
Discrete Killing Fields for
Pattern Synthesis and Symmetry Detection

Justin Solomon
Stanford University

Satisfying Undergraduate Honors Thesis Requirements for

Department of Computer Science
Advisor: Prof. Leonidas Guibas

and

Department of Mathematics
Advisor: Prof. Richard Schoen

Contents
1 Introduction 2

2 Mathematical Background 5
2.1 Preliminaries . 5
2.2 Derivatives and Rates of Change on Surfaces . 7
2.3 Parallel Transport . 13
2.4 Local Isometries and Killing Vector Fields . 14

2.4.1 Variational Approach . 18
2.4.2 Differential Forms . 20

2.5 Connected Symmetry Groups . 22

3 Previous Work 23
3.1 Extrinsic Symmetry Detection . 24
3.2 Intrinsic Symmetry Detection . 26

4 Connected Symmetries on Discrete Meshes 27
4.1 Discrete Covariant Differentiation . 27
4.2 Discrete Killing Fields from Differential Forms 31
4.3 Vector Field Integration . 32

5 Results 34

6 Applications 37

7 Conclusion 39

8 Future Work 39

1

1 Introduction
Tyger! Tyger! burning bright
In the forests of the night,
What immortal hand or eye
Could frame thy fearful symmetry?

from “The Tyger,” in Songs of Experience by William Blake [2]

Numerous studies in philosophy, mathematics, and biology have affirmed the ubiquity of sym-
metry in nature and humans’ basic instincts to prefer symmetric patterns over more chaotic con-
figurations. This instinct to seek regularity in a world of complex surfaces has inspired inquiry
into effective definitions of symmetry, the evolutionary mechanisms leading to our affinity for
symmetry, and tools that use symmetry to enhance aesthetics or understandability.

While the philosophical or biological underpinnings of symmetry might be better explored by
other researchers, computer scientists and in particular computational geometers and vision experts
have found a number of compelling applications for the detection and exploitation of symmetry.
Surfaces can be “symmetrized” to make them more attractive or correct for scanning errors [16].
Repeating structures can be detected and used to extend surfaces, generating new compartments in
a shell and additional columns in a coliseum model [20]. In computer vision, symmetry transforms
such as [22] are used to guide robotic grasping and other practical tasks. Symmetry also can assist
in the detection of cars, faces, and other biological and man-made shapes [4, 23].

Figure 1: A simple triangle mesh.

Exploratory studies in symmetry detection including those
cited above show great promise for revolutionizing geometry
analysis. Robust and efficient symmetry detection could be
applied to any number of applications in storage, modeling,
and surface generation. For instance, starting with some ba-
sic pieces of geometry, an approximation of a surface could be
built up using simple descriptions of how the geometry repeats
and changes along a base layer. Such a structure could be used
to reduce the complexity of geometry storage, enabling soft-
ware in rendering, topography, and similar applications to pro-
cess much more data with less redundancy and required space;
rather than storing several copies of a repeated element, a single
copy can be stored along with a list of ways in which it repeats.
In modeling, a description of a surface’s repeating elements could help fabricate new geometry in
the same way that texture synthesis algorithms use small swatches to generate larger patches with
a similar look. Additionally, modifying the data describing a shape’s composition could generate
new shapes with varying global structure but similar local detail or vice versa.

More generally, the construction of algorithms for symmetry analysis suggests an important
transition from localized to semantic expressions of shape and form. The vast majority of methods
for geometry processing involves low-level structures such as points, lines, triangles, and splines.
By far the most common structure for storing surfaces is the polygonal mesh, in which a smooth
surface is approximated by a large number of flat polygonal facets; Figure 1 shows one example

2

(a) (b)

Figure 2: (a) Symmetries detected by [14] (Figure 1); (b) symmetries detected by [19] (Figure 1).

of a triangle mesh. Even relatively simple shapes other than basic geometric primitives can take
thousands of flat faces to express effectively; for instance, the cow in Figure 1 contains 5,804 trian-
gular faces and 4,583 vertices. Perceptually, however, we hardly see 5,804 individual components.
Instead, we can observe a number of symmetries and relationships between different parts of the
model, including a reflective symmetry from head to back, translational symmetries between the
legs, and rotational symmetries on the horns and eyes. Of course, all these relationships are ap-
proximate; superimposing one of the cow’s legs on top of another reveals that they do not have
exactly the same geometry. Even so, any competent artist could reproduce similar geometry given
a paragraph or two of description rather than a list of over 4,500 points in R3 and the polygonal
topology linking them together.

While geometry analysis has not yet reached the level of sophistication required to give as intu-
itive descriptions as we might hope for the model in Figure 1, some recent papers show promising
first steps toward this valuable end. For instance, a figure from [14] is reproduced in Figure 2(a),
showing one result from the symmetry detection algorithm developed by the authors; we see that
the algorithm is able to detect several rows of repeating columns despite drawing from a model that
is not a complete circle. Similarly, Figure 2(b) shows that [19] is able to detect several symmetries
of the human model, even when its arm is bent in different positions on the left and right sides.

The positive results described in these and other papers serve as promising signs that symmetry
detection is a feasible and valuable line of inquiry. Still, no single algorithm, pipeline, or system has
proven effective in all or even most practical cases for even a single application of computational
symmetry. There are several computational challenges that suggest the difficulty of geometric
symmetry detection and may explain why it remains such an open problem:

Defining symmetry: Writing a rigorous mathematical definition of “symmetry” can be a fairly
vague task. While humans have a strong intuition for detecting structure and regular pat-
terns, differential geometers, topologists, computer scientists, and other researchers all have
different notions of “strong” and “weak” symmetry that are useful for varying applications.
Since no single definition of symmetry will satisfy all end users, it is likely that no single
general-purpose method for its analysis will suffice. This overarching problem likely is the
principal point of difficulty for all other challenges listed below.

Intrinsic versus extrinsic geometry: Early attempts at symmetry analysis focused on the detec-
tion and use of extrinsic symmetries. In extrinsic geometry, a shape’s embedding in an

3

Figure 3: The suckers on this tentacle model have a clear intrinsic symmetry.

(a) (b)

Figure 4: Discrete (a) and continuous (b) symmetry.

ambient space is used to understand its structure. Such a viewpoint makes it easy to detect
repeating windows on a building or circular indentations on a can model, but the structure of
the suckers on the tentacle model of Figure 3 would not be detected because they are not on
a straight line. Instead, more recent papers take an intrinsic approach, in which symmetry
is analyzed in such a way that it is preserved when a surface is deformed. This approach is
more flexible, but it requires relatively sophisticated mathematical structures even to define
symmetry rigorously from such a generic viewpoint.

Structure detection: Pairwise symmetry detection can be an unwieldy tool. For instance, a naı̈ve
system for detecting rotational symmetries might find 45 =

(
10
2

)
rotational symmetries in a

pinwheel with 10 spokes, one for each pair of spokes that could be rotated into one another.
In reality, these all should be instances of the same rotational symmetry. Detecting that
two features are related and describing the relationship between a larger series of features,
however, are two related but contrasting tasks. The latter involves not only grouping similar
features but also finding a compact expression showing how they related to each other.

Continuous versus discrete symmetry: There are abundant examples of both discrete and con-
tinuous symmetry patterns. For instance, the model in Figure 4(a) has discrete symmetry

4

because the cone-shaped features must be translated a positive distance before they align
with each other, while the model in Figure 4(b) has a continuous set of rotational symme-
tries. Discrete problems carry over naturally to the computational setting, while continuous
ones often require a different class of approximate solutions. This difference manifests it-
self particularly strongly in geometry, where even the mathematical theories dealing with
discrete and continuous symmetries differ in several fundamental ways before introducing
computational approximations.

Such challenges will lead symmetry detection to be a fertile area of research in geometry process-
ing for the long term.

This paper describes several new approaches for handling an important case of geometric sym-
metry analysis, that of continuous intrinsic symmetries and approximate symmetries. This case has
been neglected in recent literature involving symmetry analysis due to the lack of a reliable compu-
tational framework for dealing with flows and derivatives of vector fields on manifold surfaces, the
building blocks of smooth Riemannian geometry. In particular, we provide methods for comput-
ing Killing vector fields on triangular meshes, whose flows represent infinitesimal local isometries
for surfaces admitting global continuous symmetries. For surfaces that are nearly symmetric, we
develop in parallel the concept of an “approximate Killing field,” which reliably finds flows that
help classify the local structure of a surface. With a stable Killing field computation technique,
we can integrate to find paths of vertices along a mesh. These paths explicitly illustrate surface
symmetries and can form the basis for straightforward approaches to texture repetition, geometry
synthesis, and pattern analysis techniques that make use of local structure to guide computation.

In an effort to maintain a rigorous approach to discrete Riemannian geometry, we proceed in
Section 2 with a review of the relevant mathematics applied in our and others’ methods. We also
discuss the difficulty of applying some common theoretical techniques such as parallel transport
to the particular application and setting at hand. We continue in Section 3 with a review of more
recent papers using approaches from differential geometry to understand discrete surfaces. We
introduce algorithms for computing Killing fields on triangle meshes in Section 4 and analyze
the accuracy of these methods in Section 5; Section 6 outlines one potential application of these
methods. Finally, we conclude with a short listing of topics for future study in Section 8.

2 Mathematical Background
The construction of our algorithms for surface analysis and symmetry detection is motivated by
and in several cases derived from the case of smooth manifolds. While some of the constructions
and indirect proofs of existence used in the smooth case might not be amenable to discretization,
they provide important intuition and suggest the proper geometric tools to adapt to triangle meshes.

2.1 Preliminaries
Although many of the concepts discussed here can be extended to n-dimensional manifolds with
little to no additional justification, in the discrete setting we will consider only two-dimensional

5

submanifolds M of R3, or surfaces. Specifically, we will be dealing with “classical” surfaces
satisfying the following simple definition:1

Definition 1 (Surface). A surface is a subset M ⊂ R3 such that for all p ∈ M there exists open
U ⊆ R3 such that p ∈ U and M ∩ U is diffeomorphic to R2.

Fortunately, many of the most abstract aspects of a more general Riemannian approach are
avoided by considering surfaces rather than manifolds. Most importantly, such an embedding
immediately provides us with a metric induced by the inner or “dot” product in R3. Thus, discus-
sions of quantities such as angles, lengths, and so forth are concrete descriptions of measurable
quantities rather than intuitive notions suggesting a more abstract and general theory. Also, note
that our definition of a surface above precludes the existence of a boundary; eventually we will
need to consider slightly more general surfaces for which a neighborhood around each point p is
diffeomorphic either to R2 or to R× [0,∞).

