [DMSB99] with time step t = γ/2, i.e.,

w = Ht(a⊗ v) ⇐⇒ (Da + γ/2L)w = a⊗ v.

Da + γ/2L can be pre-factored before distance computation, rendering heat kernel convolu-

tion equivalent to a near-linear time back-substitution. This feature is particularly valuable

since we apply the heat kernel repeatedly. Our implementation uses a sparse Cholesky

factorization [Dav06] with γ proportional to the maximum edge length [CWW13]; higher

accuracy can be obtained via substeps. Our discretization generalizes to geometric do-

mains like point clouds, tetrahedral meshes, graphs, and polygonal surfaces with well-

established discrete Laplacians (and therefore heat kernels).

We encode a distribution µ ∈ Prob(M) as a vector p ∈ Rn
+ with a⊤p = 1 and a distribu-

tion π ∈ Prob(M×M) as π ∈ R
n×n
+ with a⊤πa = 1. The discrete KL divergence between

a discrete distribution π and an arbitrary H ∈ R
n×n
+,∗ is then defined as

KL(π|H)
def.
= ∑

ij

πijaiaj

[

ln
πij

Hij
− 1

]

. (3.9)

Given discrete distributions p0 and p1, we model plans π ∈ Π(p0, p1) as matrices π ∈

R
n×n
+ with πa = p0 and π⊤a = p1. Finally, the convolutional Wasserstein distance is

computed via

W2
2,Ht

(p0, p1)
def.
= γ

[

1 + min
π∈Π

KL(π|Ht)

]

. (3.10)

Similarly to the continuous case, the minimization in (3.10) is convex with linear con-

straints on π. Its complexity is tied to the variable π, which scales quadratically in n. We

overcome this issue using the following result:

Proposition 4. The transportation plan π ∈ Π(p0, p1) minimizing (3.10) is of the form π =

DvHtDw, with unique vectors v, w ∈ Rn satisfying







DvHtDwa = p0,

DwHtDva = p1.
(3.11)



CHAPTER 3. CONVOLUTIONAL WASSERSTEIN DISTANCES 51

Proof. Decompressing notation, the optimization can be written as

minπ∈Rn×n ∑ij πij ln
[

πij

eHij

]

aiaj

s.t. πa = p0

π⊤a = p1.

After introducing Lagrange multipliers λ0, λ1 ∈ Rn, the first-order optimality conditions

for this system take the form

−aiaj ln
πij

Hij
= ajλ0i + aiλ1j ∀i, j ∈ {1, . . . , n}.

Equivalently, we can write

πij = Hij exp

(

−
λ0i

ai

)

exp

(

−
λ1j

aj

)

.

Take v
def.
= exp(−λ0 ⊘ a) and w

def.
= exp(−λ1 ⊘ a), where ⊘ denotes elementwise division.

Then, this last expression shows π = DvHtDw. Applying symmetry of Ht and substituting

into the two constraints shows (3.11).

Therefore, rather than computing a matrix π, we can instead compute a pair of vec-

tors (v, w), reducing the number of unknowns to 2n. This proposition generalizes a result

in [Cut13] with the introduction of area weights a. We can find (v, w) by alternating pro-

jections onto the linear marginal constraints via an area-weighted version of Sinkhorn’s

algorithm [Sin64], detailed in Algorithm 1.

We simplify the convolutional distance evaluated at the end of the Sinkhorn algorithm

as follows:

γ [1 + KL(π|Ht)] = γ ∑
ij

πij ln
πij

(Ht)ij
aiaj

= γ ∑
ij

πij ln(viwj)aiaj since Ht = DvHtDw

= γ

[

∑
i

ai(ln vi)∑
j

πijaj + ∑
j

aj(ln wj)∑
i

πijai

]

= γ

[

∑
i

ai(ln vi)p0i + ∑
j

aj(ln wj)p1j

]
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function CONVOLUTIONAL-WASSERSTEIN(p0, p1; Ht, a)

// Sinkhorn iterations
v, w← 1

for i = 1, 2, 3, . . .
v← p0 ⊘ Ht(a⊗ w)
w← p1 ⊘ Ht(a⊗ v)

// KL divergence
return γ a⊤ [(p0 ⊗ ln v) + (p1 ⊗ ln w)]

Algorithm 1: Sinkhorn iteration for convolutional Wasserstein distances. ⊗,⊘ denote ele-
mentwise multiplication and division, resp.

(a) (b)

Figure 3.2: W2
2,Ht

between δ distributions (a) as a vertex-to-vertex distance (b; computed

with γ = 10−5 — slight smoothing).

since πa = p0 and π⊤a = p1

= γ a⊤ [(p0 ⊗ ln v) + (p1 ⊗ ln w)] .

As in [SCV14],W2
2,Ht

between distributions centered at individual vertices can be used

as point-to-point distances. Figure 3.2 shows one example computed using our algorithm.

The resulting pointwise distance squared is exactly the logarithm of Ht. Since Crane et

al. [CWW13] previously proposed a specialized algorithm using the heat kernel for point-

wise distances via this approximation, we instead will focus on more general problems

involving optimal transportation not considered in their work.

Timing & numerics. To evaluate efficiency, we compare three approaches to approxi-

mating W2: a linear program discretizing (1.2) (with p = 2), regularized distances with

a full distance-based kernel [Cut13], and convolutional Wasserstein distances W2
2,Ht

. The

linear program is solved using state-of-the-art parallel optimization [MOS14], with all-

pairs distances along mesh edges from an O(n2 log n) algorithm [Joh77]. [Cut13] and our
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|V | |T | PD LP [Cut13] PF W
2
2,Ht

693 1382 0.10 9.703 0.625 0.00 1.564
1150 2296 0.28 36.524 1.284 0.00 0.571
1911 3818 0.79 * 2.725 0.02 1.010
3176 6348 2.15 * 5.435 0.03 1.553
5278 10552 6.47 * 10.490 0.06 2.477
8774 17544 18.55 * 23.326 0.10 4.516

14584 29164 53.41 * * 0.17 8.152

Table 3.1: Timing (in sec.) for approximatingW2 between random distributions on triangle
meshes, averaged over 10 trials. An asterisk * denotes time-out after one minute. Pairwise
distance (PD) computation is needed for the linear program (LP) and [Cut13]; timing for
this step is written separately. Cholesky pre-factorization (PF) is needed for convolutional
distance and is similarly separated.

convolutional distances are implemented in Matlab, the former using the all-pairs distance

matrix converted to a kernel and the latter using pre-factored Cholesky decomposition. All

tests were run with tolerance 10−5 on a 2.40GHz Intel Xeon processor with 23.5GB RAM;

for this test, γ is chosen as 1% of the median transport cost.

Table 3.1 shows results of this experiment on meshes of the same shape with vary-

ing density. Both regularized approximations of W2 outperform the linear program by

a significant margin that grows with the size of the problem. Our method also outper-

forms [Cut13] with a dense kernel matrix, both by avoiding explicit pairwise distance com-

putation and via the pre-factored diffusion operator; the difference is particularly notable

on large meshes for which the kernel takes a large amount of memory. The one exception is

the smallest mesh, for which our method took longer to converge due to numerical issues

from the discretized heat equation.

The Sinkhorn algorithm is known to converge at a linear rate [FL89, Kni08], and simi-

lar guarantees exist for alternating projection methods [ER11]. These bounds give a rough

indicator of the number of iterations needed to compute convolutional distances and de-

rived quantities used in §3.6. In practice, the convergence rate depends on the sharpness

of the kernel and of the distributions p0 and p1. The experiments reported in Table 3.1

show that the time to convergence is reasonable for challenging cases; most distance com-

putations converge within 10-20 iterations when γ was chosen on the order of the average

edge length, with faster convergence as γ is increased. Finally, we point out that numerical

issues may appear when γ is smaller than the resolution of the domain, since the kernel

operator may become ill-conditioned.
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3.6 Optimization Over Distances

An advantage of convolutional Wasserstein distances is the variety of optimizations into

which they can be incorporated. Then, the goal is not to evaluate Wasserstein distances

but rather to optimize for distributions minimizing an objective constructed out of them.

3.6.1 Wasserstein Barycenters

The Wasserstein barycenter problem attempts to summarize a collection (µi)
k
i=1 of probabil-

ity distributions by taking their weighted average with respect to the Wasserstein distance.

Following [AC11], given a set of weights α = (αi)
k
i=1 ∈ Rk

+, it is defined as the following

convex problem over the space of measures

minµ ∑
k
i=1 αiW

2
2 (µ, µi). (3.12)

After discretization, we can pose the barycenter problem as

minp ∑
k
i=1 αiW

2
2,Ht

(p, pi). (3.13)

Substituting transportation plans yields an equivalent problem:

min{πi} ∑
k
i=1 αiKL(πi|Ht)

s.t. π⊤i a = pi ∀i ∈ {1, . . . , k}

πia = π1a ∀i ∈ {1, . . . , k}.

The first constraint enforces that πi marginalizes to pi in one direction, and the second

constraint enforces that all the πi’s marginalize to the same p in the opposite direction.

As suggested by Benamou et al. [BCC+15], the expanded problem can be viewed as a

projection with respect to KL divergence from Ht (repeated k times) onto the constraint set

C1 ∩ C2, where

C1
def.
= {(πi)

k
i=1 : π⊤i a = pi ∀i ∈ {1, . . . , k}}

C2
def.
= {(πi)

k
i=1 : πia = πja ∀i, j ∈ {1, . . . , k}}.

Problems of this form can be minimized using iterated Bregman projection [Bre67], which

initializes all the πi’s to Ht and then cyclically projects the current iterate onto one Ci at a
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time. Unlike the full optimization, projections onto C1 and C2 individually can be written

in closed form, as explained in the following propositions:

Proposition 5. The KL projection of (πi)
k
i=1 onto C1 satisfies projC1

πi = πiDpi⊘π⊤i a for each

i ∈ {1, . . . k}.

Proof. The problem decouples, and hence projection can be carried out one transportation

matrix at a time. Expanding the objective for a single transportation matrix yields the

following problem:

minπ̄∈Rn×n ∑ij π̄ij ln
[

π̄ij

eπij

]

aiaj

s.t. π̄⊤a = p,

where π̄ is the projection of π onto C1. For Lagrange multiplier λ ∈ Rn, the first-order

optimality condition for element π̄ij is

−aiaj ln
π̄ij

πij
= aiλj =⇒ π̄ij = πij exp

(

−
λj

aj

)

.

After taking c
def.
= exp(−λ⊘ a), this expression shows π̄ = πDc. Since π̄⊤a = p, we now

can write Dcπ⊤a = p, showing c = p⊘ π⊤a, as needed.

Proposition 6. The KL projection of (πi)
k
i=1 onto C2 satisfies projC2

πi = Dp⊘di
πi for each i ∈

{1, . . . k}, where di = πia and p = ∏i d
αi/ ∑ℓ αℓ
i .

Proof. Take (π̄i)
k
i=1 to be the projection onto C2, with unknown common marginal p. As

in [BCC+15], expanding the optimization problem provides the form

min{π̄ℓ},p ∑ℓij αℓπ̄ℓij ln
[

π̄ℓij

eπℓij

]

aiaj

s.t. π̄ℓa = p ∀ℓ ∈ {1, . . . , k}.

The Lagrange multiplier expression for this optimization is

Λ
def.
= ∑

ℓ

(

∑
ij

αℓπ̄ℓij ln

[

π̄ℓij

eπℓij

]

aiaj + λ⊤ℓ (π̄ℓa− p)

)

.

Differentiating with respect to π̄ℓij shows

0 =
∂Λ

∂π̄ℓij
= αℓaiaj ln

π̄ℓij

πℓij
+ λℓiaj,
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or equivalently,

π̄ℓij = πℓij exp

(

−
λℓi

aiαℓ

)

.

Taking cℓ
def.
= exp(−λℓ ⊘ a), we can write π̄ℓ = D

c
1/αℓ
ℓ

πℓ.

Differentiating Λ with respect to p shows

= ∇pΛ = −∑
ℓ

λℓ

=⇒ ∏
ℓ

cℓ = exp

(

−∑
ℓ

λℓ ⊘ a

)

= 1.

Define dℓ
def.
= πℓa. Then, substituting our new variables into the constraint π̄ℓa = p

shows

c1/αℓ
ℓ
⊗ dℓ = p ∀ℓ

=⇒ cℓ = (p⊘ dℓ)
αℓ .

Define A
def.
= ∑ℓ αℓ. By the relationship above,

1 = ∏
ℓ

cℓ = ∏
ℓ

(p⊘ dℓ)
αℓ = pA ∏

ℓ

d−αℓ
ℓ

=⇒ p = ∏
ℓ

dαℓ/A
ℓ

.

Hence, c1/αℓ
ℓ

= p⊘ dℓ, showing π̄ℓ = Dp⊘dℓπℓ.

The propositions, originally presented without area weights in [BCC+15], show that

the necessary Bregman projections can be carried out via pre- or post-multiplication by

diagonal matrices. Hence, we can store and update vectors vi, wi ∈ Rn so that πi =

Dvi
HtDwi

. If M is represented using n samples, this reduces storage and algorithmic run-

time by a factor of n.