While we assume the reader is familiar the notion of a (differentiable) map between manifolds
as well as the more specific case of a single-valued function on a surface, we are particularly
concerned with vector fields on surfaces and thus need to define the tangent space at a point:

Definition 2 (Tangent space). The tangent space of M at p ∈ M , denoted TpM , is the set of
vectors γ′(0) for all curves γ : (−ε, ε)→M with γ(0) = p.

Of course, our intuition for the tangent space of a surface M at a point p generally involves an
affine plane through p tangent to M , and fortunately our intuition is reasonable:

Theorem 1. For all p ∈M , TpM is a two-dimensional subspace of R3.

Proof. Take any curve γ as defined above, and take a coordinate chart φ : U →M with φ(0, 0) =
p; assume ε is sufficiently small so that γ((−ε, ε)) ⊂ φ(U). Then, we can define ψ = φ−1 ◦ γ :
(−ε, ε)→ R2, such that γ′(0) = (φ◦ψ)′(0) = Dφ|(0,0) ·ψ(0). Thus, we have shown that γ′(0) is in
the column space of matrix Dφ|(0,0), or more generally that TpM ⊆ col Dφ|(0,0). Conversely, any
vector ~v ∈ col Dφ|(0,0) also is in TpM since ~v = d

dt
φ(t(Dφ|(0,0))

−1~v)|t=0. So, TpM = col Dφ|(0,0),
which is a two-dimensional subspace of R3 since φ : R2 →M ⊂ R3 is a diffeomorphism.

Occasionally, it will be useful to deal with the set of tangent spaces rather than the space at a
single point p ∈M . For this purpose, we define the tangent bundle as the disjoint union of tangent
spaces:

TM =
∐
p∈M

TpM

=
⋃
p∈M

{p} × TpM

= {(p,~v) : p ∈M,~v ∈ TpM} (1)

With these definitions and a basic understanding of tangent planes in place, we finally can define a
vector field on a surface:

1In this paper, we will assume that all functions, maps, vector fields, and other similar objects are sufficiently
differentiable or C∞ to satisfy concerns about existence or convergence.

6

Figure 5: Setup for the Definition 4.

Definition 3 (Vector field). A vector field X on M is a smooth map from M to TM such that
X(p) ∈ {p} × TpM for all p ∈M .

For practical purposes, we might want to isolate vectors in a field from their accompanying
base point; such an operation can be accomplished simply by the projection π : TM → R3 taking
(p,~v) to ~v.

2.2 Derivatives and Rates of Change on Surfaces
For a smooth function f : M → R, we define the differential dfp at a point p ∈M the usual way:2

Definition 4 (Differential). Take φ : U ⊆ R2 → M to be a coordinate chart with φ(0, 0) = p.
Take ~v ∈ TpM and define ~w = (Dφ)−1|(0,0)~v. Then, the differential dfp : TpM → R is given by

dfp(~v) =
d

dt
(f ◦ φ(t~w))|t=0 (2)

Figure 5 illustrates the definition above; it is straightforward to see that dfp(~v) defines the
directional derivative of f in direction ~v. We refer the reader to any basic differential geometry
text for proofs that dfp is linear and independent of our choice of φ [17]. The differential of a map
between surfaces has a similar definition and is no more complicated.

Unlike functions on Euclidean domains, the definition of “the derivative” of a function f on M
rather than at a single point p is fairly complicated, involving differential forms in a construction

2The development in this and the next section roughly follows the outline of an introductory lecture by Adrian
Butscher.

7

Figure 6: Vectors at γ(0) and γ(t) are on different tangent planes and cannot be compared directly.

that amounts to describing formally a functional giving dfp simultaneously at each point p ∈ M .
Given a vector field X on M , however, we can pose a much more straightforward problem: What
is the derivative of f in the direction given by X at each point on M? In some sense, the answer to
this question could be considered the action of X on f and thus is notated X(f). In the notation
developed above, we write:

[X(f)](p) = dfp(X(p)) (3)

Note that we identify X(p) and π ◦X(p) for ease of notation. So, as expected for f : M → R we
also have X(f) : M → R.

Generalizing slightly, we might ask for the rate of change of one vector field Y in the direction
of another vector field X . Initially, such a problem might seem straightforward: after all, we could
differentiate each of the component functions π ◦ Yi : M → R using the differential operator
defined above to obtain some idea of such a derivative. This naı̈ve definition, however, is not
useful from a geometric standpoint. To see why, suppose we are considering the slightly simpler
problem of differentiating a vector field X along a curve γ. Then, the definition above amounts to
computing the following limit:

lim
t→0

X(γ(t))−X(γ(0))

t

The difference X(γ(t)) − X(γ(0)), however, is ill-defined: X(γ(t)) ∈ Tγ(t)M but X(γ(0)) ∈
Tγ(0)M , as shown in Figure 6. In other words, our only notion of a “vector” onM is in an individual
tangent space, and we have not yet developed a way of identifying tangent spaces at different points
in a geometrically reasonable fashion.3

Obviously, we must be more careful in our definition of such a derivative. Rather than con-
structing an operator with only a vague idea of how it should behave, we take an axiomatic ap-
proach, describing desired properties of the operator and proving that it exists and is unique.

3Note a potential source of confusion: Such a limit is computable in the numerical sense, since for simplicity we
identified TpM with a subspace of R3. This identification, however, is not “intrinsic” in the sense that it depends on
the embedding of M in R3.

8

Specifically, we desire an operator ∇ giving derivative ∇XY of Y in direction X with the fol-
lowing properties (for vector fields X , Y , and Z and functions f and g all on surface M):

Linearity: ∇X+fYZ = ∇XZ + f∇YZ – This requirement enforces an analog of the fact that dfp
is linear in its argument. Geometrically, this property expresses the fact that the derivative of
Z in a direction given by the sum of two vector fields or scaling a vector field should be the
sum or scale of the derivatives.

Additivity: ∇X(Y + Z) = ∇XY +∇XZ – Our remaining two rules are motivated by corre-
sponding identities in basic calculus. Ensuring additivity just reflects that the derivative
of the sum of two functions is the sum of the functions’ derivatives.

Leibniz (Product) Rule: ∇X(fY) = X(f)Y + f∇YX – This rule reflects the product rule from
calculus on Rn. Initially, it may seem to be at odds with the linearity condition above. To
understand the distinction, we observe that we are interested in the variation of fY along
M , while the variation of X along M is less important. In other words, the value of X
already gives the desired derivative direction independent of values nearby, and thus scaling
X by f should have little effect (hence ∇fXY = f∇XY), while scaling Y can have con-
siderable effects on its directional derivatives on M . In the simplest case, consider scaling
a constant vector field Y on R2 by a non-constant f ; such an operation clearly introduces
spatial variation in Y that was not there before.

An operator satisfying the constraints above is known as a covariant derivative and is one of the
basic building blocks of Riemannian geometry. Still, while such an operator would be convenient,
we have yet to prove that it exists.

In a sufficiently small neighborhood U of a given point p ∈ M , we can define vector fields E1

and E2 spanning Tp̃M for all p̃ ∈ U using coordinate-wise derivatives of a chart φ : V ⊆ R2 → U .
Then, for a given pair of vector fields there exist smooth functions ai, bi : U → R satisfying:

X =
∑
i

aiEi (4)

Y =
∑
i

biEi (5)

Applying the properties of∇ defined above, we find:

∇XY = ∇P
i a

iEi

[∑
j

bjEj

]
by definition of X and Y

=
∑
i

ai∇Ei

[∑
j

bjEj

]
by linearity

=
∑
i,j

ai∇Ei
(bjEj) by additivity

=
∑
i,j

[
aiEi(b

j)Ej + aibj∇Ei
Ej
]

by the Leibniz rule

9

Note that in R2 we can use the constant canonical basis for E1 and E2, making the ∇Ei
Ej term

vanish and leaving the standard directional derivative formula. More generally, since ∇ outputs
vectors in the tangent plane, we can write the directional derivatives ∇Ei

Ej again in the basis
{E1, E2} as follows:

∇Ei
Ej =

2∑
k=1

ΓkijEk (6)

The functions Γkij are known as the Christoffel symbols and provide a convenient local description
of vector fields.

The local formulation above shows that our concerns about the existence of∇were unfounded.
Indeed, any consistent choice of functions Γkij will satisfy the definition of a covariant derivative,
so we are free to specify more desired properties of our vectorized directional derivative operator.
Thus, we introduce two more conditions useful for our type of geometric analysis; note that these
are by no means the only properties one might desire, and different choice give rise to different
covariant derivatives:

Metric Preservation: X(〈Y, Z〉) = 〈∇XY, Z〉+ 〈Y,∇XZ〉 – Here, we use 〈·, ·〉 to denote the
usual inner product on R3. This property is the first we have introduced to specify the
interaction between inner products and vector fields.4 It can be understood as an additional
Leibniz rule, forcing inner products to act similarly to products of functions.

Symmetry: ∇XY −∇YX = [X, Y] – This condition is sometimes referred to as the “torsion-free”
condition [7]. First, we must define the vector field [X, Y], known as the “Lie bracket” of X
and Y . Most simply, we can express [X, Y] as the (unique) vector fieldZ for which the action
on a function f satisfies Z(f) = (XY −Y X)f . In local coordinates, it is straightforward to
show:

[X, Y] =
2∑
i=1

Ei

2∑
j=1

(
aj
∂bi

∂xj
− bj ∂a

i

∂xj

)
(7)

We will not prove it here, but the torsion-free condition ensures that if we use∇ to construct
geodesics, or locally length-minimizing curves, the resulting curves will have no torsion, or
twist.

One of the basic theorems of Riemannian Geometry is that the five conditions we have cho-
sen define a unique operator on any n-dimensional manifold; this unique symmetric and metric-
preserving covariant derivative ∇ is known as the Levi-Civita Connection. We will prove the
theorem in the two-dimensional case, although the more general proof is no more difficult. We
begin with two lemmas:

Lemma 1. For functions f and g and vector fields X and Y , we have

[fX, gY] = fg[X, Y] + fX(g)Y − gY (f)X (8)

4Note that inner products are taken within the same tangent space, and thus our earlier concerns about incompati-
bility are irrelevant.

10

Proof. Since we defined the Lie bracket in terms of its action on a function, our proof simply
verifies that the action of the left- and right-hand sides of (8) on a function h is the same:

[fX, gY](h) = fX(gY (h))− gY (fX(h)) by definition of [·, ·]
= f(X(g)Y (h) + gXY (h))− g(Y (f)X(h) + fY X(h)) by the product rule
= fg[X, Y](h) + fX(g)Y (h)− gY (f)X(h) as desired.

The second lemma is accompanied by a definition:

Definition 5. (Tensorial functional) A linear functional (or one-form) ω mapping vector fields to
functions on surfaces is tensorial if it satisfies ω(fX) = fω(X) for all functions f and vector
fields X .

With this definition in place, we state the second lemma:

Lemma 2. All tensorial one-forms ω can be written

ω(X) = 〈Y,X〉 (9)

for some vector field Y .

Proof. At a particular point p, take E1, E2 to form a local unit-length orthogonal coordinate basis
(which exists by the Gram-Schmidt process) and define Y (p) = ω(E1)E1 + ω(E2)E2.

We show that our choice of basis is irrelevant. Suppose Ẽ1, Ẽ2 is another such basis. Then for
some smooth functions aij we can write Ẽ1 = a11E1 + a12E2 and Ẽ2 = a21E1 + a22E2, yielding:

ω(Ẽ1)Ẽ1 + ω(Ẽ2)Ẽ2 = ω(a11E1 + a12E2)(a11E1 + a12E2)+

ω(a21E1 + a22E2)(a21E1 + a22E2)

Applying the definition of tensorial one-forms and collecting terms, we find

ω(Ẽ1)Ẽ1 + ω(Ẽ2)Ẽ2 = E1[ω(E1)(a2
11 + a2

21) + ω(E2)(a11a12 + a21a22)]+

E2[ω(E1)(a11a12 + a22a21) + ω(E2)(a2
12 + a2

22)]

= Y (p)

since the matrix (aij) is orthogonal. Thus, our choice of Y (p) does not depend on coordinate basis
and is well-defined.

All that remains is to verify (9). In local coordinates described above, write X = x1E1 +x2E2.
Then,

ω(X) = ω(x1E1 + x2E2)

= x1ω(E1) + x2ω(E2)

= x1〈Y,E1〉+ x2〈Y,E2〉
= 〈Y,X〉

as desired.

11

Now, we proceed with a proof of the Fundamental Theorem:

Theorem 2 (Fundamental Theorem of Riemannian Geometry). There exists a unique metric-
preserving, torsion-free covariant derivative operator∇ on vector fields on M .

Proof. We follow the more general proof presented in [11]. We first prove uniqueness. Consider
three vector fields X , Y , and Z. Differentiating the inner product of any two in the direction of a
third yields the following three formulae using the the metric preservation condition:

X(〈Y, Z〉) = 〈∇XY, Z〉+ 〈Y,∇XZ〉 (10)
Y (〈Z,X〉) = 〈∇YZ,X〉+ 〈Z,∇YX〉 (11)
Z(〈X, Y 〉) = 〈∇ZX, Y 〉+ 〈X,∇ZY 〉 (12)

Adding (10) and (11) and subtracting (12) yields the following expression:

X(〈Y, Z〉) + Y (〈Z,X〉)− Z(〈X, Y 〉)
= 〈Z,∇XY +∇YX〉+ 〈Y,∇XZ −∇ZX〉+ 〈X,∇YZ −∇ZY 〉 (13)

With the factorization suggested above, we immediately apply symmetry twice to obtain:

X(〈Y, Z〉) + Y (〈Z,X〉)− Z(〈X, Y 〉) = 〈Z,∇XY +∇YX〉+ 〈Y, [X,Z]〉+ 〈X, [Y, Z]〉 (14)

Additionally, symmetry implies that∇YX = ∇XY − [X, Y], so

X(〈Y, Z〉) + Y (〈Z,X〉)− Z(〈X, Y 〉)
= 〈Z, 2∇XY − [X, Y]〉+ 〈Y, [X,Z]〉+ 〈X, [Y, Z]〉 (15)

Finally, we reorganize terms to obtain the relationship:

〈Z,∇XY 〉 =

1

2
{X(〈Y, Z〉) + Y (〈Z,X〉)− Z(〈X, Y 〉) + 〈Z, [X, Y]〉 − 〈Y, [X,Z]〉 − 〈X, [Y, Z]〉} (16)

Equation 16 is the well-known Koszul formula for ∇XY . It gives an explicit form for the inner
product of∇XY and any other vector field Z; substituting basis vector fieldsE1 andE2 completely
determines ∇XY . Since the right hand side of (16) is in terms of inner products, directional
derivatives, and Lie brackets–all of which are well-defined and understood–we have established
uniqueness of ∇XY . We have not, however, established existence of ∇XY satisfying our criteria:
(16) only establishes that if such an operator were to exist, it would behave in a certain way with
respect to the inner product operator 〈·, ·〉.

To establish existence, fix two vector fields X and Y and take ω to be the linear functional
mapping input field Z to the right-hand side of (16). Applying Lemma 1 and the product rule,
we obtain the following relationship; intermediate steps are omitted since they are notationally
cumbersome and straightforward:

ω(fZ) = fω(Z) +
1

2
{X(f)〈Y, Z〉+ Y (f)〈Z,X〉 −X(f)〈Y, Z〉 − Y (f)〈X,Z〉}

= fω(Z)

12

Thus, ω is tensorial, and by Lemma 2 there is a unique field A such that ω(Z) = 〈A,Z〉 for all Z.
We show A = ∇XY . Clearly our choice of A is additive and linear since ω is tensorial and

additive and (16) is additive in X and Y . The Leibniz rule can be derived directly from (16) by
applying the standard product rule from calculus and substituting into the construction in Lemma 2.
Our construction ensures that (16) holds for ∇XY , and adding the right hand side of this formula
for 〈Z,∇XY 〉 and 〈Z,∇YX〉 immediately the metric preservation property upon simplification.
Similarly, subtracting these two expression yields symmetry, completing the proof.

We conclude this section with a characterization of covariant differentiation for surfaces, or–
in the language of Riemannian geometry–two-dimensional submanifolds of R3. Take M to be
a surface and X to be a tangent vector field. Take U ⊆ R3 to be an open set containing M ,
and suppose we can extend X to a vector field Xext : U → R3; note that simple examples of
constructing Xext can be found in sufficiently small neighborhoods U of M by writing Xext(p +
tNp) = X(p) for p ∈ M , t ∈ (−εp, εp), and normal vector Np at p. Since Xext is a function on an
open subset of R3, we can define its Jacobian DXext in the usual way. In particular, we can find
the derivative of Xext in direction Y using matrix multiplication:

DYXext = DXext · Y (17)

With this construction in hand, we apply the Fundamental Theorem of Riemannian Geometry to
make the following claim:

Corollary 1. The covariant derivative at p ∈M is given by

∇YX(p) = projTpMDYXext(p) (18)

Proof. By the Fundamental Theorem of Riemannian Geometry, we simply need to check that ∇
is a metric-preserving, torsion-free covariant derivative operator. Linearity, additivity, the Leibniz
rule, and metric preservation all follow from linearity of the projection operator and the corre-
sponding rules from multivariable calculus. By Equation 7, since X and Y are tangent vectors to
M , so is [X, Y] when computed using the ambient space and thus∇ is symmetric, completing the
proof.

Equation 18 provides an elegant intuition for the covariant derivative on surfaces rather than
more general n-dimensional manifolds. It shows that the unique covariant derivative of a vector
field on M is simply the tangential component of its derivative in R3. Indeed, this description not
only is more intuitive but also more direct; Equation 18 gives a straightforward way to compute
∇YX on surfaces. This observation will be useful in our formulation of discrete Killing fields in
Section 4.

2.3 Parallel Transport
The Levi-Civita Connection provides a straightforward mechanism for moving vectors along a
curve on a surface so that they maintain length and minimize twisting. Take a curve γ(t) on M and
vector X ∈ TpM , where γ(0) = p. Then, we can define X(t) by the ordinary differential equation

∇γ̇X = 0 (19)

13

The function X(t) is known as the parallel transport of X along γ. In general, we denote the
parallel transport of a vector X along a curve γ by PTγ(X).

Thankfully, as shown in [24], by the Fundamental Existence and Uniqueness Theorem for
ODEs such an X(t) must exist for all t for which γ(t) is defined. Intuitively, Equation 19 requires
that X(t) not accelerate tangentially to the curve γ. Note that on R2 the solution to the geodesic
equation is constant; this result corresponds to the notion in elementary physics that vectors repre-
sent a constant displacements regardless of their location on the plane.

Initially, it may seem likely that parallel transport would be a useful tool in defining symmetries
on surfaces. For instance, translational symmetries in Rn could be mimicked by translating fea-
tures along curves using orientations computed using parallel transport. Unfortunately, simplistic
attempts at such a formulation fail for the following important reason:

For two curves γ1 and γ2 with identical beginning and end points and vector Y ∈ TpM , it is
possible and indeed likely that PTγ1(Y) 6= PTγ2(Y).

In fact, for a given point p one can define the holonomy group Holp as the set of isometries of
TpM obtained by parallel transporting tangent vectors along loops beginning and ending at p [21].
Holonomy groups are central objects of study in geometry and topology and unsurprisingly gen-
erally are non-trivial; for instance, the holonomy group of any point on the sphere S2 is SO(2).
In fact, in some sense the Riemann curvature tensor measures the amount that parallel transport
locally will not return tangent vectors to their starting direction.

While this “failing” of parallel transport to be self-consistent may lead to useful definitions of
curvature, it makes the use of parallel transport to detect non-trivial symmetries on manifolds very
difficult. For instance, parallel transport could not be used to generate consistent orientations for a
feature repeated at regular intervals along a closed curve on a surface, since there is no guarantee
that the orientation of the last feature of the curve will be aligned in any way with that of the first
feature. Thus, the application of parallel transport to pattern synthesis and symmetry detection
remains a topic for future research.

2.4 Local Isometries and Killing Vector Fields
While it may not be clear how parallel transport may be applicable to geometric pattern analysis,
other notions from differential geometry stand out as potential alternative tools for understanding
how surface features relate to one another. One such notion is that of a Killing field, named after
German mathematician Wilhelm Karl Joseph Killing (1847-1923).