Algorithm 2 documents the barycenter method. It initializes all the πi’s to Ht by taking

vi = wi = 1 for all i and then alternatingly projects using the formulas above. The only

operations needed are applications of Ht and elementwise arithmetic. We never need to

store the matrix of Ht explicitly and instead apply it iteratively; this structure is key when

Ht represents a heat kernel obtained by solving a linear system or convolution over an
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function WASSERSTEIN-BARYCENTER({pi}, {αi}; Ht, a)
// Initialization
v1, . . . , vk ← 1

w1, . . . , wk ← 1

// Iterate over Ci’s
for j = 1, 2, 3, . . .

p← 1

for i = 1, . . . , k
// Project onto C1

wi ← pi ⊘ Ht(a⊗ vi)
di ← vi ⊗ Ht(a⊗ wi)
p← p⊗ dαi

i

// Optional
p← ENTROPIC-SHARPENING(p, H0; a)

// Project onto C2

for i = 1, . . . , k
vi ← vi ⊗ p⊘ di

return p

Algorithm 2: Wasserstein barycenter using iterated Bregman projection. Both of the inner
for loops can be parallelized over i.

image.

Entropic Sharpening. Barycenters computed using Algorithm 2 have similar qualita-

tive structure to barycenters with respect to the true Wasserstein distance W2 but may

be smoothed thanks to entropic regularization. This can create approximations of the

barycenter that qualitatively appear too diffuse.

We introduce a simple modification of the projection method counteracting this phe-

nomenon. Define the entropy of p to be

H(p)
def.
= −∑

i

ai pi ln pi.

We expect the non-regularized Wasserstein barycenter of a set of distributions to have

entropy bounded by that of the input distributions (pi)
k
i=1. Hence, take H0

def.
= maxi H(pi)
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(or a user-specified bound). Then, we can modify the barycenter problem slightly:

minp ∑
k
i=1 αiW

2
2,Ht

(p, pi)

s.t. H(p) ≤ H0.
(3.14)

That is, we wish to find a distribution with bounded entropy that minimizes the sum of

transportation distances.

The problem in (3.14) is not convex, but we apply Bregman projections nonetheless.

We augment C2 with an entropy constraint:

C2
def.
= C2 ∩ {(πi)

k
i=1 : H(πia) + a⊤πia ≤ H0 + 1 ∀i ∈ {1, . . . , k}}.

The a⊤πia term is for algebraic convenience in proving the proposition below; at con-

vergence, a⊤πia = 1 and this term cancels with the 1 on the right-hand side of the in-

equality. Remarkably, despite the nonconvexity, KL projection onto C2 can be carried out

efficiently:

Proposition 7. There exists β ∈ R such that the KL projection of (πi)
k
i=1 onto C2 satisfies

projC2
πi = Dp⊘di

πi for all i ∈ {1, . . . , k}, where di = πia and p =
(

∏i dαi
i

)β
.

Proof. Similarly to the previous proposition, we write the optimization problem as follows:

min{π̄ℓ},p ∑ℓij αℓπ̄ℓij ln
[

π̄ℓij

eπℓij

]

aiaj

s.t. π̄ℓa = p ∀ℓ ∈ {1, . . . , k}

∑i ai pi(ln pi − 1) ≥ −H0 − 1.

When the constraint is inactive, the optimization is solved by the previous proposition.

Hence, we will focus on the active case, that is, when ∑i ai pi(ln pi − 1) = −H0 − 1.

The Lagrange multiplier expression for this optimization is

Λ
def.
= ∑

ℓ

(

∑
ij

αℓπ̄ℓij ln

[

π̄ℓij

eπℓij

]

aiaj + λ⊤ℓ (π̄ℓa− p)

)

+ γ

(

∑
i

ai pi(ln pi − 1) + H0 + 1

)

.
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Differentiating with respect to λℓ, γ, π, and p yields the following optimality criteria:

p = πℓa ∀ℓ ∈ {1, . . . , k}

−H0 − 1 = ∑
i

ai pi(ln pi − 1)

0 = αℓaiaj ln
π̄ℓij

πℓij
+ λℓiaj ∀i, j, ℓ

0 = γai ln pi −∑
ℓ

λℓi ∀i.

As before, the third condition shows

π̄ℓij = πℓij exp

(

−
λℓi

aiαℓ

)

.

The fourth condition shows

pγ = exp

(

∑
ℓ

λℓ ⊘ a

)

.

Take cℓ
def.
= exp(−λℓ ⊘ a). Then, the conditions above become

π̄ℓij = πℓijc
1/αℓ
ℓi

p
γ
i = ∏

ℓ

cℓi.

Define dℓ
def.
= πℓa. Since p = π̄ℓa, for all ℓ we can write

pi = ∑
j

π̄ℓijaj = ∑
j

πℓijc
1/αℓ
ℓi aj = c1/αℓ

ℓi dℓi.

Taking the log of both sides of this expression and the relationship p
γ
i = ∏ℓ cℓi shows

αℓ ln pi = ln cℓi + αℓ ln dℓi ∀ℓ

γ ln pi = ∑
ℓ

ln cℓi.

Summing the first equation over ℓ and removing the cℓi term by the second equation shows

(

−γ + ∑
ℓ

αℓ

)

ln pi = ∑
ℓ

αℓ ln dℓi
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function ENTROPIC-SHARPENING(p, H0; a)
if H(p) + a⊤p > H0 + 1 then

β← FIND-ROOT(a⊤pβ + H(pβ)− (1 + H0); β ≥ 0)
else β← 1
return pβ

Algorithm 3: Entropic sharpening method; we default to β = 1 when no root exists but
rarely encounter this problem in practice.

=⇒ pi = ∏
ℓ

d
αℓ/(−γ+∑ℓ′ α

ℓ′ )
ℓi .

Identically to the previous proposition, π̄ℓ = Dp⊘dℓπℓ, with this new choice of p; taking

γ = 0 recovers the inactive constraint case. Defining

β
def.
=

1

−γ + ∑ℓ αℓ

provides the desired formula.

That is, the entropy-constrained projection step takes the result of the unconstrained

projection to the β power to achieve the entropy bound. The exponent β can be computed

using single-variable root-finding (e.g. bisection or Newton’s method), as shown in Algo-

rithm 3. Empirically, the Bregman algorithm converges to a near-barycenter with limited

entropy when using this new projection step as long as H0 is on the order of the entropy of

the pi’s. For difficult test cases, higher-quality barycenters can be recovered by first solv-

ing the problem without an entropy constraint and then iteratively introducing entropic

sharpening with tightening bounds.

Figure 3.3 illustrates the effect of the bound H0 on the barycenter of two distributions.

As H0 decreases, the barycenter becomes sharply peaked about its modes, counteracting

the aggressive regularization.

3.6.2 Displacement Interpolation

The 2-Wasserstein distanceW2 has a distinguishing displacement interpolation property [McC97].

W2(µ0, µ1) is the length of a geodesic µt : [0, 1] → Prob(M) in Prob(M) with respect

to a metric induced by squared geodesic distances on M. The time-varying sequence

of distributions µt transitions from µ0 to µ1, moving mass continuously along geodesic



CHAPTER 3. CONVOLUTIONAL WASSERSTEIN DISTANCES 61

p0 p1 ∞ H + 2 H + 1 H

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

H0

Figure 3.3: Barycenters with different levels of entropic sharpening, controlled by H0.

Here, H
def.
= max{H(p1), H(p2)} ≈ −2.569.

paths on M. As a point of comparison, Chapter 2 uses flows along M to evaluate the

1-Wasserstein distanceW1; the resulting interpolation, however, is given by the trivial for-

mula µt = (1− t)µ0 + tµ1.

Agueh and Carlier [AC11] prove under suitable regularity that the interpolating path

µt from µ0 to µ1 satisfies

µt = inf
µ∈Prob(M)

[

(1− t)W2
2 (µ0, µ) + tW2

2 (µ, µ1)
]

, (3.15)

for all t ∈ [0, 1]. This formula provides a means to compute µt directly rather than optimiz-

ing an entire path in probability space.

In the discrete case, given p0, p1 ∈ Prob(M) we wish to find a time-varying pt interpo-

lating between the two. To do so, we define

pt
def.
= min

p∈Prob(M)

[

(1− t)W2
2,Ht

(p0, p) + tW2
2,Ht

(p, p1)
]

. (3.16)

This can be minimized using Algorithm 2 with α = (1− t, t).

Figure 3.4 shows displacement interpolation between two multi-peaked distributions

on a triangle mesh, with and without entropic sharpening. Again, sharpening avoids en-

tropy introduced by the regularizer.
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function WASSERSTEIN-PROPAGATION(V, E, V0, p(V0); Ht, a)
// Initialization
v1, . . . , v|E| ← 1

w1, . . . , w|E| ← 1

// Iterate over Ci’s
for j = 1, 2, 3, . . .

for v ∈ V
if v ∈ V0 then

p← p0(v)
// Project adjacent πe’s
for e ∈ N(v)

if e = (w, v) then we ← p⊘ Ht(a⊗ ve)
if e = (v, w) then ve ← p⊘ Ht(a⊗ we)

else if v 6∈ V0 then

// Estimate distribution
ω← ∑v∈e αe

pv ← 1

for e ∈ N(v)
if e = (w, v) then de ← we ⊗ Ht(a⊗ ve)
if e = (v, w) then de ← ve ⊗ Ht(a⊗ we)

pv ← pv ⊗ dαe/ω
e

for e ∈ N(v)
if e = (w, v) then we ← we ⊗ pv ⊘ de

if e = (v, w) then ve ← ve ⊗ pv ⊘ de

return p1, . . . , p|V|

Algorithm 4: Wasserstein propagation via Bregman projection.

3.6.3 Wasserstein Propagation

Generalizing the barycenter problem, we consider the “Wasserstein propagation” problem

posed in more detail in Chapter 5. Suppose G = (V, E) is a graph with edge weights

α : E → R+; take |V| = m. With each vertex v ∈ V, we associate a label µv ∈ Prob(M),

whose value is a distribution over another domain M. Given fixed labels µv on a subset of

vertices V0 ⊆ V, we interpolate to the remaining vertices in V\V0 by solving

min
(µi)

m
i=1

∑
(v,w)∈E

α(v,w)W
2
2 (µv, µw),

subject to the constraint that µv is fixed for all v ∈ V0.
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t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1 t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1
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H0=∞
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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Figure 3.4: Displacement interpolation without (left) and with (right) entropy limits. The
optimization implicitly matches the two peaks at t = 0 and t = 1 and moves mass
smoothly from one distribution to the other.

As an example, suppose we are given two meshes and wish to find a map from vertices

of one to vertices of the other. We can relax this problem by instead constructing maps to

probability distributions over vertices of the second mesh [SNB+12]. Given ground-truth

correspondences for a few vertices, the optimization above fills in missing data.

Propagation can be modeled using convolutional distances as

minpv ∑(v,w)∈E α(v,w)W
2
2,Ht

(pv, pw)

s.t. pv fixed ∀v ∈ V0.
(3.17)

Following the optimizations in previous sections, we instead optimize over transporta-

tion matrices πe for each e ∈ E:

minπe ∑e∈E α(v,w)KL(πe|Ht)

s.t. πea = pv ∀e = (v, w)

π⊤e a = pw ∀e = (v, w)

pv fixed ∀v ∈ V0.

The interpolated p’s will be distributions because they must have the same integrals as the

p’s in V0. Algorithm 4 uses iterated Bregman projection to solve this problem by iterating

over one vertex in V at a time, projecting onto constraints fixing all marginals for that

vertex. Applying Propositions 5 and 6, we can write πe = Dve HtDwe and update the ve’s

and we’s using simple rules.

Propagation encapsulates many other optimizations in Wasserstein space. Figure 3.5

illustrates two examples. The convolutional barycenter problem (§3.6.1) is exactly propa-

gation where G is a star graph, with vertices in V0 on the spokes and the unknown distri-

bution p associated with the center. An alternative model for displacement interpolation
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v 6∈ V0

w ∈ V0 v 6∈ V0

w ∈ V0

Barycenter Displacement interpolation

Figure 3.5: Wasserstein propagation can be used to model barycenter problems and dis-
placement interpolation. Here, we show the corresponding graph G = (V, E); vertices in
V0 have solid shading.

(§3.6.2) discretizes t ∈ [0, 1] as a line graph, with two vertices in V0 at the ends of the inter-

val. This model is different from (3.15), which directly predicts the interpolation result at

time t rather than computing the entire interpolation simultaneously.

3.7 Applications

Equipped with the machinery of convolutional transportation, we now describe several

graphics applications directly benefiting from these distances and related optimization

problems.

Shape interpolation. A straightforward application of Wasserstein barycenters is shape

interpolation. We represent k shapes (Si)
k
i=1 ⊂ [−1, 1]2 using normalized indicator func-

tions (χ(Si)/vol(Si))
k
i=1 ∈ Prob([−1, 1]2). Given weights (αi)

k
i=1, we compute the approx-

imate indicator function of an averaged shape as the minimizer µ ∈ Prob([−1, 1]2) of

∑i αiW
2
2,Ht

(µ, χi); this indicator easily can be sharpened if a true binary function is desired.

Figure 3.6 shows barycenters between four shapes with bilinear weights. Unlike the

mean ∑i αiχi(Si)/vol(Si), shapes obtained using Wasserstein machinery smoothly transi-

tion between the inputs, creating plausible intermediate shapes. Figure 3.7 provides a 1D

interpolation example, with simple post-processing (thresholding and coloring) to recover

boundaries. Figures 3.8, 3.9, and 3.10 show analogous examples in three dimensions. We

represent a surface volumetrically using the normalized indicator function of its interior.
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Euclidean barycenter Wasserstein barycenter

Figure 3.6: Interpolating indicators using linear combinations (left) is ineffective for shape
interpolation, but convolutional Wasserstein barycenters (right) move features by match-
ing mass of the underlying distributions.