The easiest way to understand Killing fields is in terms of flows. Just as vector fields on R2 lead
to solution curves that exist at least for short time by the Fundamental Existence and Uniqueness
Theorem for ODEs, we can make a similar statement for vector fields on surfaces. For instance,
the following theorem is stated in [24] (we refer the reader to the text for a proof):

Theorem 3 ([24], Theorems 5.5 and 5.6, page 149). Let X be a C∞ vector field on M , and let
p ∈ M . Then there is an open set V containing p and an ε > 0 such that there is a unique
collection of diffeomorphisms φt : V → φt(V) ⊂M for |t| < ε with the following properties:

14

1. φ : (−ε, ε)× V →M , defined by φ(t, p) = φt(p), is C∞.

2. If |s|, |t|, |s+ t| < ε and q, φt(q) ∈ V , then

φs+t(q) = φs ◦ φt(q).

3. If q ∈ V , then Xq is the tangent vector at t = 0 of the curve t 7→ φt(q).

If X has compact support (in particular, if M is compact), then there are diffeomorphisms φt :
M →M for all t ∈ R with properties 1, 2, and 3.

Thus, vector fields on surfaces give rise to flows that move points along the surface, and in the
case of compact surfaces the flows exist for all time.

Killing fields can be defined in terms of their flows. We adapt the following definition from [21]:

Definition 6 (Killing field). A Killing field X is a vector field whose flows φt defined in Theorem 3
are isometries. That is, dφt preserves inner products for all t ∈ (−ε, ε).

It immediately clear that surfaces with Killing fields are fairly rare, since surfaces admitting
any sort of isometric deformation satisfy fairly strict criteria. We will return to this idea later when
developing notions of “near-Killing fields.”

The main definition of Killing fields is hard to work with from a discrete standpoint. After
all, explicitly computing the flow of a vector field along a surface can be a much more involved
process than proving its existence. Before we can formulate a more usable definition of Killing
fields, however, we need to put into place more sophisticated mathematical machinery for dealing
with derivatives of vector fields along flows.

We start by defining the Lie derivative of a vector field and an inner product:5

Definition 7 (Lie derivative of a vector field). Take φt to be the flow associated with vector field
X . Then, the Lie derivative of field Y in the X direction at p ∈M is given by

LXY = lim
t→0

Yφt(p) − dφt(Yp)
t

(20)

where Ya is the value of Y at a ∈M .

Definition 8 (Lie derivative of an inner product). The Lie derivative of 〈Y, Z〉 in direction X is
given by

LX〈Y, Z〉 =
d

dt
〈dφt(Y), dφt(Z)〉|t=0 (21)

We proceed with two key properties of Lie derivatives:

5The Lie derivative of an inner product is a specific instance of the more general Lie derivative of a two-tensor.
The latter requires more complicated development than what we have developed in this paper and thus is omitted since
only the Lie derivative of an inner product is needed.

15

Lemma 3. The Lie derivative in direction X of a vector field Y satisfies the identity

LXY = [X, Y]. (22)

Proof. Our proof follows that of [24] using more elementary notation. We verify that the deriva-
tives of a function f : M → R in the direction LXY are identical to those from [X, Y] for all f ;
since the action of the two vector fields on all scalar functions is identical, they must be the same
field.

Take any such f , and take φt to be the flow associated with X . Define g(t, p) = f ◦φt− f , and
take h = ∂g

∂t
. We define ψ : (−ε, ε)×M → R as

ψ(t, p) =

∫ 1

0

h(st, p)ds (23)

It is easy to verify that g(0, p) = 0, tψ = g, and ψ(0, p) = h(0, p) = Xf . Then,

[dφt(Y)]p(f) = dφt(Yφ−t(p))(f) by definition
= Yφ−t(p)(f ◦ φt) by the chain rule
= Yφ−t(p)(f + g) by definition of g
= Yφ−t(p)(f + tψ) (24)

With this identity, we can complete the proof:

LXY (f) = lim
t→0

1

t
[Yp − (dφt(Y))p](f)

= lim
t→0

1

t
[(Y f)(p)− (Y f)(φ−t(p))]− lim

t→0
(Y ψ)(φ−t(p)) by Equation 24

= XY (f)− Y X(f)

= [X, Y](f) as needed.

Lemma 4. The directional derivative of an inner product can be written

X(〈Y, Z〉) = 〈LXY, Z〉+ 〈Y, LXZ〉+ LX〈Y, Z〉 (25)

Proof. We work with limit forms of directional and Lie derivatives that are easily derived from
their definitions:

X(〈Y, Z〉) = lim
t→0

1

t

[
〈Yφt(p), Zφt(p)〉 − 〈Yp, Zp〉

]
(26)

〈LXY, Z〉 = lim
t→0

1

t

[
〈Yφt(p), Zφt(p)〉 − 〈dφt(Yp), Zφt(p)〉

]
(27)

LX〈Y, Z〉 = lim
t→0

1

t
[〈dφt(Yp), dφt(Zp)〉 − 〈Yp, Zp〉] (28)

16

Starting with Equation 26, we simplify as follows:

X(〈Y, Z〉) =〈LXY, Z〉+ lim
t→0

1

t

[
〈dφt(Yp), Zφt(p)〉 − 〈Yp, Zp〉

]
by Equation 27

=〈LXY, Z〉+ LX〈Y, Z〉+ lim
t→0

1

t

[
〈dφt(Yp), Zφt(p) − dφt(Zp)〉

]
by Equation 28

=〈LXY, Z〉+ LX〈Y, Z〉+

〈
Y, lim

t→0

1

t

[
Zφt(p) − dφt(Zp)

]〉
by simple properties of limits

=〈LXY, Z〉+ LX〈Y, Z〉+ 〈Y, LXZ〉 by definition, as desired.

With these two lemmas, we can prove a symmetry identity that characterizes Killing fields:

Lemma 5. A vector field X is a Killing field if and only if for all other fields Y and Z it satisfies
the identity

0 = 〈Z,∇YX〉+ 〈Y,∇ZX〉 (29)

Proof. The proof below shows that if X is a Killing field it must satisfy Equation 29; all the steps
trivially are reversible, however, so the explicit proof of equivalence is omitted.

Consider two vectors Y and Z at a point p ∈M , where M admits a Killing vector field X . By
Definition 6, the flow φt of X must preserve inner products and thus there exists a constant c such
that:

c ≡ 〈dφt(Y), dφt(Z)〉 (30)

Differentiating both sides with respect to t and substituting t = 0 yields

0 =
d

dt
〈dφt(Y), dφt(Z)〉|t=0

=LX〈Y, Z〉 by definition
=X(〈Y, Z〉)− 〈LXY, Z〉 − 〈Y, LXZ〉 by Lemma 4
=X(〈Y, Z〉)− 〈[X, Y], Z〉 − 〈Y, [X,Z]〉 by Lemma 3
=(〈∇XY, Z〉+ 〈Y,∇XZ〉)− (〈∇XY, Z〉 − 〈∇YX,Z〉)− (〈Y,∇XZ〉 − 〈Y,∇ZX〉)

by metric preservation and symmetry
=〈∇YX,Z〉+ 〈Y,∇ZX〉 as desired.

Lemma 5 suggests an alternative way to express the Killing field condition. Given Killing field
X , we could define a tensor T taking input fields Y and Z given by:

T (Y, Z) = 〈Z,∇YX〉 (31)

Then, Equation 29 shows T (Y, Z) = −T (Z, Y). All of our proof steps above again are reversible,
and thus we have proved the following theorem:

17

Theorem 4. X is a Killing field if and only if T is an antisymmetric tensor.

Equivalently, we can state the following corollary by simple algebraic manipulation:

Corollary 2. X is a Killing field if and only if for any vector field Y we have 〈∇YX, Y 〉 ≡ 0.

Using the notation of the theorem, if we take E1 and E2 to be a local coordinate basis, then
for i, j ∈ {1, 2} we must have ∇Ei

Xj + ∇Ej
X i = 0 where X = X1E1 + X2E2. This

formulation provides three distinct equations defining Killing fields, corresponding to (i, j) ∈
{(1, 1), (1, 2), (2, 2)}; note (i, j) = (2, 1) yields the same equation as (i, j) = (1, 2). Thus, it also
is unsurprising from an analytical standpoint that Killing fields would be relatively uncommon, as
they have two degrees of freedom (corresponding to their restriction to the tangent plane) and three
independent defining equations.

In the rest of this section, we develop two characterizations of Killing fields that will be useful
in the development of discrete algorithms for their computation on triangle meshes.

2.4.1 Variational Approach

We define the symmetric part of a two-tensor S as follows:

Sym(S)(Y, Z) =
1

2
(S(Y, Z) + S(Z, Y)) (32)

Also, we define the inner product of two-tensors S and T . Take a local coordinate basis {E1, E2}
and define Sij = S(Ei, Ej) and Tij = T (Ei, Ej). Then, we write

〈S, T 〉 =
∑
i,j,k,l

〈Ei, Ek〉〈Ej, El〉SijTkl (33)

Then, the norm of such a tensor can be written with the usual inner product identity ||T ||2 = 〈T, T 〉.
A simple analytical argument shows that this definition of norms and inner products is independent
of our choice of {E1, E2}.

Obviously, by direct application of Theorem 4 we have Sym(T) ≡ 0. Thus, a Killing vector
fieldX on an open set Ω ⊆M is a (non-unique) minimizer of the integral

∫
Ω
||Sym(T)||2dVolM . In

fact, Killing vector fields (scaled by some constant) are solutions to the following more constrained
optimization problem, which ensures that X is non-trivial:

Minimize F(X) ≡
∫

Ω
||Sym(T)||2dVolM

subject to
∫

Ω
||X||2dVolM = 1.

Note that regions Ω not admitting Killing vector fields will have non-zero minimizing values.
When nonzero Killing fields exist, however, by our above derivation they must be the only mini-
mizers of this more constrained system by Theorem 4. Regardless, minimizers of the functional F
with the given constraint can be deemed approximate Killing fields.6

6This notion and the subsequent development were proposed by Adrian Butscher in 2009.

18

As discussed in [26], we can apply an analogous approach to that of “Lagrange multipliers”
from multivariable calculus to search for a minimum of the functional F . We define a modified
functional F̃ taking the integral constraint into account:

F̃(X) ≡
∫

Ω

(
||Sym(T)||2 − λ||X||2

)
dVolM (34)

Then, approximate Killing fields occur as critical points of the “Gâteaux derivative” of F̃ given by
δF̃(X;U) = d

dt
F̃(X + tU)|t=0. Differentiating under the integral, it is easy to verify in this case

that
δF̃(X;U) =

∫
Ω

(〈P (X), P (U)〉 − λ〈X,U〉) dVolM (35)

where P (V)(Y, Z) = 1
2

(〈Z,∇Y V 〉+ 〈Y,∇ZV 〉) is the symmetric part of the tensor arising from
vector field V given by Equation 31 for field X . If we take P ∗ to be the formal adjoint of P , then
applying integration by parts to the first term yields the following expression:

δF̃(X;U) =

∫
Ω

(〈P ∗P (X)− λX,U〉) dVolM +

∫
∂Ω

P (X)(ν, U)dν (36)

For our choice of X to be a critical point of F̃ , we must have δF̃(X;U) = 0 for all vector fields
U . Thus, Killing vector fields are characterized by the partial differential equation

P ∗P (X)− λX = 0 in Ω (37)

with boundary conditions
P (X)(ν, U) = 0 on ∂Ω, (38)

where ν is any vector normal to ∂Ω. This is the Euler-Lagrange equation corresponding to the vari-
ational problem of minimizing F subject to having non-zero values of X [8]. Since Equation 37
is equivalent to solving P ∗P (X) = λX , we thus can regard finding Killing fields as an eigenvalue
problem.

Since the steps above are reversible, applying basic theorems for the Calculus of Variations
regarding the minimization of functionals such as F yields the following theorem:

Theorem 5. X is a Killing field on Ω if and only if X solves Equation 37 with λ = 0 subject to
the boundary conditions in Equation 38.

Additionally, we note that small values of λ indicate that a vector field is in some sense close
to being an infinitesimal isometry. Thus, we make the following definition:

Definition 9 (λ-approximate Killing vector field). A vector field X is a λ-approximate Killing
vector field if it satisfies P ∗P (X) = λX for P defined above.

This definition will become particularly useful in our consideration of noisy or slightly de-
formed surfaces which still have relatively clear (near-)symmetries.

19

2.4.2 Differential Forms

One of the basic tools of Riemannian geometry is the differential form, which provides a means
by which integrands can be expressed without local coordinates and give methods for understand-
ing functions and their derivatives without resorting to coordinate-wise expressions. The basic
definition of a differential form is as follows:

Definition 10 (Differential form). A differential form of degree k smoothly defines an alternating
multilinear map αp : TpM × · · · × TpM → R taking in k vectors at each p ∈M .

Of course, this definition is far from motivated or formal, leaving questions regarding the defi-
nition of smoothness and the reasons for making use of such an object. A full review of operations
and definitions involving differential forms is outside the scope of this paper; the reader can refer
to [27] or any other similar differential geometry or manifold theory text for a discussion of these
topics. In particular, we assume that the reader is familiar with the definition of a k-form and the
basics of exterior calculus including the wedge operator ∧ and differential operator d.

An equivalent development of the theory of vector fields on surfaces can be derived through
the use of differential forms and exterior calculus. Rather than manipulating vector fields directly,
this approach makes use of their “dual” one-forms, defined as follows:

Definition 11 (Dual of a vector field). The dual of a vector field X on M is the one-form ω
satisfying ω(Y) = 〈X, Y 〉 for all vector fields Y .

It is easy to check and intuitively reasonable that there exists exactly one dual form for each
vector field than that all one forms are duals of vector fields. In this way, all proofs involving
properties of one-forms can be stated as vector field and tensor proofs and vice versa; the succinct
language and formal development of forms, however, make them useful tools for a number of
geometric problems.

Given our previous treatment of derivatives of vector fields, it is reasonable to attempt to differ-
entiate forms as well. In particular, since one-forms are the duals of vector fields, we should expect
there to be an analog to covariant differentiation that processes such objects. Fortunately, rather
than developing such a theory from scratch, we can define the covariant derivative of a one-form
ω with dual field X in direction Y as the dual of∇YX .

Just as vector fields are dual to one-forms, we locally can represent two-tensors and two-forms
as 2× 2 matrices. In particular, a two-form T can be written locally using the matrix with entries
T (Ei, Ej), which must be sufficient to represent T by linearity; note that for simplicity, here and
for the rest of the section we make use of geodesic normal coordinates to generate our basis
E1, E2, allowing our metric 〈·, ·〉 to be Euclidean to first order near p [21]. Using the notation of
Section 2.4.1, we thus represent two-tensor P (ω), where ω is dual to X , as the matrix with entries
1
2
(∇Ej

ωi +∇Ei
ωj).

Using coordinate-wise expressions for the differential of a one-form dω and substituting the
definition of a directional derivative, we easily can derive the following identity:

dω(X, Y) = X(ω(Y))− Y (ω(X))− ω([X, Y]) (39)

20

Applying the symmetry of ∇ shows that dω can be represented using the matrix ∇Ej
ωi −∇Ei

ωj .
To complete our summary of useful operators for defining Killing vector fields in terms of forms,
we define the divergence or co-differential operator applied to a one-form as the zero-form δω =
−
∑

i∇Ei
ωi.

Using the inner product norm, we can find an expression for ||P (X)||2 as follows:

||P (X)||2 =
∑
i,j

(
1

2
(∇Ej

ωi +∇Ei
ωj)

)2

= (∇E1ω1)2 + (∇E2ω2)2 +
1

2
(∇E1ω2)2 +∇E1ω2∇E2ω1 +

1

2
(∇E2ω1)2

=
1

2
(∇E2ω1 −∇E1ω2)2 + (∇E1ω1 +∇E2ω2)2 − 2Q

=
1

2
||dω||2 + (δω)2 − 2Q (40)

where Q ≡ ∇E1ω1∇E2ω2 −∇E1ω2∇E2ω1.
The only term in our expression for ||P (X)||2 that is not in terms of well-understood differential

operators is that involvingQ. Thus, we proceed by continuing to refactorQ. To do so, take⊥ to be
the 90◦ rotation operator, such that in our local coordinates E⊥1 = −E2 and E⊥2 = E1. We define
a one-form F as follows:

F (Y) = −〈∇Y ⊥X,X
⊥〉 (41)

In particular, we can define function F1 as

F1 ≡ F (E1) = −〈∇E⊥1
X,X⊥〉

= −〈∇−E2X,X
⊥〉

= 〈(∇E2ω1,∇E2ω2), (−ω2, ω1)〉 by definition of X in terms of ω
= ω1∇E2ω2 − ω2∇E2ω1. (42)

Similarly, we can take F2 ≡ F (E2) = ω2∇E1ω1 − ω1∇E1ω2. So, since our coordinate frame is
orthonormal, the components of F are exactly F1 and F2.

By definition, since geodesic normal coordinates are locally Euclidean, we can write the Gauss
curvature K of M using the following “implicit” definition:

∇E2∇E1ω −∇E1∇E2ω = −Kω⊥ (43)

This implicit definition follows from properties of the first and second fundamental forms from
classical differential geometry. Using this identity as well as our expressions for the components
of F , we can simplify Equation 40 to obtain:

||P (X)||2 = ||dω||2 + 2(δω)2 − 2K||ω||2 − 2δF (44)

We can integrate this expression to find an alternative expression for the “Killing energy” ofX that
we minimize in Section 2.4.1. Assuming M has no boundary and integrating Equation 44 by parts
yields the following theorem:

21

(a) (b) (c)

Figure 7: Connected symmetries of the (a) torus, (b) plane, and (c) cylinder.

Theorem 6. The Killing energy of a vector field X is given by:

F(X) =

∫
M

||P (X)||2dVolM

=

∫
M

〈ω,∆ω + dδω − 2Kω〉 (45)

This formula is the main expression used in our formulation of discrete Killing vector fields
and approximate Killing vector fields. Its derivation is an example of the well-known “Bochner
technique” for simplifying or re-expressing differential properties of forms [21].

2.5 Connected Symmetry Groups
Since the composition of two isometries of a surface M clearly is another isometry, it is clear that
the set of isometries forms a group acting on M . Often times, this group can have a “discrete”
structure. For instance, there obviously is no smooth flow of the points on a cube (or even a cube
with smoothed corners) that preserves angles, but rotating the cube integer multiples of 90◦ about
any of the cube’s axes produces an isometry. On the other hand, other subsets of isometries can
form “connected” group structures, such as the rotations of a cylinder.

Since Killing fields represent flows on surfaces, we concern ourselves with the “connected
isometry group” of a surface, defined as the largest connected subgroup of the isometry group
containing the identity map. This group initially may appear somewhat complicated; after all,
the group structure S1 × S1 of a torus is very different from the Euclidean group E(2) structure
of the plane, as illustrated in Figure 7. Fortunately, the following theorem from [18] completely
characterizes all connected isometry groups of surfaces as we have defined them:

Theorem 7 (Theorem 5 from [18]). The group of isometries of a two-dimensional Riemannian
manifold is discrete, except possibly in the case of surfaces homeomorphic to the sphere, projective
plane, plane, cylinder, non-orientable cylinder (Möbius strip), torus, and Klein bottle.

In other words, there are relatively few exact symmetries that exist in the set of surfaces, or
two-dimensional Riemannian manifolds, and such symmetries can only be found on surfaces that
have similar topologies to one of the seven surfaces listed in the theorem.

22

(a) (b)

Figure 8: Approximate or near-symmetries.

This theorem highlights several important observations that have appeared in the treatment of
Riemannian surfaces from previous sections:

• Exact continuous symmetries are rare if not non-existent in nature or real-world models.

• Killing fields, which can be viewed as differential elements of connected isometry groups,
are uncommon.

Thus, our treatment of approximate Killing fields, which leads through simple ODE integration to
the notion of an “approximate symmetry,” is not only an interesting extension of a classical prin-
ciple but indeed a necessary addition for dealing with partially-symmetric surfaces. For instance,
the surfaces in Figure 8 have clear instances of near or partial symmetry but do not admit Killing
fields or global isometries. Seeking approximate symmetries where they exists greatly extends the
applicability of symmetry detection techniques and allows some flexibility for imperfect input.