We interpolate the resulting distributions using convolutional barycenters and extract the

level set corresponding to the half the maximum probability value. This volumetric ap-

proach can handle topological changes, e.g. interpolating between a shape with two com-

ponents (lower left) and three singly-connected shapes (remainder).

BRDF design. The BRDF f (ωi, ωo) of a material defines how much light it reflects from

each incoming direction ωi to each outgoing direction ωo. If ωi is fixed, all the outgoing

directions fall on a hemisphere defined by the surface normal. After scaling, the BRDF

values for ωo form a probability distribution over the hemisphere. Hence, displacement

interpolation can be applied to interpolate between materials, as in [BvdPPH11].

We use convolutional barycenters to combine more than two distributions at a time.

For each incoming direction in the sampled BRDF, the values associated to the outgoing

directions are organized in a 2D grid by spherical angle. We use weighted Wasserstein

barycenters to interpolate this data. The spherical heat kernel Ht is approximated by the

fast approximate Gaussian convolution from [Der93]. Spherical geometry is accounted for

by modulating the width of this separable filter. We render images using the interpolated

BRDFs using PBRT [PH10].
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Figure 3.7: “Generalized Mahjong:” Linear (top) and displacement (middle) interpolation
between two images; while it is less sharp, the displacement interpolation result can be
post-processed using simple image filters to generate a nontrivial interpolation (bottom;
see e.g. the tip of the “9” character rotating outward).

Figure 3.8: Shape interpolation from a cow to a duck to a torus via convolutional Wasser-
stein barycenters on a 100×100×100 grid, using the method at the beginning of §3.7.

Figure 3.11 shows interpolation between four BRDFs using our technique, yielding

continuously-moving highlights. The corner BRDFs are sampled from closed-form mate-

rials [Bli77, AS00]; the remaining BRDFs are interpolated.

Color histogram manipulation. In image processing, optimal transportation has proven

useful for color palette manipulations like contrast adjustment [Del06] and color trans-

fer [PKD07] via 1D transportation. Previous methods for this task avoid carrying out

multi-dimensional transport, e.g. using 1D sliced approximations or cumulative axis-aligned

transport [PKD07, BRPP14, PPC11] or can support only coarse histograms [FPPA14]. Con-

volutional transport, however, handles large-scale 2D chrominance histograms directly.

We transfer color over the CIE-Lab domain by modifying the one-dimensional L (lumi-

nance) and two-dimensional ab (chrominance) channels independently, where luminance

takes values in [1, 100] and chrominance takes values in M = [−128, 128]2. Remapping L
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Figure 3.9: Shape interpolation in 3D, expanded from Figure 3.8.

requires 1D transport, which is computable in closed form [Vil03]; we describe the pro-

cessing of the ab channel below.

Suppose we express the ab components of k images as a set of functions ( fi)
k
i=1, where

fi : [0, 1]2 → M takes a point on the image plane and returns an ab chrominance value.

The chrominance histogram µi associated to fi is the push-forward of the uniform measure

U on [0, 1]2 by the map fi, satisfying µi(A) = U ( f−1
i (A)) for A ⊂ M. It is approximated

numerically by a discrete histogram pi on an uniform rectangular grid over M.

For a given set of weights α ∈ Rk
+, we solve the barycenter problem (3.12) using Al-

gorithm 2. This provides the weighted barycenter µ ∈ Prob(M), discretized as a vector p.

The algorithm furthermore provides the scaling factors (vi, wi) for each i = 1, . . . , k, which

define the transport maps πi = Dvi
KDwi

between each input histogram pi and the barycen-

ter p. This discrete coupling πi should be understood as a discretization of a continuous

coupling πi(x, y) between each µi and µ.

For each i, we introduce a map Ti : M→ M, defined on the support of µi (i.e. the set of

x ∈ M such that µi(x) > 0), by

∀x ∈ M, Ti(x) = 1
µi(x)

∫

M πi(x, y)y dy.

This integral is computed numerically as a sum over the grid, where πi is used in place of

πi.

The rationale behind this definition is that as γ → 0, the regularized coupling πi con-

verges to a measure supported on the graph of the optimal matching between µi and the

barycenter; this phenomenon is highlighted in Figure 3.1. Thus, as γ → 0, Ti converges

to the optimal transport map. It can thus be used to define a corrected image f α
i

def.
= Ti ◦ fi
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Figure 3.10: Three-dimensional shape interpolation. The four corner shapes are repre-
sented using normalized indicator functions on a 60×60×60 volumetric grid; barycenters
of the distributions are computed using bilinear weights.

whose chrominance histogram matches µ. Figure 3.12 shows an application of the method

to k = 2 input images.

Skeleton layout. Suppose we are given a triangle mesh M ⊂ R3 and a skeleton graph

G = (V, E) representing the topology of its interior. For instance, if M is a human body

shape, then G might have “stick figure” topology. To relate G directly to the geometry of

M, we might wish to find a map V 7→ R3 embedding the vertices of the graph into the

interior of the surface.

We can approach this problem using Wasserstein propagation (§5.2.2). We take as input

the positions of vertices in a small subset V0 ⊆ V. As suggested in §2.6, we express the

position of each v ∈ V0 as a distribution pv ∈ Prob(M) using barycentric coordinates

computed using the algorithm by Ju et al. [JSW05]. Distributions pv ∈ Prob(M) can be

interpolated along G to the remaining v 6∈ V0 via Wasserstein propagation with uniform

edge weights. The computed pv’s serve as barycentric coordinates to embed the unlabeled

vertices. Thanks to displacement interpolation, the constructed embedding conforms to

the geometry of the surface; Figure 3.13 shows sample embeddings generated using this
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Linear interpolation Convolutional barycenter

Convolutional barycenter (bounded entropy)

Figure 3.11: BRDF interpolation: BRDFs for the materials in the four corners of each image
are fixed, and the rest are computed using bilinear weights. Linearly interpolating BRDFs
(left) yields spurious highlights, the convolutional barycenter (center) moves highlights
continuously but increases diffusion, and the entropy-bounded barycenter (right) moves
highlights in a sharper fashion.

strategy.

Soft maps. A relaxation of the point-to-point correspondence problem replaces the un-

known from a map φ : M0 → M to a measure-valued map µx : M0 → Prob(M). [SGB13]

generalizes the Dirichlet energy of a map to the measure-valued case, but their discussion

is limited to analysis rather than computation of maps because their discretization scales

poorly.

Suppose M0 and M are triangle meshes and Ht is the heat kernel matrix of M. A

regularized discretization of the measure-valued map Dirichlet energy is provided by the

Wasserstein propagation objective (3.17) from M0 viewed as a graph M0 = (V, E) to dis-

tributions on M, with weights proportional to inverse squared edge lengths. Coupled

with pointwise constraints, Algorithm 4 provides a way to recover a map minimizing the
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t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

Figure 3.12: Color transfer with 2D convolutional transportation over the chrominance
space. Top row: evolution of the color-corrected image f α

1 as a function of α = (1− t, t).
Middle row: evolution of f α

2 . The red (resp. blue) framed image shows the input f1 (resp.
f2) which is obtained for t = 0 (resp. t = 1). Bottom row: barycenter histogram µ as
a function of t; colors encode the corresponding position x over the (a, b) domain while
luminance corresponds to the amplitude of µ(x) (zero being white).

resulting energy; convergence can be slow, however, when the constraints are far apart.

To relax dependence on pointwise constraints and accelerate convergence, we intro-

duce a compatibility function c(x, y) : M0 ×M → R+ expressing the geometric compatibil-

ity of x ∈ M0 and y ∈ M; small c(x, y) indicates that the geometry of M0 near x is similar

to that of M near y. Discretely, take cv to sample the compatibility function c(v, ·) on M

associated with v ∈ M0. We modify the objective (3.17) as follows:

[

∑
(v,w)∈E

1

ℓ2
(v,w)

W2
2,Ht

(pv, pw)

]

+ τ

[

∑
v∈V

ωva⊤(pv ⊗ cv)

]

. (3.18)

This objective favors distributions pv with low compatibility cost; the weight ωv is the area

weight of v ∈ M0.

Take N(v) to be the valence of v ∈ V. In terms of transportation plans, (3.18) equals

∑(v,w)∈EW
2
2,Ht

(pv, pw)/ℓ2
(v,w), where

Ht
def.
= diag

[

exp

(

−
ℓ2

e τωvcv

γN(v)

)]

Htdiag

[

exp

(

−
ℓ2

e τωwcw

γN(w)

)]

.
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Figure 3.13: Embeddings of skeletons computed using Wasserstein propagation; the po-
sitions of the blue vertices are computed automatically using the fixed green vertices and
topology of the graph.

This matrix is a diagonal rescaling of Ht, so we can still efficiently optimize (3.18) using

Algorithm 4, slightly adjusted to use a different kernel on each edge.

Figure 3.14 shows maps between a pair of surfaces computed using this technique.

Because the models are nearly isometric, we use the wave kernel signature (WKS) [ASC11]

to determine the compatibility function c(x, y). This signature is unable to distinguish

between the orientation-preserving and left/right flipped maps between the two surfaces.

Wasserstein propagation guided by this choice of c(x, y) paired with a sparse set of fixed

correspondences breaking the symmetry is enough to recover both maps. The resulting

soft map matrices are of size 1024 × 1024, an order of magnitude larger than the maps

generated in [SNB+12], computed in less than a minute using similar hardware.

3.8 Discussion and Conclusion

Although optimal transportation has long been an attractive potential technique for graph-

ics applications, optimization challenges hampered efforts to include it as part of the stan-

dard toolbox. Convolutional Wasserstein distances comprise a large step toward closing

the gap between theory and practice. They are easily computable via the heat kernel—

a well-studied and widely-implemented operator in graphics—and through the iterated

projection algorithm can be incorporated into modeling problems with transportation terms.

We have demonstrated the breadth of applications enabled by this framework, from

rendering to image processing to geometry. Modeling via probability distributions is nat-

ural for these and other problems, and we foresee applications across several additional
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Source e−αc(x,y) Result
Result

(left/right flip)

Figure 3.14: Soft maps: Colored points on the source are mapped to the colored distri-
butions on the target, where black points are fixed input correspondences. Our method
is able to extract two maps from the left-right symmetric descriptor c(x, y), depending on
whether the fixed correspondences preserve orientation or are flipped.

disciplines. Having reduced the cost of experimenting with transportation models, future

studies now may incorporate transportation into graphics applications including process-

ing of volumetric data, caustic design, dimensionality reduction, and simulation.

Several theoretical and numerical problems remain open. The regularization in convo-

lutional transport enables scalable computation but introduces smoothing; imaging appli-

cations like those in [ZQC+14] require sharp edges that can get lost. As it stands now, while

our technique outperforms existing methods for transportation in graphics, numerics de-

grade if γ is too small, similar to the heat kernel approximation in [CWW13]; this is the pri-

mary drawback of our transport approximation. Modeling with “true” quadratic Wasser-

stein distances remains a challenge on images and triangle meshes, and large-scale dis-

cretizations of flow models proposed by Benamou and Brenier [BB00a] remain to be formu-

lated. Closer to the current discussion, the algorithm for propagation in §5.2.2 might ben-

efit from preconditioners spreading information non-locally in each iteration; this would

alleviate the need to iterate |V| times to guarantee “communication” between every pair

of vertices.

Optimal transportation provides an intuitive, foundational approach to geometric prob-

lems over many domains. Practical, easily-implemented optimization tools like the ones

introduced here will enable its incorporation into graphics pipelines for countless tasks.



Chapter 4

Soft Maps Between Surfaces

Having considered algorithms for approximating both one- and two-Wasserstein distances

primarily on two-dimensional domains like surfaces, we now proceed to four dimensions

and study the problem of finding a map one surface to another. The dimensionality of

such a problem might be considered fundamentally higher, in the sense that we are now

optimizing over matchings between pairs of two-dimensional domains; this creates a four-

dimensional problem total. Even so, the optimization advantages of optimal transporta-

tion coupled with the fact that we expect even probabilistic relaxations of mappings to be

sparse will lead to computationally feasible algorithms for correspondence.

4.1 Introduction

A natural problem in geometry processing is that of finding a smooth map between two

surfaces. A reliable algorithm for finding such a map can be used in pipelines for texture

or annotation transfer, segmentation, morphing, and surface editing, among other appli-

cations within graphics. Outside of graphics, ongoing research in vision and other fields

makes use of shape maps to create links between new inputs and previously-analyzed

data; for instance, a robot navigating an unknown environment may try to map objects it

encounters to ones in some given database of objects it can manipulate.

Unless shapes are rigid motions or isometric deformations of each other, it is difficult

to define a single “best” map between most pairs of surfaces at point-to-point granular-

ity. This difficulty arises because there are at least two geometric sources of ambiguity

complicating the mapping problem:

73
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Global ambiguity: Symmetric shapes may admit multiple geometrically equivalent maps;

for instance, human models often have left-right symmetries that generate two equiv-

alent maps in terms of the amount of geodesic distance distortion they induce. Note

that the shapes might be symmetric under a rigid transformation of space or under

an intrinsic symmetry (as in e.g. [OSG08, RBBK10]).

Local ambiguity: Shapes that are not exact isometric deformations of one another may ad-

mit an informative map at some level of coarseness but not at the point-to-point level

due to scaling, slippage, or the absence of identical details. For instance, generating

maps between a horse and a dog model makes sense at the segment level because

both animals have similar limb structures, even if the structures within those limbs

are different.

Additional ambiguities can result from a lack of context. Without knowledge of the pro-

cess used to obtain the target from the source, it is impossible to know which maps are

semantically relevant, regardless of geometric cues.

Given these fundamental problems, a limitation of many mapping algorithms is that

they attempt to find a point-to-point map with no more than a geometric prior, whether

it be rigidity, conformality, isometry, elasticity, or otherwise. These methods are forced to

make somewhat arbitrary decisions as to the user’s desired map or, worse, unsuccessfully

attempt to combine often disjoint acceptable maps. Thus, mapping algorithms that process

a variety of shapes should incorporate uncertainty when the mapping problem is itself

ambiguous. These ambiguities can be resolved with domain-specific knowledge, semantic

information, or other cues, or they can be used to prompt the user for guidance.

In this chapter, we propose soft maps, which generalize point-to-point maps by embrac-

ing uncertainty as a fundamental part of the mapping process. In this setup, maps are

expressed as conditional distributions of a distribution on the product of the two surfaces,

which we call a soft correspondence. In other words, we attach to each pair of regions on the

two surfaces a probability indicating the likelihood that these regions should be mapped

to one another. Soft maps and correspondences are easily discretized as matrices of prob-

ability values. This representation is amenable to convex optimization techniques, while

still allowing for representation of point-to-point maps as permutation matrices.

The soft map framework is capable of handling both local and global ambiguities, as

illustrated in Figure 4.1. Here, given only geometric information, we can compute a soft
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→

→

Figure 4.1: Soft maps from one model to another. The colored patches on the leftmost
model are mapped to the colored distributions over the models on the right. These soft
maps acknowledge discrete left-right and front-back symmetries as well as localized am-
biguities including slippage along the pig’s back.

mapping where the front hoof of a pig model is mapped ∼50% to each of the front hooves

on a different pig; the back of the source pig is mapped to a larger region on the target pig’s

back, since the lack of distinguishing geometric features makes a more precise mapping

impossible. Similarly, the map in Figure 4.1 between human models acknowledges their

approximate left-right and front-back symmetries.

One important property of soft maps is continuity, which must be redefined proba-

bilistically to ensure that nearby points on one surface yield nearby distributions on the

other. We define infinitesimal notions of soft map continuity and show how Wasserstein

distances can measure the discrete continuity of a soft map via a relaxation of the clas-

sical Dirichlet energy of a differentiable point-to-point map. With this metric and others

describing a soft map’s alignment with geometric features and bijectivity, we provide a

convex optimization framework for analyzing and computing soft maps.

4.2 Related Work

The literature on mapping between surfaces is vast, and we refer the reader to [vKZHCO11,

CLM+11, BBK08] for general summaries of previous work. The idea of computing a map-

ping by minimizing descriptor distances and preserving continuity is common to many of

the works surveyed here.

Recent work on mapping reveals several approaches incorporating geometric cues and
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matching strategies. [BBK06] embeds one surface into another using Generalized Multi-

dimensional Scaling to minimize distortion. [LF09, KLCF10, KLF11] explore and com-

bine maps from the group of Möbius transforms of a surface, which can be constructed

efficiently and include isometries. [GBAL09, SOG09] introduces the heat kernel signature

(HKS), assigning a pointwise signature based on heat flow, and [OMMG10] uses a related

technique to find maps with guaranteed behavior for nearly-isometric surfaces. The HKS

construction is applied to the wave equation in [ASC11] for experimentally more informa-

tive signatures. The algorithms in these and other papers find a single sparse or full map,

whereas our new representation of a map can encode multiple correspondences.

The idea of a “fuzzy map” in terms of probability matrices was introduced in [WL78]

using simple heuristics to construct and update maps. More recently, the Möbius trans-

formations sampled in [LF09] generate a “fuzzy correspondence matrix” guiding point-

to-point matching. Fuzzy schemes are also used to relax point-to-point mappings as in

[BBM05, RCB97]. A probabilistic approach to mapping is taken in [ASP+04, TBW+11],

though here distributions are over non-soft point-to-point mappings and thus subject to

the rigidity of point-to-point schemes. Our optimization for finding soft maps has com-

monalities with theirs since their energy can be separated into unitary and binary terms,

although ours is convex and thus not prone to local minima.

Some existing approaches use convex optimizations that are related to ours. The con-

tinuous relaxation of the integer program in [WSSC11] could be viewed as a soft map, al-

though the output is harder to interpret. The relaxation of the graph isomorphism problem

in [SU97] provides some analogous constructions to the constraints on and desired proper-

ties of soft maps for graphs; a related construction on hypergraphs is provided in [ZS08].

Wasserstein distances also have been applied to optimizations for several related vision

and geometry problems. For instance, [LD11] uses them to construct a distance metric

between surfaces invariant to Möbius transformations, and [HZTA04] uses them to guide

image registration.

The work closest related to soft mapping, however, is that on measure couplings and

Gromov-Wasserstein distances [Mém07, Mém09, Mém11]. Here, correspondences are dis-

cretizations of measure couplings, or probability distributions over the product of two sur-

faces whose marginalizations to the surfaces yield areas. The method is only acceptable

for nearly-isometric surfaces admitting area-preserving correspondences. Furthermore,

the optimization problem for finding measure couplings is non-convex with multiple local
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(a) Two maps S1 7→ S1 (b) Soft correspondence (c) Soft correspondence matrix A

Figure 4.2: (a) Two maps from S1 to itself, (b) a soft correspondence superposing the two
maps on the torus S1 × S1, and (c) the corresponding matrix A.

optima when either surface is symmetric.

Applications of soft maps overlap significantly with those of point-to-point mapping.

Some overlapping applications are better suited to the probabilistic context. For instance,

annotation transfer and other tasks operating on shapes at a coarse level can use soft maps

directly. Additionally, since soft maps can encode multiple point-to-point maps, methods

like [NBCW+11] for finding consistent maps within a collection may have a higher chance

of success.

4.3 Definitions

Let M0 and M be two surfaces embedded in R3; we will assume the surfaces are rescaled

so that they both have area 1. We can view M0 ×M as a four-dimensional manifold.

The basic object we consider is a probability measure P ∈ Prob(M0 × M), which we

call a soft correspondence between M0 and M. We view P(U × V) as the probability that

a pair of points p0 ∈ U ⊆ M0 and p ∈ V ⊆ M are related to each other. With this

interpretation, the uniform distribution indicates a mapping in which all pairs of points

(p0, p) are deemed equally likely to be related, while the relationship y = φ(x) induced

by the mapping φ : M0 → M is encoded by a δ-measure whose support is the surface

{(x, φ(x)) : x ∈ M0} ⊆ M0 ×M.

It can be difficult to visualize distributions on the four-dimensional product M0 ×M.

If M0 and M are curves, however, the two-dimensional product M0 ×M can be visualized

on the plane or using a toroidal topology. We thus show an example in Figure 4.2 of a

soft correspondence between the circle S1 and itself on the torus S1 × S1. This distribution
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represents a convex combination of two point-to-point maps, illustrating the expressive

power of soft maps.

Given a soft correspondence P between M0 and M, we use conditional probabilities to

derive soft maps. A soft map from M0 to M is a function µ : x 7→ µx assigning a probability

measure µx ∈ Prob(M) to each x ∈ M0. Thus, if U ⊆ M, we interpret the value µx(U )

as the probability that a randomly sampled y ∈ U corresponds to x. In this way, corre-

spondences can be expressed with a degree of uncertainty. For all x ∈ M0 and U ⊆ M, we

require that µx(U ) ≥ 0 and µx(M) = 1.

Soft maps generalize conventional point-to-point maps between surfaces. In particular,

every map φ : M0 → M yields a soft map µ by requiring that µx(U ) = 1 if and only if

φ(x) ∈ U . That is, µx is a unit Dirac mass centered at φ(x).

Soft maps can encode a wider variety of mapping behavior than conventional maps.

For example, the precise location of the point corresponding to x ∈ M0 might not be

known. Then, µx would have a peak at φ(x) with nonzero width representing uncertainty

in the location of φ(x). If M admits self-symmetries, then x might correspond equally

well to multiple points on M. Then, µx would be the convex combination of two or more

peaked probability measures.

A second advantage of soft maps is that they can be represented by positive scalar

functions, i.e. their densities. The density of the soft map µ is the function ρ : M0×M→ R+

satisfying

µx(U ) =
∫

U
ρ(x, y) dy

for all x ∈ M0 and U ⊆ M. Here, dy is the area measure of M. Note
∫

M ρ(x, y) dy = 1 must

hold for all x ∈ M0. Henceforth, we will use the abbreviation dµx(y)
def.
= ρ(x, y) dy. This

scalar function representation makes it straightforward to discretize soft maps.

REMARK: Recall that not all probability distributions admit densities. But we consider

only distributions that are at least weak limits of smooth densities. Our analysis remains

valid with this assumption.

4.4 Variational Analysis of Soft Maps

A typical approach to optimizing for a soft map or analyzing a given soft map would be

to minimize a convex potential measuring desirable properties like smoothness, bijectiv-

ity, and preservation of geometric features. In this section, we outline some functional
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quantifying these properties given a soft map x 7→ µx.

4.4.1 Dirichlet Energy

Let µ be a soft map from M0 to M. We would like to quantify the degree of smoothness

of the function x 7→ µx in the x-variable. To do so, we construct a Dirichlet energy for

soft maps in line with the general framework suggested in [Jos94] for Dirichlet energies in

metric spaces. We choose a distance metric for Prob(M), namely the 2-Wasserstein distance

W2 : Prob(M)× Prob(M)→ R+.

To this end, we define the Dirichlet energy density of a soft map µ from M0 to M at

x ∈ M0 as

eµ(x)
def.
= lim

r→0

1

Area(Br(x))

∫

Br(x)

[

W2(µx, µx′)

dist0(x, x′)

]2

dx′ (4.1)

where dist0 is the geodesic distance function on M0. The Dirichlet energy of µ is then

ED(µ)
def.
=

1

Area(M0)

∫

M0

eµ(x) dx . (4.2)

We will appeal to three important properties of the Dirichlet energy for soft maps. We

state the first two here and give a more thorough discussion of the key third property in

the next section.

Proposition 8. The behavior of the Dirichlet energy in two special limiting cases is as follows.

1. Let µ be a soft map from M0 to M with constant density, i.e. ρ(x, y) = ρ(y) for all x ∈ M0.

Then ED(µ) = 0.

2. Let φ : M0 → M be a map. The Dirichlet energy of the associated soft map equals the

Dirichlet energy of φ.

Proof. If µ is a soft map from M0 to M with constant density then µx = µx′ for all x, x′ ∈ M0.

Thus W2(µx, µx′) = 0 because the product distribution π
def.
= µx ⊗ µx′ is a measure cou-

pling with zero cost. Next, if φ : M0 → M is a map, then the associated soft map is

δφ(x)(y) dy where δp is the Dirac δ-density centered at p. There is only on measure cou-

pling of δφ(x)(y) dy and δφ(x′)(y) dy, namely the product distribution for which the cost is

dist(φ(x), φ(x′)). The Dirichlet energy density now reduces to the conventional Dirichlet

energy density in the limit as r → 0.
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Proposition 9. The Dirichlet energy is convex under linear combination. That is, if µ1 and µ2 are

soft maps from M0 to M and α ∈ [0, 1], then

ED((1− α)µ1 + αµ2) ≤ (1− α)ED(µ1) + αED(µ2) .

Proof. Let µ1, µ2 be soft maps, πk for k = 1, 2 be optimal measure couplings of [µk]x, [µk]x′ ,

and α ∈ [0, 1]. Then πα
def.
= (1− α)π1 + απ2 is a measure coupling of [(1− α)µ1 + αµ2]x

and [(1 − α)µ1 + αµ2]x′ . Since
∫∫

M×M[dist(y, ȳ)]2dπα(y, ȳ) = (1 − α)W2
2 ([µ1]x, [µ1]x′) +

αW2
2 ([µ2]x, [µ2]x′), the proposition follows.

The expression in (4.1) for the Dirichlet energy density is unwieldy and does not adapt

well to a discrete setting. In particular, the infimum introduces many auxiliary variables

for representing measure couplings. Therefore, the discretization of the Dirichlet energy

in this form scales poorly with problem size.

By exploiting the properties of the 2-Wasserstein distance, however, we can simplify

the Dirichlet energy density (4.1) into a form that enables a tractable discretization. To do

so, we must introduce a new mathematical object, which we call the transportation potential

and denote by Q. This object takes as input a point x ∈ M0 and a tangent vector V ∈ Tx M0

and outputs a function on M, with linear dependence on V. Given (x, V) we write y 7→

Q(x, y) ·V for the output function.

Proposition 10. Let dµx(y)
def.
= ρ(x, y)dy be a soft map from M0 to M satisfying a suitable regu-

larity condition. Then its Dirichlet energy satisfies

ED(µ) =
∫

M0

∫

M
ρ(x, y)‖∇Q(x, y)‖2 dy dx , (4.3)

where Q is the transportation potential of µ. It is found by solving the partial differential equation

∇ ·
(

ρ(x, y)∇Q(x, y) ·V
)

= −〈∇0ρ(x, y), V〉
∫

M
ρ(x, y)Q(x, y) ·V dy = 0

(4.4)

for every x ∈ M0 and V ∈ Tx M0.