3 Previous Work
There is a vast array of literature that potentially is relevant to continuous symmetry analysis and
pattern generation. Most prominently, the concept of symmetry unsurprisingly has inspired re-
search by generations of mathematicians, leading to important developments in differential and
algebraic geometry, algebra, and even seemingly less relevant fields like number theory and combi-
natorics. Other concepts of symmetry from Riemannian and semi-Riemannian geometry including
many applications and identities involving Killing fields arose during the invention and develop-
ment of general relativity, although the metrics used to understand manifolds in general relativity
are very different those on surfaces in R3. For a review of the mathematics relevant to this paper
starting from elementary principles, refer to Section 2.

Within computer science, symmetry can be used to assist data analysis and help users generate
more aesthetic or understandable artwork and geometry. Almost any problem involving real-world

23

Figure 9: Figure from [15] illustrating the paper’s approach to symmetry detection.

data can benefit from some understanding of symmetry and repetition; in some sense, even the vast
field of Fourier analysis can be understood as a framework for recognizing certain types of sym-
metries on a Euclidean or manifold domain. In this section, we will focus on relevant papers in the
field of geometry processing, since this is the main application of interest for the research at hand.
Papers are divided depending on whether the search for intrinsic or extrinsic shape symmetries to
highlight the challenges and research opportunities in both domains.

3.1 Extrinsic Symmetry Detection
The earliest work on symmetry detection for geometry processing involved the detection and ma-
nipulation of extrinsic symmetries. The existence of these types of symmetries depends on how
a surface is embedded in R3 and thus can appear or disappear after applying even simple trans-
formations to a shape. For instance, a building model may appear to have an axis-aligned grid
of windows if the axes of R3 are aligned with those of the building, and otherwise no such trans-
lational symmetry exists. While such a formulation may appear rigid, many shapes including
architectural figures and CAD models are likely to have mostly extrinsic symmetries that can be
found more accurately and efficiently with dedicated methods.

Probably the best-known approach to extrinsic symmetry detection and extension for geometry
processing was provided in a series of papers exploring the discovery and representation of Eu-
clidean shape symmetries starting in 2006 [14, 15, 16]. These papers provide a good overview of
previous work on symmetry detection, and the algorithms they discuss are effective examples of
the strengths and weakness of an extrinsic approach.

The first of these papers to be released presented a statistic approach to the problem of rec-
ognizing surface patches that are similar to each other by some rigid (or inverting) symmetry
transformation [15]. Each point p on a surface M is assigned a “signature” describing local cur-
vature, orientation, and other basic geometric information. These signatures define a mapping of
the surface or some sampled set of points from the surface to signature space. Then, the algo-
rithm matches points with similar signatures. Each pair defines a unique symmetry; for instance,
two points p and q define a reflective symmetry along the plane with normal p − q through point
(p + q)/2. These symmetries are clustered to find likely symmetries on the surface expressed as
large sets of pairs of points that have the similar symmetry transformations. Finally, strong pairs in
a likely symmetry cluster are used to grow regions on the surface that represent symmetries. This

24

Figure 10: Figure from [16] showing the results of symmetrization; the gray dragon is the original
model, and the yellow dragon is the symmetrized version.

process is illustrated in Figure 9 (a figure from the original paper).
After laying the foundations of Euclidean symmetry detection, [16] provided a potential use

for surface patches identified as similar to one another. In this paper, correspondences between
patches were used to identify not only exact symmetries but also deviations from symmetry in a
given model. This information is used to “symmetrize” a given model, as in Figure 10, producing
minimal displacements to enforce stricter symmetry. This work is of interest not only in graphics
but also in data analysis, where enhancing symmetries may be useful for emphasizing certain
patterns or trends, and also for accomplishing certain mesh processing and “clean-up” tasks.

While the detection process presented in [15] might be sufficient for some applications, it pro-
vides little information about how sets of similar patches are structured. For instance, the windows
on a simple building model likely have a grid-like structure isomorphic to a subset of Z×Z, while
compartments on a shell model may have a more complex repetition of rotation and translation. In
general, we can use a group structure to express symmetries, in which the action of group elements
shifts is a transformation mapping one feature to another. For the Euclidean case, most of the in-
teresting simple orientation-preserving transformations, including rotations, translations, scaling,
and combinations thereof, can be expressed as abelian groups of linear transformations with two
generators.

The algorithm in [14] is designed to find such instances two-parameter groups within a given
model. As in [15], a surface is mapped to “transformation space,” in which transformations be-
tween similar points are plotted based on their particular parameters. Then, the algorithm searches
for regular patterns or grids in transformation space; these grids correspond to the various two-
parameter groups that the algorithm seeks.

The weaknesses of [14] highlight the need for intrinsic symmetry detection and processing.
While the algorithm can identify symmetries on grid-like structures like buildings with windows,
by definition it cannot identify symmetries on more complex models such as that shown in Fig-
ure 11, in which translational or other symmetries bend with the “base surface” of the model at
hand.

25

Figure 11: A complex instance of intrinsic translational symmetry; the stars clearly form a pattern
isomorphic to Z/4×Z/nwhere there are 4n stars in the knot loop (n on each of the four flat sides).

3.2 Intrinsic Symmetry Detection
Given the success of extrinsic symmetry detection as well as the failings of extrinsic algorithms to
identify certain types of symmetries, more recent research has focused on the formulation of meth-
ods for finding intrinsic symmetries of shape. This preliminary research has revealed considerably
more flexible approaches to understanding symmetry.

One particularly interesting approach uses intuition from heat diffusion to build up “signatures”
for points on a surface [25]. In this line of research, points are identified with graphs of heat over
time based on heat spreading from a single point. It is shown that this so-called Heat Kernel
Signature (HKS) is preserved under isometry and that any mapping preserving HKS values is an
isometry; in particular, it is an intrinsic property of shape. With this powerful descriptor in place,
the paper describes how to identify repeated features or in some sense global symmetries by finding
points that have similar signatures.

A related line of research is presented in [19], which computes symmetries expressed as isome-
tries using the Laplace-Beltrami operator. The Laplace-Beltrami operator defines a derivative for
functions on surface and is the analog of the Laplace operator for functions on a manifold domain;
it arises when considering waves or heat diffusion along a surface. Just as the eigenfunctions of
the Laplace operator give rise to Fourier analysis on Euclidean domains, the eigenfunctions of
the Laplace-Beltrami operator form an L2 basis for integrable functions on a given surface. The
Laplace-Beltrami operator is intrinsic and uniquely determines the metric of a manifold, so it ap-
pears to be a reasonable tool for this sort of analysis. Indeed, for a given point p ∈ M , the paper
defines its “restricted global point signature (GPS)” to be:

s(p) =

(
φ1(p)√
λ1

,
φ2(p)√
λ2

, · · · , φd(p)√
λd

,

)
(46)

where φ1, φ2, . . . are the eigenfunctions of the Laplace-Beltrami operator and λ1, λ2, . . . are the
corresponding eigenvalues. It can be shown under reasonable conditions that under the GPS map,
isometries are expressed as Euclidean symmetries that can be detected using a specialized method

26

developed in the paper. This approach is an effective way to detect discrete symmetries, although
it does not detect structure and may be difficult to use for detecting only partial symmetries.

A contrasting approach to intrinsic symmetry detection is presented in [1]. This paper matches
features to find both isometric and non-isometric symmetries, the latter of which may only be ap-
proximately intrinsic. This task is accomplished by developing a graph of feature points on the
surface annotated with intrinsic properties of shape; correspondences are computed by finding re-
gions with similar graph structure. Then, similar regions are grown out from corresponding points
to obtain dense mappings between surface patches, which are used to obtain sets of “symmetric” or
repeated regions. Relaxing feature descriptors makes the approach non-intrinsic but more robust in
some cases. It achieves promising results on a number of inputs but is limited by the use of several
interdependent parameters and by the choice of feature descriptors.

While most approaches to intrinsic symmetry detection have focused on deterministic ap-
proaches to the problem, [12] uses a Markov random field model to assign probabilities to potential
intrinsic maps from a shape to itself. The method can be used to find partial and approximate sym-
metries and has a fairly succinct statement, but it is inefficient both in terms of time and space and
will need a considerable reformulation to become practical [1].

Obviously, no single method seems to be the most effective approach to symmetry detection
in all cases. In particular, few if any papers have focused on connected rather than discrete sym-
metries, and many discrete methods present ad-hoc approaches with few theoretical guarantees on
performance.

4 Connected Symmetries on Discrete Meshes
Our primary new contribution is the development of methods for computing connected symmetries
on triangle meshes. Since these types of symmetries are expressed theoretically as flows on sur-
faces which are completely determined by their corresponding Killing vector fields, we concentrate
in this section on the discretization of covariant differentiation and Killing vector field computa-
tion. All the methods here are derived from principles from Riemannian geometry described in
Section 2. While some assumptions about the computational model are made in discretizing these
concepts, no mathematical approximations or statistical assumptions are made in any of the algo-
rithms presented here; thus, various properties and invariants from the continuous case are more
likely to carry over to these discrete vector fields.

4.1 Discrete Covariant Differentiation
By Corollary 1, if we can extend a vector field X to a field Xext on some neighborhood of a given
surface M , then the projection of its directional derivative in direction Y onto the tangent space
gives the covariant derivative ∇YX . Indeed, since ∇YX can be stated independently of Xext and
since ∇YX depends on the values of X and Y only in an infinitesimally small neighborhood of
the point at which it is being evaluated, it is sufficient to find any extension field Xext in some open
neighborhood of each point of evaluation independently.

27

Figure 12: Setup for discrete covariant differentiation.

With these observations in place, one of the most obvious approaches to finding ∇YX on a
mesh would be to treat each vertex or face independently and find the tangential component of
DYXext at each location for some localized extension field Xext.7 We use exactly this approach,
generating a linear operator for a given field Y mapping X to∇YX .

Before proceeding, we state the basic input/output setup of the proposed algorithm for discrete
covariant differentiation:

• Geometry is represented using a triangle mesh M .

• X and Y are given on the vertices of mesh M .

• A field of per-vertex normals N is given; note that simple estimates of per-vertex normals
can be found simply by averaging adjacent face normals.

• The algorithm outputs covariant derivatives ∇YX on the faces of M , which can be inter-
polated at the vertices if desired. This construction mimics the setup in many numerical
analysis algorithms involving divided differences in which the divided difference is treated
as being evaluated at the midpoint of its two sampling vertices.