Proof. Assume first that ρ > 0. We recall from the theory of optimal transportation that the

solution of the optimal transportation problem for the 2-Wasserstein distance on a compact

surface can be characterized as follows. The transport between two measures with positive
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density µ1 and µ2 is achieved by a map ψ : M→ M of the form ψ(y)
def.
= expy(∇q(y)) where

q : M → R is a convex function and expy : Ty M → M is the geodesic exponential map.

Moreover, the transportation cost can be expressed as [W2(µ1, µ2)]2 =
∫

M ‖∇q‖2dµ1. See

[Vil03, Ch. 2] for details. We can use these ideas to simplify the Dirichlet density (4.1) by

setting µ1
def.
= µx and µ2

def.
= µx′ , yielding q

def.
= qx,x′ that achieves the transport from µx to µx′ .

When x and x′ are sufficiently close, we can write x′ = expx(εV) where ε = dist0(x, x′)

and V ∈ Tx M0. To first order, qx,x′(y) ≈ εQ(x, V, y) where y 7→ Q(x, V, y) is a function

on M. Also Q is linear V. Substituting q into the expression for the cost given above and

differentiating in ε leads to the PDE (4.4) for each x ∈ M0 and V ∈ Tx M0. Finally, taking

the limit as ε→ 0 in the expression for the Dirichlet energy density (4.1) yields the desired

simplification. Limiting arguments can be made to handle the cases of densities which fail

to be everywhere non-zero and weak limits of smooth densities.

REMARK: The differential operator in (4.4) is linear and has the constant functions in

its kernel. The second equation in (4.4), however, ensures that solutions are transverse to

the constant functions. Thus the solutions of (4.4) are unique.

Despite its involved mathematical definition, the intuition for Q is straightforward. For

each x ∈ M0, we visualize the distribution dµx(y) = ρ(x, y) dy as a collection of particles

on M whose density near y is proportional to ρ(x, y). If we choose a small vector V ∈

Tx M0 and displace x to x′
def.
= expx(V), we can track the motion of these particles on M

as they rearrange themselves in a Wasserstein-optimal manner from µx to µx′ . The vector

field ρ(x, y)∇Q(x, y) · V is the momentum of these particles as they move and the cost

(4.3) is twice their kinetic energy. This interpretation aligns with the Benamou-Brenier

formulation of optimal transportation in terms of fluid flow [BB00b], see also [Vil03, Ch.

8].

The partial differential equation (4.4) satisfied by Q is an anisotropic version of Pois-

son’s equation. We can invoke standard theory when ρ > 0 to establish existence and

uniqueness of Q. If this inequality does not hold, these properties can fail. Then, solvabil-

ity of (4.4) can be restored by considering the ε→ 0 limit of the equation for (1− ε)ρ + ερ0

where ρ0(x, y) is uniform on M for all x ∈ M0, see [AGS05, Ch. 8].
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4.4.2 Bijectivity Energy

A bijectivity energy for soft maps should promote the equal distribution of probabilistic

mass pushed forward under the soft map. To this end, let dµx(y)
def.
= ρ(x, y) dy be a soft map

between M0 and M, and consider the quantity b(y)
def.
=
∫

M0
ρ(x, y) dx. Note that b(y) ≥ 0

and
∫

M b(y) dy = 1 so b(y) dy is a probability measure on M. Indeed
∫

U b(y) dy gives the

probability that a randomly sampled y ∈ U ⊆ M receives mass from somewhere in M0. We

view b as a bijectivity energy density whose square integral yields the bijectivity energy, a

convex quadratic function of µ.

We define the bijectivity energy of a soft map µ from M0 to M, with dµx(y)
def.
= ρ(x, y)dy

as

Eb(µ)
def.
=
∫

M

[

∫

M0

ρ(x, y) dx

]2

dy . (4.5)

We can see that µ has small bijectivity energy when b(y) is nearly constant and b(y) dy

is as spread out as possible. Thus for such µ, most y ∈ M receive mass from M0 and no y

receives a large amount of mass. A final desirable property of the bijectivity energy is that

it has the “correct” limit for soft maps arising from conventional maps.

Proposition 11. Suppose φ : M0 → M is a diffeomorphism and let µ be the associated soft map.

Then

Eb(µ) =
∫

M

[

det(∇0φ)
]−2
◦ φ−1(y)dy .

Proof. Let dµx(y)
def.
= δφ(x)(y) dy and perform a simple change of variables in the inner

integral of (4.5).

Therefore a conventional map for which det(∇0φ) is too small will have large bijectiv-

ity energy, and so Eb penalizes the failure of local injectivity. Moreover, the formula

det(∇0φ(x)) = lim
r→0

Area(φ(Br(x))

Area(Br(x))
,

where Br(x) is the ball of radius r centered at x, tells us that energy-optimal maps will

be such that det(∇0φ(x)) is as spread out as possible, which promotes non-zero relative

values of Area(φ(Br(x)) for each x, i.e. local surjectivity.
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(a) Source points (b) (c) (d)

Figure 4.3: (a) An ant model with three source points and directions; (b,c,d) corresponding
momentum fields for a soft map from the heat kernel signature. The blue shading of the
targets shows the magnitude of the soft map in each case.

4.4.3 Descriptor Matching

Given x ∈ M0 and y ∈ M, we can often write a function c(x, y) measuring the geometric

compatibility of x and y. For example, in our tests we take c(x, y) to be the L1 difference

between wave kernel signatures [ASC11]. Then, we can measure the agreement between

a soft map µ and c as

Ec(µ)
def.
=
∫

M0

∫

M
c(x, y) dµx(y). (4.6)

4.5 Applications for Soft Map Analysis and Synthesis

We now show how the transportation potential Q and the Dirichlet energy from §4.4.1 can

be used for analyzing soft maps. The goal of this section and subsequent ones in this chap-

ter is illustration and application of the constructions from §4.4. Many discretizations of

these theoretical constructions are possible and must be tuned to the particular application

and data type under consideration.

See [SGB13] for details of the discretization of soft maps on triangle mesh surfaces used

in this section. In short, this paper constructs soft maps in the language of the finite element

method (FEM). Because soft maps are functions on a four-dimensional manifold M0 ×M,

dimensionality is reduced by constructing localized partitions of unity on the source and

target surfaces as linear combinations of piecewise-linear hat functions. Gradients, Lapla-

cians, and the like are computed as the restriction of piecewise-linear FEM to this reduced

basis.
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Figure 4.4: (left) The soft map (lower left) in blue does not distinguish between the two
legs of the wolf, nor between radial points at the same height on a given leg. The velocity
vector field ∇Q, however, deduces second-order information from the soft map. Given a
path (upper left) on the source, corresponding paths (middle left) can be integrated along
∇Q from a single match; the soft map encodes forward and orientation-reversing maps,
which can be traced depending on the initial match shown in yellow. (right) Following
∇Q transfers the path on the left model to the path on the right model. Path integration
disambiguates the soft map, which does not differentiate points on rings around the arms.

4.5.1 Extracting Correspondences

The soft map density ρ is a function on the four-dimensional product space M0 ×M and

is therefore hard to visualize. Picking a few salient source points x ∈ M0 and showing

the corresponding distributions on M gives some sense of the correspondence behavior

suggested by ρ. But it remains difficult to see dynamic behavior in these correspondences

as a source point is moved in a given direction.

The momentum field ρ∇Q of ρ, however, captures exactly this type of behavior. In Fig-

ures 4.3, and 4.5, we illustrate how the momentum might be used to illustrate the dynamics

of a soft map.

In particular, the fluid flow interpretation of optimal transportation views the proba-

bility density ρ as a collection of particles whose aggregate motion is by advection under

the momentum field. We leverage this idea to extract pointwise correspondences from

a soft map as follows. Suppose we are given a soft map density ρ from M0 to M and a
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(a) (b) (c) (d) (e)

Figure 4.5: (a) Soft maps are capable of representing superpositions of uncertain point-
to-point maps. We simulate such a soft map (the average two soft maps representing the
identity and an orientation-reversing map of the sphere); the momentum field ρ∇Q in
red tracks the motion of both peaks of the map simultaneously (source point and direction
boxed). (b) Four points marked along a geodesic on a source surface; (c) the corresponding
images of a soft map from (b) constructed using the wave kernel signature [ASC11] on
the target shaded from light to dark and with the momentum vector field in red; (d) the
Dirichlet energy density of the map in log scale; (e) the reciprocal of the bijectivity energy
density. Note in (c) that ρ∇Q shows where mass of the soft map moves: up and down
the target fingers and along the hand; the WKS cannot distinguish between the index and
middle fingers. The Dirichlet energy density (c) is highest exactly where the map induces
distortion at the joints.

single point-to-point correspondence x ∈ M0 7→ y ∈ M. We can assume that y is near

a peak of µx. Now given a path γ0(t) : [0, T) → M0 starting at x, we can trace a path

γ : [0, T) → M of corresponding points on M using the soft map velocity as a guide. In

particular, we obtain an ordinary differential equation (ODE) for γ by substituting γ0 for

x and its derivative γ̇0 for V into the expression for the velocity:

γ̇ = ∇Q(γ0, γ) · γ̇0 with γ(0) = y. (4.7)

This ODE can be integrated in t using Euler’s method. Figure 4.4 show two examples of

this process. The left subfigure also shows that different choices of y ∈ M yield different

paths; this provides a strategy for isolating symmetries in ρ.

4.5.2 Analyzing Maps

The transportation potential, Dirichlet energy density, and bijectivity energy density all

can be used to visualize and analyze characteristics of soft maps. We demonstrate our

visualization techniques on maps from two sources.

First, when we are given a point-to-point map φ : M0 → M. Proposition 8 shows

that the traditional Dirichlet energy of φ is approximated by the Dirichlet energy of any
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Figure 4.6: Four sphere maps illustrated by transferring textures. The Dirichlet energies
of the approximating soft maps is indicated. The identity, rotation, and conformal maps
yield nearly the same energy while the stretched map is larger. We expect low values for
the first three maps because they are critical points of the point-to-point Dirichlet energy;
the only map with exactly zero Dirichlet energy in the point-to-point case sends the entire
source to a single point on the target.

sufficiently “close” soft map. This suggests that a strategy for analyzing the traditional

Dirichlet energy of φ is to construct a soft map approximating φ and computing its Dirich-

let energy. To do so, we represent φ at the finest level using a density ρfine that is sparse in

the basis of hat functions on M0 and per-triangle densities on M. For efficiency, we then

project into a coarser basis in which we can evaluate the soft Dirichlet energy feasibly. Fig-

ure 4.6 shows how the behavior of the traditional Dirichlet energy for maps aligns with

that of the Dirichlet energy of the projected soft maps.

Second, soft maps can be obtained by constructing the maximum-entropy probability

distribution derived from descriptor differences. That is, suppose f0 : M0 → Rd and

f : M → Rd are descriptors for M0 and M. Then the distribution we have in mind is

ρ(x, y) = Z(x)−1 exp(−‖ f0(x)− f (y)‖2/σ2), where Z(x) is a normalization factor. We use

this as our soft map and project it onto the bases as above. In our examples, we use the

heat kernel and wave kernel signatures [SOG09, ASC11].

In Figures 4.6 and 4.7, we use Dirichlet and bijectivity energy densities to visualize

and quantify point-to-point map continuity; the remaining figures are constructed using

descriptors. Figure 4.5 shows the Dirichlet density as a function on a mesh. Figure 4.8

shows how it can be used to find poorly-generated soft maps and points where distortion

is undesirably high.
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ED 0.75 0.77 0.80 0.81
Eb 1.01 1.03 1.03 1.03

Figure 4.7: Four deformations of the mesh on the left with ground-truth correspondences
colored by the reciprocal of the bijectivity energy density. Below the meshes are the Dirich-
let energy ED and bijectivity energy Eb.

(a) Source (Dirichlet) (b) Target (Bijectivity) (c) Stretching
ED = 1102.9 Eb = 1.19

Figure 4.8: Constructing a soft map from (a) to (b) using the wave kernel signature unex-
pectedly yields a large Dirichlet energy ED. Examining the energy density (a; in log scale)
shows large distortion on the model’s forearms; examining the map more closely in (c)
reveals that the map inadvertently stretches the source’s forearm to the target’s entire arm.



CHAPTER 4. SOFT MAPS BETWEEN SURFACES 88

4.6 Analysis and Decomposition of Soft Maps

Unlike point-to-point maps, the probability matrices for soft maps are amenable to linear-

algebraic analysis to understand the information they encode. We illustrate this type of

analysis for individual maps and collections of maps between surfaces.

Contrasting with the previous section, this section uses the discretization of soft maps

proposed in [SNB+12]. This paper provides optimization techniques for computing coarse

approximations of soft maps by minimizing weighted sums of analogs of the variational

objectives from §4.4, yielding matrices A of probability values. For this discussion, we do

not need differential interpretations of soft maps, and hence we can use a coarser approxi-

mation in which surfaces are partitioned into Voronoi cells; then, a soft map is represented

as a piecewise constant set of probability values on products of these cells. The resulting

optimizations are carried using standard linear programming packages.

4.6.1 Bases for Mapping

Suppose we are given a soft correspondence matrix A = (aij). If our correspondence is

written in the identity basis, each row or column of A encodes a map from a single patch

on M0 or M, resp. This representation is not necessarily the most compact. For instance, if

a surface admits a symmetry that cannot be resolved by a given descriptor, then symmetric

patches always should be coupled. Similarly, if there is not enough evidence to distinguish

nearby patches, they also can be coupled.

Once we have computed A, however, we can seek bases on M0 and M that better

respect such couplings a posteriori. In particular, projecting the uniform vector of ones out

of the columns of A and performing a singular value decomposition (SVD) mimics the

steps of principal component analysis (PCA), yielding an orthogonal basis (including the

uniform vector) for the column space of A. This basis provides a simple representation of

the couplings exhibited in the column marginals of A, and the singular values provide an

indication of the importance of each basis vector. Explicitly including the uniform vector

allows us to guarantee that our basis can represent probability distributions. A similar

process can be carried out on the rows of A for a basis on the target surface.

Figure 4.9 shows eight members of the basis M resulting from SVD analysis of a map.

The basis reveals patterns on M that should be mapped together, respecting symmetries
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(a)

(b)

Figure 4.9: (a) The first eight SVD basis vectors from the first map in Figure 4.1, sorted
by decreasing singular value, and (b) the same vectors “untangled” using [SBCBG11] to
better show their support. Bases are colored using the scale below the images. These
respect symmetries and are spread depending on the usefulness of φ for mapping each
patch.

that are not disambiguated by φ; the basis on M0 is similar. Such bases indicate the map-

ping resolution and couplings that should be expected for continuous maps respecting a

given φ. Figure 4.10 shows a plot of the singular values from our decomposition. These

singular values have a relatively long tail, so low-rank approximations of A can be ob-

tained by projecting onto a restricted basis; Figure 4.11 shows such a projection onto the

first nine basis vectors.
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Figure 4.10: Singular values for the basis in Figure 4.9.

→

Figure 4.11: A low-rank map using the basis from Figure 4.9; it is nearly indistinguishable
from the original map.

4.6.2 Understanding Collections of Shapes

Using SVD bases as in Section 4.6.1 makes it possible to express a single map using a few

basis vectors and a smaller correspondence matrix. In some sense, the compactness here

is not surprising, since the bases are tailor-made for the map in question. The two bases,

however, live on M0 and M individually, so in some sense the map is only expressed in the

reduced correspondence matrix.

Consider now a collection of shapes M1, . . . , Mn, each with its own patch decomposi-

tion. We seek a “probabilistic basis” on each shape that captures its maps to all the others.

Computing such a basis is a simple extension of our previous method: we simply con-

catenate the outgoing maps to all other shapes, project out the uniform distribution, and

perform SVD. Figure 4.12 shows the results of an experiment in which a database of twenty

shapes is mapped pairwise and analyzed using this technique. The resulting bases, illus-

trated for one shape in Figure 4.12(b), are more robust than those from Figure 4.9 since

they are not subject to the particularities of a single map; they can be “untangled” using

the method in [SBCBG11] (shown in Figure 4.12(c)) to illustrate their support more clearly,
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(a) Models (b) PCA basis (c) Untangled basis (d) Error

Figure 4.12: Pairwise maps between the models in (a) yield bases for mapping on the
shapes including those in (b), which can be untangled to yield bases (c). A subset of the
models used in the paper is shown. The untangled basis reveals the power of the reduced-
rank representation, directly coupling symmetric patches that cannot be disambiguated
using φ or continuity. For instance, feet and legs are coupled in the untangled basis and
thus always are mapped together. L2 soft correspondence matrix approximation error
using the truncated twenty-vector basis is shown in (d); the color bar scales between 0%
and 25% error.

although this process does not affect their span. Figure 4.12(d) shows that approxima-

tion using these non-map-specific bases remains relatively effective, demonstrating their

generality.

Some of the highest “errors” in Figure 4.12(d) are along the diagonal, which represents

self maps. The fact that descriptors match exactly can make the identity map dominate soft

mapping output regardless of symmetries, see Figure 4.13(a); thus we leave them out of

the SVD computation. Projecting onto the shape’s mapping basis can alleviates this issue

and makes for more symmetric self mappings as in Figure 4.13(b).

4.7 Discussion

There are many ways to view soft correspondences within the larger context of mapping

algorithms. Primarily, they serve as a new map representation acknowledging uncertainty

in the mapping problem, improving upon dissimilarity matrices using continuity to cull

false matches. They can also be viewed as superpositions of symmetric or slippage-prone

point-to-point maps whose spread reflects potential mapping quality latent in a given de-

scriptor. Regardless of interpretation, soft correspondences deal with local and global am-

biguities gracefully, admit straightforward analysis, and can be computed using convex

optimization.
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Source Full target Projected

Figure 4.13: Map from a shape to itself before and after projecting onto the reduced basis.
The maps on the right are more symmetric at the cost of being more spread out.

Together, these methods provide a toolkit for exploring and generating soft maps and

indicate promising avenues for future research in surface mapping and analysis. As sug-

gested earlier, many geometry processing algorithms implicitly make use of soft maps

through descriptor differencing or by accumulating potential matches, and our proposed

techniques can be used to understand the quality and structure of these constructions, in-

cluding their discontinuities and locations where additional mapping evidence might in-

crease bijectivity or sharpness. They also provide methods for displaying local variations

of soft maps using momenta rather than small differences between probability distribu-

tions. With more specialized optimizations, it also may be possible to compute dense,

continuous soft maps in analogy to the coarse maps illustrated here. In the end, this work

represents a considerable step toward the design of a pipeline for generating and under-

standing soft maps backed by a convergent theory characterizing discrete and continuous

behavior.



Chapter 5

Wasserstein Propagation Along

Graphs

We conclude our consideration of problems in geometric data processing with an exam-

ple in which the geometric aspect is more abstract, while the computational machinery

remains similar to that introduced in Chapter 4. Similar to the mapping problem, we will

couple the geometry of two domains. The source domain in this case, however, will be

fundamentally discrete—a graph—while the target can be any metric space over which

optimal transportation problems can be solved. Switching to a machine learning context,

the shortest-path structure of the graph will provide notions proximity or similarity be-

tween nodes to be labeled with probability distributions over a target domain, leading to

algorithms for semi-supervised and manifold-valued learning.

5.1 Introduction

Graph-based semi-supervised learning is an effective approach for learning problems in-

volving a limited amount of labeled data [SNZ08]. Methods in this class typically propa-

gate labels from a subset of nodes of a graph to the rest of the nodes. Usually each node

is associated with a real number, but in many applications labels are more naturally ex-

pressed as histograms or probability distributions. For instance, the traffic density at a

given location can be seen as a histogram over the 24-hour cycle; these densities may be

known only where a service has cameras installed but need to be propagated to the en-

tire map. Product ratings, climatic measurements, and other data sources exhibit similar

93
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structure.

While methods for numerical labels, such as [BN01, ZGL03, BNS06, ZB11, JYL+12] (also

see the survey by [Zhu08] and references therein), can be applied bin-by-bin to propagate

normalized frequency counts, this strategy does not model interactions between histogram

bins. As a result, a fundamental aspect of this type of data is ignored, leading to artifacts

even when propagating Gaussian distributions.

Among first works directly addressing semi-supervised learning of probability distri-

butions is [SB11], which propagates distributions representing class memberships. Their

loss function, however, is based on Kullback-Leibler divergence, which cannot capture

interactions between histogram bins. [TC09] allow interactions between bins by essen-

tially modifying the underlying graph to its tensor product with a prescribed bin interac-

tion graph; this approach loses probabilistic structure and tends to oversmooth. Similar

issues have been encountered in the mathematical literature [McC97, AC11] and in vi-

sion/graphics applications [BvdPPH11, RPDB12] involving interpolating probability dis-

tributions. Their solutions attempt to find weighted barycenters of distributions, which is

insufficient for propagating distributions along graphs.

The goal of this chapter is to provide an efficient and theoretically sound approach to

graph-based semi-supervised learning of probability distributions. Similar to algorithms

we have developed for mapping between surfaces, our strategy uses the machinery of

optimal transportation. In particular, leveraging intuition from the previous chapter, we

employ the two-Wasserstein distance between distributions to construct a regularizer mea-

suring the “smoothness” of an assignment of a probability distribution to each graph node.

The final assignment is produced by optimizing this energy while fitting the histogram

predictions at labeled nodes.

Our technique has many notable properties. As certainty in the known distributions

increases, it reduces to the method of label propagation via harmonic functions [ZGL03].

Also, the moments and other characteristics of the propagated distributions are character-

ized by those of the labeled nodes at minima of our smoothness energy. Our approach

does not restrict the class of the distributions provided at labeled nodes, allowing for bi-

modality and other non-Gaussian properties. Finally, we prove that under an appropriate

change of variables our objective can be minimized using a fast linear solve.
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5.2 Preliminaries and Motivation

5.2.1 Label Propagation on Graphs

We consider generalization of the problem of label propagation on a graph G = (V, E).

Suppose a label function f is known on a subset of vertices V0 ⊆ V, and we wish to

extend f to the remainder V\V0. The classical approach of [ZGL03] minimizes the Dirichlet

energy ED[ f ]
def.
= ∑(v,w)∈E ωe( fv − fw)2 over the space of functions taking the prescribed

values on V0. Here ωe is the weight associated to the edge e = (v, w). ED is a measure of

smoothness; therefore the minimizer matches the prescribed labels with minimal variation

in between. Minimizing this quadratic objective is equivalent to solving ∆ f = 0 on V\V0

for an appropriate positive definite Laplacian matrix ∆ [CY00]. Solutions of this system

are well-known to enjoy many regularity properties, making it a sound choice for smooth

label propagation.

5.2.2 Propagating Probability Distributions

Suppose, however, that each vertex in V0 is decorated with a probability distribution rather

than a real number. That is, for each v ∈ V0, we are given a probability distribution

ρv ∈ Prob(R). Our goal now is to propagate these distributions to the remaining vertices,

generating a distribution-valued map ρ : v ∈ V 7→ ρv ∈ Prob(R) associating a probabil-

ity distribution with every vertex v ∈ V. It must satisfy ρv(x) ≥ 0 for all x ∈ R and
∫

R
ρv(x) dx = 1. In §5.4 we consider the generalized case ρ : V → Prob(Γ) for alterna-

tive domains Γ including subsets of Rn; most of the statements we prove about maps into

Prob(R) extend naturally to this setting with suitable technical adjustments.

In the applications we consider, such a propagation process should satisfy a number of

properties:

• The spread of the propagated distributions should be related to the spread of the

prescribed distributions.

• As the prescribed distributions in V0 become peaked (concentrated around the mean),

the propagated distributions should become peaked around the values obtained by

propagating means of prescribed distributions via label propagation (e.g. [ZGL03]).

• The computational complexity of distribution propagation should be similar to that
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Naı̈ve approach

Statistical approach

Desirable output
ρ1ρ0

v0 v1/4 v1/2 v3/4 v1

Figure 5.1: Propagating prescribed probability distributions (in red) to interior nodes of
path graph identified with the interval [0, 1].

of scalar propagation.

The simplest method for propagating probability distributions is to extend [ZGL03] naı̈vely.

For each x ∈ R, we can view ρv(x) as a label at v ∈ V and solve the Dirichlet problem

∆ρv(x) = 0 with ρv0(x) prescribed for all v ∈ V0. The resulting functions ρv(x) are distri-

butions because the maximum principle guarantees ρv(x) ≥ 0 for all x and
∫

R
ρv(x) dx = 1

for all v ∈ V since these properties hold at the boundary [CCK07].

It is easy to see, however, that this method has shortcomings. For instance, consider

the case where G is a path graph representing the segment [0, 1] and the labeled vertices

are the endpoints, V0 = {0, 1}. In this case, the naı̈ve approach results in the linear inter-

polation ρt(x)
def.
= (1− t)ρ0(x) + tρ1(x) at all intermediate graph vertices for t ∈ (0, 1). The

propagated distributions are thus bimodal as in Figure 5.1a. Given our criteria, however,

we would prefer an interpolation result closer to Figure 5.1c, which causes the peak in the

boundary data simply to slide from left to right without introducing variance as t changes.

An alternative strategy for propagating probability distributions over V given bound-

ary data on V0 is to use a statistical approach. We could repeatedly draw an independent

sample from each distribution in {ρv : v ∈ V0} and propagate the resulting scalars using a

classical approach; binning the results of these repeated experiments provides a histogram-

style distribution at each vertex in V. This strategy has a similar shortcomings to the naı̈ve

approach above. For instance, in the path graph example, the interpolated distribution is

trimodal as in Figure 5.1b, with nonzero probability at both endpoints and for some v in the

interior of V.

Of course, the desiderata above are application-specific. One key assumption is that

the spread of the distributions is preserved, which differs from existing approaches which
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tend to blur the distributions. While this property is not intrinsically superior, in a way the

experiments in §5.6 validate not only the algorithmic effectiveness of our technique but

also this assumption about probabilistic data on graphs.

5.3 Wasserstein Propagation

Ad hoc methods for propagating distributions based on methods for scalar functions tend

to have a number of drawbacks. Therefore, we tackle this problem using a technique de-

signed explicitly for the probabilistic setting. To this end, we formulate the semi-supervised

problem at hand as the optimization of a Dirichlet energy for distribution-valued maps

generalizing the classical Dirichlet energy.