For ease of notation, for the rest of this section we will identify vector fields X and Xext since we
have Xext|M = X .

Take p1, p2, and p3 to be the vertices of a given triangle face, and denote its per-vertex normals
as N1, N2, and N3 and its vector field samples as Xi and Yi, i ∈ {1, 2, 3}; we assume 〈Xi, Ni〉 =
〈Yi, Ni〉 = 0 for all i. The setup is illustrated in Figure 12. Suppose we want to evaluate∇YX at a

7This general approach originally was suggested by Adrian Butscher.

28

point p with barycentric coordinates (λ1, λ2, λ3), so p =
∑

i λipi. Then, disregarding the need for
unit-length normals we can define an interpolated normal N as follows:

N =
3∑
i=1

λiNi (47)

We can interpolate Xi in a similar way to write interpolated X̄; to ensure that our normal and
tangent vector fields are perpendicular, however, we project out the normal component of X̄ to
write the interpolated field vector X:

X = X̂ − 〈X̄,N〉
〈N,N〉

N (48)

With this model for interpolating X along a triangle face, we now extend X to a neighborhood of
the surface. To do so, we define a function f : F × (−ε, ε)→ R3 for triangle face F :

f(λ1, λ2, λ3, h) =
3∑
i=1

(λipi + hλiNi)

= p(λ1, λ2, λ3) + h ·N(λ1, λ2, λ3) (49)

As shown in Figure 12, by varying h, f defines a “fattening” of the triangle in such a way that
fattenings of adjacent triangles share polygonal faces and do not overlap; this property ensures
that the construction below does not introduce discontinuities in the differentiated functions. The
following lemma justifies our use of f :

Lemma 6. Substituting λ3 = 1 − λ1 − λ2, f : (0, 1)2 × (−ε, ε) → R3 is a local diffeomorphism
when h = 0

Proof. By the Inverse Function Theorem, it is sufficient to check that Df is not degenerate. We
have (for i ∈ {1, 2}):

∂f

∂h
= N (50)

∂f

∂λi
= pi − p3 (51)

For non-degenerate T , we clearly have that {N, p1− p3, p2− p3} is a basis for R3 since pi− p3 are
non-parallel tangent vectors andN is normal to the triangle. Thus,Df is invertible, as needed.

Based on the results of this lemma, we can setX at f(λ1, λ2, λ3, h) equal toX at f(λ1, λ2, λ3, 0)
with no conflict for small h.

To find ∇YX using the “ambient field” approach, we effectively need the matrix DX with
composed of derivatives of X with respect to Euclidean coordinates (a1, a2, a3). We divide this

29

task into two steps using the chain rule for partial derivatives (again assume we substituted λ3 =
1− λ1 − λ2 before completing this computation):

∂X

∂ai
=

2∑
k=1

∂X

∂λk

∂λk
∂ai

(52)

While the task of finding an explicit expression for ∂λk

∂ai
may appear to be difficult given that

the definition of f in Equation 49 is hard if not impossible to invert, Lemma 6 trivializes the
computation. In particular, the partial derivatives in Equations 50 and 51 form the columns a of
(Df)−1 at p, which must be invertible by the lemma.

The partial derivative ∂X
∂λk

can be found directly in a series of steps. First, we give a precise
definition of X̂ adapted from the interpolation scheme introduced in [6] (expression (4)):

2|T |X̂ = (c31λ3 − c12λ2)(p3 − p2)⊥ + (c12λ1 − c23λ3)(p1 − p3)⊥

+ (c23λ2 − c31λ1)(p2 − p1)⊥ (53)

where |T | is the area of triangle T , the ⊥ operator rotates 90◦ in the tangent plane, and cij is the
component of X parallel to edge ij, expressed as a signed scalar with the property cij = −cji.
Substituting pij = pj − pi and λ3 = 1− λ1 − λ2, we have

X̂ =
1

2|T |
(c31(1− λ1 − λ2)− c12λ2)p⊥23 + (c12λ1 − c23(1− λ1 − λ2))p⊥31

+ (c23λ2 − c31λ1)p⊥12 (54)

Differentiating,

∂X̂

∂λ1

=
1

2|T |
[
−c31p

⊥
23 + (c12 + c23)p⊥31 − c31p

⊥
12

]
(55)

∂X̂

∂λ2

=
1

2|T |
[
−(c31 + c12)p⊥23 + c23p

⊥
31 + c23p

⊥
12

]
(56)

Note the asymmetry with respect to sign.
In actuality, we want to differentiate the component X of X̂ perpendicular to N , as defined in

Equation 48. We write:
N = λ1N1 + λ2N2 + (1− λ1 − λ2)N3 (57)

Take λ ∈ {λ1, λ2}. Then, applying the product and quotient rules,

∂X

∂λ
=
∂X̂

∂λ
− 〈X̄,N〉
〈N,N〉

∂N

∂λ
−[

〈N,N〉

(〈
∂X̂

∂λ
,N

〉
+

〈
X̂,

∂N

∂λ

〉)
− 〈X̂,N〉∂||N ||

2

∂λ

]
N

〈N,N〉2
(58)

30

Note that we already have shown how to compute ∂X̂
∂λ

and that ∂N
∂λ

is easily derived from Equa-
tion 57. Thus, we only are missing the derivatives of ||N ||2 = 〈N,N〉. Expanding,

||N ||2 =〈N,N〉
=λ2

1〈N1, N1〉+ λ2
2〈N2, N2〉+ (1− λ1 − λ2)2〈N3, N3〉+ 2λ1λ2〈N1, N2〉+

2λ1(1− λ1 − λ2)〈N1, N3〉+ 2λ2(1− λ1 − λ2)〈N2, N3〉 (59)

For the sake of completeness, we provide the partial derivatives of ||N ||2 with respect to λ1 and
λ2, substituting back in λ3 for simplicity:

∂||N ||2

∂λ1

=2λ1〈N1, N1〉 − λ3〈N3, N3〉+ 2λ2〈N1, N2〉

+ 2(λ3 − λ1)〈N1, N3〉 − 2λ2〈N2, N3〉 (60)
∂||N ||2

∂λ2

=2λ2〈N2, N2〉 − 2λ3〈N3, N3〉+ 2λ1〈N1, N2〉

− 2λ1〈N1, N3〉+ 2(λ3 − λ2)〈N2, N3〉 (61)

These expressions complete the derivation of all terms necessary to find ∂X
∂λi

and thus to find DX
and∇YX . While they may not be particularly “clean,” they are relatively easy to compute. In fact,
many terms depend only onN and could be computed ahead of time for varyingX and Y . It also is
interesting to see that Y has little to no effect on the level of complication of the derivation above,
since it does not appear until we are ready to compute DYX . One final important observation is
that all terms involving X are linear, as we would hope since X is the field being differentiated.

4.2 Discrete Killing Fields from Differential Forms
With a discrete notion of covariant differentiation in place, it should be possible to compute Killing
vector fields directly using the variational approach or by approximating one of the identities char-
acterizing Killing field behavior. Attempts at this type of discretization quickly become com-
plicated, however, since finding a suitable “smooth basis” for the set of vector fields on a given
discrete surface is far from trivial.

Instead, we use a setup from discrete exterior calculus (DEC), introduced in [10], given in [6]
to discretize the differential form definition of Killing fields in Equation 45.8 In the DEC formula-
tion, a discrete analog of exterior calculus is developed by associating k-forms with their integral
along k-dimensional simplices of the mesh complex. For instance, 0-forms are functions onM and
thus are expressed as values assigned to each vertex of a mesh; similarly, 1-forms are expressed
as values stored on edges and 2-forms are expressed as values on faces. Applications of Stokes’
Theorem and other basic identities allow operators such as the exterior derivative d, co-differential
δ, Laplace operator ∆, and Hodge star ?. The course notes in [5] provide a straightforward expla-
nation of how to define each operator in the discrete setting and which properties of these operators
carries over directly or approximately on a mesh. We approximate Gauss curvature along an edge

8This approach was developed jointly with Mirela Ben-Chen and Adrian Butscher.

31

using a well-known formula involving the cotangents of interior angles of faces adjacent to a given
vertex and averaging the vertex Gauss curvatures on either side of the edge with area weights [3].

Using Equation 45 as motivation, we define a matrixR acting on vectors of one-forms (a single
value per edge) as follows:

R = ∆ + dδ − 2BG (62)

where G is a diagonal matrix with per-edge Gauss curvatures and B is the discrete diagonal
Hodge operator. Then, following the variational approach of Section 2.4.1 we define a discrete
λ-approximate Killing vector field as the field dual to any solution ω of the eigenvector problem:

Rω = λBω (63)

Finally, [6] provides a method to compute per-face vector fields from discrete one-forms, allowing
the Killing field to be expressed directly rather than using integrated quantities in ω.

Thus, while deriving the vector field identities needed to express Killing vector fields and
λ-approximate Killing vector fields on discrete meshes took considerable mathematical sophisti-
cation, the final method for finding such a vector field is as simple as finding the eigenvectors of a
matrix. This reduced problem is well-studied and can be solved efficiently and stably in almost all
cases with a prepackaged implementation.

4.3 Vector Field Integration
Since our discretized Killing field representation is constant on triangle faces, it can be integrated
exactly using line segments to find flows of individual points on the mesh through the field. Thus,
the only errors introduced within the applications of Killing fields discussed in this paper occur
from discretization rather than integration, assuming numerical errors are minimal. For the sake
of completeness, we describe here one strategy for finding the flow of a per-face vector field from
a single vertex that is fairly stable and easy to implement. It is fast enough to be repeated for
every vertex on a mesh to obtain a complete flow over time. Difficulties arise only in the fact that
integration in this setting must be capable of following both edges and faces with various starting
points.

The most basic operation in the ODE solver is integration along a single face. Suppose a face
F has vertices p1, p2, and p3. Define edge vectors ~a = p2− p1 and~b = p3− p1, and take ~c = ~a×~b.
Then, we can define the matrix M to map from the face to the triangle with vertices (0, 0, 0),
(1, 0, 0), and (0, 1, 0) implicitly using the relation:

M

 | | |~a ~b ~c
| | |

 =

 1 0 0
0 1 0
0 0 1

 (64)

Note that since ~c is normal to the triangle, M maps points on the face subtracted from p1 to the
xy plane and gives the barycentric localized coordinates of the point in question. Of course, M−1

never needs to be computed explicitly but can be applied to vectors using Gaussian elimination or
a more stable or efficient factorization technique.