Similar to the construction in [SB11], we replace the square distance between scalar

function values appearing in the classical Dirichlet energy (namely the quantity | fv− fw|2)

with an appropriate distance between the distributions ρv and ρw. Rather than using the

bin-by-bin KL divergence, however, we use the Wasserstein distance with quadratic cost

between probability distributions with finite second moment on R, defined in this case as

W2(ρv, ρw)
def.
= inf

π∈Π(ρv,ρw)

(

∫∫

R2
|x− y|2 dπ(x, y)

)1/2

,

where Π(ρ0, ρ1) ⊆ Prob(R2) is the set of probability distributions π on R2 satisfying the

marginal constraints

∫ 1

0
π(x, y) dx = ρw(y) and

∫ 1

0
π(x, y) dy = ρv(x) .

In machine learning, the Wasserstein distance already has shown promise for search and

clustering techniques [IVdAdC11, ADKU11].

With these ideas in place, we define a Dirichlet energy for a distribution-valued map

from a graph into Prob(R) by

ED[ρ]
def.
= ∑

(v,w)∈E

W2
2 (ρv, ρw) , (5.1)

along with the notion of Wasserstein propagation of distribution-valued maps given pre-

scribed boundary data:
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WASSERSTEIN PROPAGATION

Minimize ED[ρ] in the space of distribution-valued maps with prescribed

distributions at all v ∈ V0.

5.3.1 Theoretical Properties

Solutions of the Wasserstein propagation problem satisfy many desirable properties that

we will establish below. Before proceeding, however, we recall a fact about the Wasserstein

distance. Let ρ ∈ Prob(R) be a probability distribution. Then its cumulative distribution

function (CDF) is given by F(x)
def.
=
∫ x
−∞

ρ(y) dy, and the generalized inverse of the its CDF is

given by F−1(s)
def.
= inf{x ∈ R : F(x) > s}. Then the following result, suggested informally

in §1.4.3, holds.

Proposition 12. [[Vil03], Theorem 2.18] Let ρ0, ρ1 ∈ Prob(R) with CDFs F0, F1. Then

W2
2 (ρ0, ρ1) =

∫ 1

0
(F−1

1 (s)− F−1
0 (s))2 ds . (5.2)

By applying (5.2) to the minimization problem (5.1), we obtain a linear strategy for our

propagation problem.

Proposition 13. Wasserstein propagation can be characterized in the following way. For each

v ∈ V0 let Fv be the CDF of the distribution ρv. Now suppose that for each s ∈ [0, 1] we determine

gs : V → R as the solution of the classical Dirichlet problem

∆gs = 0 ∀ v ∈ V \V0

gs(v) = F−1
v (s) ∀ v ∈ V0 .

(5.3)

Then for each v, the function s 7→ gs(v) is the inverse CDF of a probability distribution ρv. More-

over, the distribution-valued map v 7→ ρv minimizes the Dirichet energy (5.1).

Proof. Let X be the set of functions g : V × [0, 1] → R satisfying the constraints gs(v) =

F−1
v (s) for all s ∈ [0, 1] and all v ∈ V0. Consider the minimization problem

min
g∈X
ÊD(g)

def.
= ∑

(u,v)∈E

∫ 1

0
(gs(u)− gs(v))

2 ds .

The solution of this optimization for each s is exactly a solution of the classical Dirichlet
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problem (5.3) on G. Moreover, the maximum principle implies that gs(v) ≤ gs′(v) when-

ever s < s′, which holds by definition for all v ∈ V0, can be extended to all v ∈ V [CCK07].

Hence gs(v) can be interpreted as an inverse CDF for each v ∈ V form which we can define

a distribution-valued map ρ : v 7→ ρv. Since ÊD takes on its minimum value in the subset

of X consisting of inverse CDFs, and ÊD coincides with ED on this set, ρ is a solution of the

Wasserstein propagation problem.

Distribution-valued maps ρ : V → Prob(R) propagated by optimizing (5.1) satisfy

many analogs of functions extended using the classical Dirichlet problem. Two results of

this kind concern the mean m(v) and the variance σ(v) of the distributions ρv as functions

of V. These are defined as

m(v)
def.
=
∫ ∞

−∞
xρv(x) dx

σ2(v)
def.
=
∫ ∞

−∞
(x−m(v))2ρv(x) dx .

Proposition 14. Suppose the distribution-valued map ρ : V → Prob(R) is obtained using

Wasserstein propagation. Then for all v ∈ V the following estimates hold.

• infv0∈V0
m(v0) ≤ m(v) ≤ supv0∈V0

m(v0).

• 0 ≤ σ(v) ≤ supv0∈V0
σ(v0).

Proof. Both estimates can be derived from the following formula. Let ρ ∈ Prob(R) and let

φ : R → R be any integrable function. If we apply the change of variables s = F(x) where

F is the CDF of ρ in the integral defining the expectation value of φ with respect to ρ, we

get
∫ ∞

−∞
φ(x)ρ(x) dx =

∫ 1

0
φ(F−1(s)) ds .

Thus m(v) =
∫ 1

0 F−1
v (s) ds and σ2(v) =

∫ 1
0 (F−1

v (s)− m(v))2 ds where Fv is the CDF of ρv

for each v ∈ V.

Assume ρ minimizes (5.1) with fixed boundary constraints on V0. By Proposition 13,

we then have ∆F−1
v = 0 for all v ∈ V. Therefore ∆m(v) =

∫ 1
0 ∆F−1

v (s) ds = 0, so m

is a harmonic function on V. The estimates for m follow by the maximum principle for
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harmonic functions. Also,

∆[σ2(v)] =
∫ 1

0
∆(F−1

v (s)−m(v))2 ds

= ∑
(v,v′)∈E

∫ 1

0

(

a(v, s)− a(v′, s)
)2

ds

≥ 0, where a(v, s)
def.
= F−1

v (s)−m(v),

since ∆F−1
v (s) = ∆m(v) = 0. Thus σ2 is a subharmonic function and the upper bound for

σ2 follows by the maximum principle for subharmonic functions.

Finally, we check that if we encode a classical interpolation problem using Dirac delta

distributions, we recover the classical solution. The essence of this result is that if the

boundary data for Wasserstein propagation has zero variance, then the solution must also

have zero variance.

Proposition 15. Suppose that there exists u : V0 → R such that ρv(x) = δ(x − u(v)) for all

v ∈ V0. Then, the solutions of the classical Dirichlet problem and the Wasserstein propagation

problem coincide in the following way. Suppose that f : V → R satisfies the classical Dirichlet

problem with boundary data u. Then ρv(x)
def.
= δ(x − f (v)) minimizes (5.1) subject to the fixed

boundary constraints.

Proof. The boundary data for ρ given here yields the boundary data gs(v) = u(v) for

all v ∈ V0 and s ∈ [0, 1) in the Dirichlet problem (5.3). The solution of this Dirichlet

problem is thus also constant in s, let us say gs(v) = f (v) for all s ∈ [0, 1) and v ∈ V. The

only distributions whose inverse CDFs are of this form are δ-distributions; hence ρv(x) =

δ(x− f (v)) as desired.

5.3.2 Application to Smoothing

Using the connection to the classical Dirichlet problem in Proposition 13 we can extend our

treatment to other differential equations. There is a large space of differential equations

that have been adapted to graphs via the discrete Laplacian ∆; here we focus on the heat

equation, considered e.g. in [CCK07].

The heat equation for scalar functions is applied to smoothing problems; for exam-

ple, in Rn solving the heat equation is equivalent to Gaussian convolution. Just as the
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Dirichlet equation on F−1 is equivalent to Wasserstein propagation, heat diffusion on F−1

is equivalent to gradient flows of the energy ED in (5.1), providing a straightforward way

to understand and implement such a diffusive process.

Proposition 16. Let ρ : V → Prob(R) be a distribution-valued map and let Fv : [0, 1] → R be

the CDF of ρv for each v ∈ V. Then these two procedures are equivalent:

• Mass-preserving flow of ρ in the direction of steepest descent of the Dirichlet energy.

• Heat flow of the inverse CDFs.

Proof. A mass-preserving flow of ρ is a family of distribution-valued maps ρε : V →

Prob(R) with ε ∈ (−ε0, ε0) that satisfies the equations

∂ρv,ε(t)

∂ε
+

∂

∂t

(

Yv(ε, t)ρv,ε(t)
)

= 0

ρv,0(t) = ρv(t)











∀ v ∈ V,

where Yv : (−ε0, ε0)×R → R is an arbitrary function that governs the flow. By applying

the change of variables t = F−1
v,ε (s) using the inverse CDFs of the ρv,ε, we find that this flow

is equivalent to the equations

∂F−1
v,ε (s)

∂ε
= Yv(ε, F−1

v,ε (s))

F−1
v,0 (s) = F−1

v (s)











∀ v ∈ V.

A short calculation starting from (5.1) now leads to the derivative of the Dirichlet energy

under such a flow, namely

dED(ρε)

dε
= −2 ∑

v∈V

∫ 1

0
∆(F−1

v,ε ) ·Yv(ε, F−1
v,ε (s)) ds .

Thus, steepest descent for the Dirichlet energy is achieved by choosing Yv(ε, F−1
v,ε (s))

def.
=

∆(Fv,ε(s)) for each v, ε, s. As a result, the equation for the evolution of F−1
v,ε becomes

∂F−1
v,ε (s)

∂ε
= ∆(F−1

v,ε (s))

F−1
v,0 (s) = F−1

v (s)











∀ v ∈ V,

which is exactly heat flow of F−1
v,ε .
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5.4 Generalization

Our preceding discussion involves distribution-valued maps into Prob(R), but in a more

general setting we might wish to replace Prob(R) with Prob(Γ) for an alternative domain

Γ carrying a distance metric d. Our original formulation of Wasserstein propagation eas-

ily handles such an extension by replacing |x − y|2 with d(x, y)2 in the definition of W2.

Furthermore, although proofs in this case are considerably more involved, some key prop-

erties proved above for Prob(R) extend naturally.

In this case, we no longer can rely on the computational benefits of Propositions 13

and 16 but can solve the propagation problem directly. If Γ is discrete, then Wasserstein

distances between ρv’s can be computed using a linear program. Suppose we represent

two histograms as {a1, . . . , am} and {b1, . . . , bm} with ai, bi ≥ 0 ∀i and ∑i ai = ∑i bi = 1.

Then, the definition ofW2 yields the optimization:

W2
2 ({ai}, {bj}) = min ∑

ij

d2
ijxij (5.4)

s.t. ∑
j

xij = ai ∀i

∑
i

xij = bj ∀j

xij ≥ 0 ∀i, j.

Here dij is the distance from bin i to bin j, which need not be proportional to |i− j|.

From this viewpoint, the energy ED from (5.1) remains convex in ρ and can be opti-

mized using a linear program simply by summing terms of the form (5.4) above:

min
ρ,x

∑
e∈E

∑
ij

d2
ijx

(e)
ij

s.t. ∑
j

x
(e)
ij = ρvi ∀e = (v, w) ∈ E, i ∈ S

∑
i

x
(e)
ij = ρwj ∀e = (v, w) ∈ E, j ∈ S

∑
i

ρvi = 1 ∀v ∈ V ρvi fixed ∀v ∈ V0

ρvi ≥ 0 ∀v ∈ V, i ∈ S xij ≥ 0 ∀i, j ∈ S,
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where S = {1, . . . , m}.

5.5 Algorithm Details

We handle the general case from §5.4 by optimizing the linear programming formulation

directly. Given the size of these linear programs, we use large-scale barrier method solvers.

The characterizations in Propositions 13 and 16, however, suggest a straightforward

discretization and accompanying set of optimization algorithms in the linear case. In fact,

we can recover propagated distributions by inverting the graph Laplacian ∆ via a sparse

linear solve, leading to near-real-time results for moderately-sized graphs G.

For a given graph G = (V, E) and subset V0 ⊆ V, we discretize the domain [0, 1] of F−1
v

for each v using a set of evenly-spaced samples s0 = 0, s1, . . . , sm = 1. This representation

supports any ρv provided it is possible to sample the inverse CDF from Proposition 12 at

each si. In particular, when the underlying distributions are histograms, we model ρv using

δ functions at evenly-spaced bin centers, which have piecewise constant CDFs; we model

continuous ρv using piecewise linear interpolation. Regardless, in the end we obtain a

non-decreasing set of samples (F−1)1
v, . . . , (F−1)m

v with (F−1)1
v = 0 and (F−1)m

v = 1.

Now that we have sampled F−1
v for each v ∈ V0, we can propagate to the remainder

V\V0. For each i ∈ {1, . . . , m}, we solve the system from (5.3):

∆g = 0 ∀ v ∈ V \V0

g(v) = (F−1)i
v ∀ v ∈ V0 .

(5.5)

In the diffusion case, we replace this system with implicit time stepping for the heat equa-

tion, iteratively applying (I − t∆)−1 to g for diffusion time step t. In either case, the linear

solve is sparse, symmetric, and positive definite; we apply Cholesky factorization to solve

the systems directly.

This process propagates F−1 to the entire graph, yielding samples (F−1)i
v for all v ∈ V.

We invert once again to yield samples ρi
v for all v ∈ V. Of course, each inversion in-

curs some potential for sampling and discretization error, but in practice we are able to

oversample sufficiently to overcome most potential issues. When the inputs ρv are dis-

crete histograms, we return to this discrete representation by integrating the resulting

ρv ∈ Prob([0, 1]) over the width of the bin about the center defined above.
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Figure 5.2: Comparison of propagation strategies on a linear graph (coarse version on left);
each horizontal slice represents a vertex v ∈ V, and the colors from left to right in a slice
show ρv. [SB11] (KL) is shown only in one example because it has qualitatively similar
behavior to the PDF strategy.

This algorithm is efficient even on large graphs and is easily parallelizable. For in-

stance, the initial sampling steps for obtaining F−1 from ρ are parallelizable over v ∈ V0,

and the linear solve (5.5) can be parallelized over samples i. Direct solvers can be replaced

with iterative solvers for particularly large graphs G; regardless, the structure of such a

solve is well-understood and studied, e.g. in [KFS13].

5.6 Experiments

We run our scheme through a number of tests demonstrating its strengths and weaknesses

compared to other potential methods for propagation. We compare Wasserstein propaga-

tion with the strategy of propagating probability distribution functions (PDFs) directly, as

described in §5.2.2.

5.6.1 Synthetic Tests

We begin by considering the behavior of our technique on synthetic data designed to illus-

trate its various properties.

One-Dimensional Examples. Figure 5.2 shows “displacement interpolation” properties

inherited by our propagation technique from the theory of optimal transportation. The
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Boundary conditions PDF propagation Wasserstein propagation

Figure 5.3: PDF and Wasserstein propagation on a meshed circle with prescribed boundary
distributions. The underlying graph is shown in grey, and probability distributions at
vertices v ∈ V are shown as vertical bars colored by the density ρv; we invert the color
scheme of Figures 5.2 and 5.4 to improve contrast. Propagated distributions are computed
for all vertices but for clarity are shown at representative slices of the circle.

underlying graph is a line as in Figure 5.1, along the vertical axis. Horizontally, each image

is colored by values in ρv.

The bottom and top vertices v0 and v1 have fixed distributions ρv0 and ρv1
, and the

remaining vertices receive ρv via one of two propagation techniques. The left of each pair

propagates distributions by solving a classical Dirichlet problem independently for each

bin of the probability distribution function (PDF) ρv, whereas the right of each pair propa-

gates inverse CDFs using our method in §5.5.

By examining the propagation behavior from the bottom to the top of this figure, it is

easy to see how the naı̈ve PDF method varies from Wasserstein propagation. For instance,

in the leftmost example both ρv0 and ρv1
are unimodal, yet when propagating PDFs all

the intermediate vertices have bimodal distributions; furthermore, no relationship is de-

termined between the two peaks. Contrastingly, our technique identifies the modes of ρv0

and ρv1
, linearly moving the peak from one side to the other.

Boundary Value Problems. Figure 5.3 illustrates our algorithm on a less trivial graph

G. To mimic a typical test case for classical Dirichlet problems, our graph is a mesh of

the unit circle, and we propagate ρv from fixed distributions on the boundary. Unlike the

classical case, however, our prescribed boundary distributions ρv are multimodal. Once

again, Wasserstein propagation recovers a smoothly-varying set of distributions whose

peaks behave like solutions to the classical Dirichlet problem. Propagating probability

directions rather than inverse CDFs yields somewhat similar modes, but with much higher

entropy and variance especially at the center of the circle.
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PDF diffusion Wasserstein diffusion

Figure 5.4: Comparison of PDF diffusion and Wasserstein diffusion; in both cases the left-
most distribution comprises the initial conditions, and several time steps of diffusion are
shown left-to-right. The underlying graph G is the circle on the left.

PDF propagation Wasserstein propagation

Figure 5.5: Interpolation of distributions on S1 via PDF propagation and Wasserstein prop-
agation; in these figures, the vertices with valence 1 have prescribed distributions ρv and
the remaining vertices have distributions from propagation.

Diffusion. Figure 5.4 illustrates the behavior of Wasserstein diffusion compared with

simply diffusing distribution values directly. When PDF values are diffused directly, as

time t increases the distributions simply become more and more smooth until they are

uniform not only along G but also as distributions on Prob([0, 1]). Contrastingly, Wasser-

stein diffusion preserves the uncertainty from the initial distributions but does not increase

it as time progresses.

Alternative Target Domain. Figure 5.5 shows an example in which the target is Prob(S1),

where S1 is the unit circle, rather than Prob([0, 1]). We optimize the ED using the linear

program in §5.4 rather than the linear algorithm for Prob([0, 1]). Conclusions from this

example are similar to those from Figure 5.3: Wasserstein propagation identifies peaks

from different prescribed boundary distributions without introducing variance, while PDF
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(a)

(b)

(c)

Figure 5.6: We propagate histograms of temperatures collected over time to a map of the
United States: (a) Average error at propagated sites as a function of the number of nodes
with labeled distributions; (b) means of the histograms at the propagated sites from a
typical trial in (a); (c) standard deviations at the propagated sites. Vertices with prescribed
distributions are shown in blue and comprise ∼ 2% of V.

propagation exhibits much higher variance in the interpolated distributions and does not

“move” peaks from one location to another.

5.6.2 Real-World Data

We now evaluate our techniques on real-world input. To evaluate the quality of our ap-

proach relative to ground truth, we will use the one-Wasserstein distance, or Earth Mover’s

Distance [RTG00], formulated by removing the square in the formula forW2
2 . We use this

distance, given on Prob(R) by the L1 distance between (non-inverted) CDFs, because it

does not favor theW2 distance used in Wasserstein propagation while taking into account

the ground distances. We consider weather station coordinates as defining a point cloud

on the plane and compute the point cloud Laplacian using the approach of [CL06].

Temperature Data. Figure 5.6 illustrates the results of a series of experiments on weather

data on a map of the United States.1 Here, we have |V| = 1113 sites each collecting daily

temperature measurements, which we classify into 100 bins at each vertex. In each experi-

ment, we choose a subset V0 ⊆ V of vertices, propagate the histograms from these vertices

to the remainder of V, and measure the error between the propagated and ground-truth

histograms.

Figure 5.6a shows quantitative results of this experiment. Here we show the average

histogram error per vertex as a function of the percent of nodes in V with fixed labels;

the fixed vertices are chosen randomly, and errors are averaged over 20 trials for each

1National Climatic Data Center

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/2012/
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percentage. The Wasserstein strategy consistently outperforms naı̈ve PDF interpolation

with respect to our error metric and approaches relatively small error with as few as 5% of

the labels fixed.

Figures 5.6b and 5.6c show results for a single trial. We color the vertices v ∈ V by

the mean (b) and standard deviation (c) of ρv from PDF and Wasserstein propagation.

Both yield similar mean temperatures on V\V0, which agree with the means of the ground

truth data. The standard deviations, however, better illustrate differences between the

approaches. In particular, the standard deviations of the Wasserstein-propagated distribu-

tions approximately follow those of the ground truth histograms, whereas the PDF strat-

egy yields high standard deviations nearly everywhere on the map due to undesirable

smoothing effects.

Wind Directions. We apply the general formulation in §5.4 to propagating distributions

on the unit circle S1 by considering histograms of wind directions collected over time by

nodes on the ocean outside of Australia.2

In this experiment, we keep approximately 4% of the data points and propagate to the

remaining vertices. Both the PDF and Wasserstein propagation strategies score similarly

with respect to our error metric; in the experiment shown, Wasserstein propagation ex-

hibits 6.6% average error per node and PDF propagation exhibits 6.1% average error per

node. Propagation results are illustrated in Figure 5.7a.

The nature of the error from the two strategies, however, is quite different. In particular,

Figure 5.7b shows the same map colored by the entropy of the propagated distributions.

PDF propagation exhibits high entropy away from the prescribed vertices, reflecting the

fact that the propagated distributions at these points approach uniformity. Wasserstein

propagation, on the other hand, has a more similar pattern of entropy to that of the ground

truth data, reflecting structure like that demonstrated in Proposition 14.

Non-Euclidean Interpolation. Proposition 15 suggests an application outside histogram

propagation. In particular, if the vertices of V0 have prescribed distributions that are δ func-

tions encoding individual points as mapping targets, all propagated distributions also will

be δ functions. Thus, one strategy for interpolation is to encode the problem probabilis-

tically using δ distributions, interpolate using Wasserstein propagation, and then extract

2WindSat Remote Sensing Systems

http://www.remss.com/missions/windsat
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Ground truth PDF Wasserstein
(a) Histograms of wind directions

Ground truth PDF Wasserstein
(b) Entropy

Figure 5.7: (a) Interpolating histograms of wind directions using the PDF and Wasserstein
propagation methods, illustrated using the same scheme as Figure 5.5; (b) entropy values
from the same distributions.
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Ground truth PDF (19%) Wasserstein (15%)

Figure 5.8: Learning wind directions on the unit circle S1.

peaks of the propagated distributions. Experimentally we find that optima of the linear

program in §5.4 with peaked prescribed distributions yield peaked distributions ρv for all

v ∈ V even when the target is not Prob(R); we leave a proof for future work.

In Figure 5.8, we apply this strategy to interpolating angles on S1 from a single day

of wind data on a map of Europe.3 Classical Dirichlet interpolation fails to capture the

identification of angles 0 and 2π. Contrastingly, if we encode the boundary conditions

as peaked distributions on Prob(S1), we can interpolate using Wasserstein propagation

without losing structure. The resulting distributions are peaked about a single maximum,

so we extract a direction field as the mode of each ρv. Despite noise in the dataset we

achieve 15% error rather than the 19% error obtained by classical Dirichlet interpolation of

angles disregarding periodicity.

5.7 Discussion

It is easy to formulate strategies for histogram propagation by applying methods for prop-

agating scalar functions bin-by-bin. Here, however, we have shown that propagating in-

stead inverse CDFs has a deep connections to the theory of optimal transportation and

provides superior results, making it a strong yet still efficient choice. This basic connection

gives our method theoretical and practical soundness that is difficult to guarantee other-

wise.

While our algorithms show promise as practical techniques, we leave many avenues

for future study. Most prominently, the generalization in §5.4 can be applied to many prob-

lems, such as the surface mapping problem in [SGB13]. Such an optimization, however,

3Carbon Dioxide Information Analysis Center

http://cdiac.ornl.gov/epubs/ndp/ndp026c/ndp026c.html
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has O(m2|E|) variables, which is intractable for dense or large graphs. An open theoretical

problem might be to reduce the number of variables asymptotically. Some simplifications

may also be afforded using approximations like [PW09], which simplify the form of dij at

the cost of complicating theoretical analysis and understanding of optimal distributions

ρv. Alternatively, work such as [RDG11] suggests the potential to formulate efficient algo-

rithms when replacing Prob([0, 1]) with Prob(S1) or other domains with special structure.

In the end, our proposed algorithms are equally as lightweight as less principled alter-

natives, while exhibiting practical performance, theoretical soundness, and the possibility

of extension into several alternative domains.



Chapter 6

Conclusion

Optimal transportation provides a remarkably powerful language for posing problems in

geometric data processing. Previous chapters have written optimization problems involv-

ing classical quantities from differential geometry—including geodesic distances, Dirichlet

energies, and derivatives of maps—completely within this convex framework. This inter-

action between mass transportation and classical geometry continues to be explored. For

instance, recent work shows how Wasserstein distances are related to measures of curva-

ture [Oll09, LLY11]; this theoretical construction has already been applied to computing

the curvature of abstract discrete domains like networks [NLG+15].

From a computational standpoint, even though optimal transportation problems are

linear programs, their scaling necessitates development of specialized optimization ma-

chinery. Thankfully, problems in this domain are highly structured, and careful study of

their interaction with the shortest-path connectivity of the underlying geometric domain

helps bring them into the realm of practical computability. In particular, we have lever-

aged connections between evaluation of and optimization over Wasserstein distances and

compressive flow and heat diffusion, when the cost function comes from shortest paths

on a manifold. Although these algorithms are marginally less generic than the linear pro-

gramming formulation, they represent a formidable gain in efficiency for arguably the

most practical use cases.

The examples in this thesis show how optimal transportation can be used as a practical

modeling tool for geometric data rather than simply as a source of theoretically challenging

problems. With large-scale techniques for transportation between distributions on geo-

metric domains encountered in computer graphics, geometry processing, learning, and
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other applications, optimal transportation can be incorporated into a variety of pipelines

with confidence that the resulting model will be tractable. This development, suggested

not only here but also in works cited throughout our discussion, suggests potential for

many additional applications in areas like network analysis, graph theory, robotics, and

other fields.

At the same time, it is important to acknowledge problems for which optimal trans-

portation is poorly-suited. Most prominently, the language of mass transportation does not

easily express problems that are primarily topological in nature. One intuition for this issue

is that the space of probability distributions is path-connected: Given µ0, µ1 ∈ Prob(M),

for any t ∈ [0, 1] the measure (1− t)µ0 + tµ1 is also a distribution. Hence, topological in-

variants like the degree of a map may be difficult to preserve in transportation algorithms.

Beyond additional modeling applications, many algorithmic problems remain for fu-

ture consideration to explore fully the possibility of transportation-based geometry pro-

cessing. Even on very structured domains like images and triangle meshes, efficient al-

gorithms for optimal transportation with quadratic costs remain challenging to formulate,

without resorting to regularization (e.g. the entropic regularization suggested in Chap-

ter 3). Even more difficult are algorithms for models like propagation, in which nontrivial

global structure emerges from local relationships expressed using transportation distances.

With or without these additional developments, transportation remains a practical tool

for robust geometry processing, even in the presence of uncertainty and symmetry. By

coupling modeling and optimization with fine-grained understanding of geometric struc-

ture, optimal transportation provides a natural and intuitive methodology for approaching

challenging tasks over curved domains.
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