32

Figure 13: M maps from global to local coordinates.

M provides a mapping between vectors on F and vectors on the triangle T̃ with vertices
(0, 0, 0), (1, 0, 0), and (0, 1, 0) on the xy plane, as shown in Figure 13. By convexity of F , a
ray starting at any point inside of F mapped to the xy plane can intersect at most a single side,
excluding any side on which its starting point resides. Thus, our method for integrating along a
vector ~v with starting point p on F is as follows:

1. Compute M or M−1 from ~a,~b, and ~c.

2. Map p and ~v to the xy plane as p̃ = M(p − p1) and ~w = M~v. To deal with numerical
inaccuracies, assign ~wz = p̃z = 0.

3. Compute t1, t2, and t3 as the intersection parameters of ray p̃+ t~w with the three sides of the
triangle with vertices (0, 0, 0), (1, 0, 0), and (0, 1, 0).

4. Compute t = min{t ∈ {t1, t2, t3} : t > 0 and p̃ + t~w is in T̃}. If such a t exists, then the
path of p is a straight line segment from p to p+ t~v, taking time t. Otherwise, the ray points
outside of the triangle.

The complete algorithm for computing flows of per-face vector fields is no more complicated. The
vector field is followed from one edge to another of each face and chained together to create a
series of line segments. Starting at a vertex or dealing with a flow going through a vertex also is
straightforward; the flow simply continues whichever face has an outgoing vector from the vertex.

There is only one remaining case, illustrated in Figure 14. Occasionally adjacent faces with
nearly parallel vectors may create a “false sink” in which the field points inward toward the edge
on both faces. In this case, we simply follow the edge between the faces to the next vertex and
restart.

33

Figure 14: The vector field on the upper and lower triangles points in toward the centerline, so
when simulation reaches the circled point it can follow neither adjacent face. Rather than stop, the
simulation method follows the edge between the two faces.

5 Results
Discrete Killing fields are the main objects of interest for the target application of symmetry analy-
sis. Thus, this section focuses on the effectiveness of the method presented in Section 4.2 for their
computation. An implementation of the algorithm for finding discrete covariant derivatives is un-
der development, although at this point its applications mainly are of only theoretical interest and
possibly to verify Killing vector field identities to analyze the accuracy of the algorithm discussed
below.

Figure 15 shows flows of discrete Killing fields and discrete approximate Killing fields gener-
ated using the algorithms presented in this paper.9 As expected, the flows of the Killing field follow
the circular cross-sections of the ellipsoid. Even with a considerable amount of noise, the flows
of the approximate Killing vector field illustrate the global symmetry of the ellipsoid, providing
an initial sign that the formulation of λ-approximate fields is a reasonable one. Figure 16 shows
other examples of approximate Killing vector fields, which all illustrate reasonable symmetries on
surfaces that do not admit exact isometries.

It may appear that our formulation of Killing vector fields can identify at most one class of
symmetries on a surface. Examining eigenvectors corresponding to higher eigenvalues, however,
reveals that they are useful for finding partial symmetries of a given surface. For instance, Figure 17
shows the λ-approximate Killing fields corresponding to the first four eigenvectors of R for a
surface admitting no single continuous isometry class. Interestingly, each field describes a different
localized continuous symmetry of the surface, indicating that a larger part of the spectrum of R
may be interesting rather than its single smallest eigenvalue.

We can devise a number of tests indicating the effectiveness of our approach in approximating
actual Killing fields. Perhaps the simplest test is to check that the discrete Killing field represents

9Figures illustrating the output of the algorithm were generated by Mirela Ben-Chen. The implementation of the
algorithms for Killing field generation and integration was completed jointly by Mirela Ben-Chen and Justin Solomon.

34

σ = 0 σ = 0.065 σ = 0.087 σ = 0.1145 σ = 0.2
E = 0.0006 E = 0.29 E = 0.55 E = 1.33 E = 6.7

Figure 15: The ellipsoid model on the left with increasing amounts of noise with standard deviation
σ times the average edge length in the normal direction; flows of the approximate Killing vector
field for fixed time is shown. E is the “Killing energy” integrated over the entire surface.

Figure 16: Flows of approximate Killing vector fields on some example surfaces.

35

Figure 17: Vector fields corresponding to the four lowest eigenvalues of R; colors indicate the
norm of the approximate Killing field displayed.

t = 0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5

Figure 18: Flows of approximate Killing vector fields on some example surfaces.

36

a differential isometry. We compute the flows of all vertices on the mesh using the method in
Section 4.3 and use these to generate a sequence of meshes representing vertex positions at various
times. These meshes should be at most different by isometry from the original mesh. Figure 18
shows such a sequence for a model admitting a rotational symmetry, color coded from the original
model. It is clear that the Killing field flows are indistinguishable from rotations, as would be
expected. Also, these flows provide effective approximate isometries; edge lengths are preserved
to several digits of precision. Only after thousands of time steps do problems become apparent in
the rotating model, but this is an unreasonably large time step over which any discretization of an
ODE is bound to fail.

An additional test to verify the effectiveness of the discrete Killing field formulation is to
check the spectrum of the matrix R against analytically-computed spectra of Killing operators
from simple surfaces. While we do not show the explicit computation here, we find that the error
in computing the first 180 eigenvalues of R for a spherical mesh with 20,000 vertices is:√∑

i

(
λmeshi − λi

)2∑
i λ

2
i

≈ 0.0016 (65)

Clearly, the formulation of discrete Killing fields not only generates reasonable flows but also is
justified theoretically.

6 Applications
Using approximate Killing vector fields to guide repeating textures produces patterns that by con-
struction are as symmetric as possible. This simple potential application of discrete approximate
Killing fields reveals their usefulness in expressing surface symmetries accurately and simply in
the connected case.

Of course, since textures take positive surface area, they must be spaced out rather than “dragged”
along a surface as suggested by the use of vector field flows. If a surfaceM admits an exact Killing
vector field with flow φt, t ∈ R, then its connected symmetry group {φt : t ∈ R} contains discrete
subgroups {φkσ : k ∈ Z} for a given σ ∈ R. More generally, for any vector field with flow for
even partial time t ∈ (−ε, ε) we can define a similar discrete set of isometries. This set can be used
to generate repeated textures with even spacing along a surface, since Killing fields admit flows
that preserve geodesic distances.

Assume a discrete surface M is a associated with a function (u(p), v(p)) mapping each point
p ∈ M to a texture coordinate on some external 2D texture. We make no assumptions about the
continuity of (u, v) and instead require that it be compactly supported on M in a small enough
region that it could reasonably be repeated. Then, repeating a texture is straightforward; for some
set S ⊂ Z and some σ ∈ R we simply assign each point p texture coordinates∑

i∈S

(u(φ−σi(p)), v(φ−σi(p)). (66)

37

(a) (b) (c) (d) (e)

(f) (g)

Figure 19: (a)-(e) Example textures repeated on a surface using approximate Killing fields; (f) a
geometric pattern repeated using a discrete Killing field guiding [13]; (g) a texture repeated using
the sum of two λ-approximate Killing fields, one on each arm of the model.

Assuming the texture is small enough, at most one term in the sum will be nonzero, representing
the coordinates of the repeated texture. Note that φ−σi is likely to map to a point inside of a triangle
face, in which case barycentric-weighted texture coordinates from the input surface are sufficient.

Of course, some practicalities should be addressed. After computing flows φ−σi, it is likely
that some triangles will have sampled texture coordinates that cross a discontinuity. If this is the
case, all three vertices of the triangle should be assigned to a “null” texture rather than allowing
for a nonsensical map; this fix is acceptable as long as the repeated texture has some empty space
on its boundary. Additionally, this method could produce some texture distortion if the discretized
Killing field is not accurate. Although in practice this has not been found to be a considerable
problem, it may be possible to replace this “reverse texture lookup” scheme with a method that
repeats a single point in a texture and independently places the texture at each point with some
decision to be made regarding orientation; the orientation problem may be a hidden difficulty due
to the non-commutativity of parallel transport.

Figure 19 shows some sample surfaces with repeated patterns placed using the method de-
scribed above. Even on surfaces not admitting exact Killing fields, when λ is small enough that the
integral curves of the field are approximately closed, the texture repetition scheme is effective. Of
course, while this approach is limited to continuous symmetries, the approximation scheme makes
it surprisingly applicable to the repetition of patterns on a variety of surfaces.

38

7 Conclusion
While the theoretical development of vector field theory on surfaces is involved and makes use of
sophisticated mathematics, discrete algorithms for computing Killing fields and vector field flows
are surprisingly straightforward. Mechanisms of differentiation and integration that require careful
treatment and considerable proof become no more complicated than computing sums and divided
differences and applying standard algorithms for matrix inversion or eigenvalue problems. This
simplicity not only leads to straightforward and efficient algorithms but also begins to reveal the
elegant structure of Riemannian geometry that can be lost behind its usual surprisingly analytical
treatment. We illustrate one potential application of discrete Killing vector fields to texture gen-
eration here and expect there to be several others, as will be discussed in Section 8. Regardless,
the discretization of Riemannian geometry in many ways represents a large step toward complet-
ing the link and equalizing the levels of sophistication of theoretical and algorithmic geometry
and is likely to lead to important tools for modeling, simulation, graphics, and other fundamental
computational tasks for artists and scientists.

8 Future Work
While this project is a promising first step toward continuous symmetry detection and the analysis
of flows on surfaces, there are several valuable avenues for future research that could yield more
practical or widely-applicable algorithms that use symmetry for geometry processing. Such work
could make symmetry a more prominent tool integrated in software products used to generate and
modify surface models for rendering, physics, and other applications.

Most directly, a better understanding of the relationship between the minimal λ parameter
associated with an approximate Killing field and the actual presence of symmetry could yield a
stronger classifier describing the likelihood of potential continuous symmetry in a given model.
More generally, just as [19] uses the spectrum of the Laplace-Beltrami operator to help detect
symmetries, the spectrum of the “Killing operator” R may encode useful information for shape
classification or similar tasks.

Of particular interest is the classification of continuous isometries discussed in Section 2.5.
Theorem 7 indicates that there are only seven surfaces up to isometry that admit connected sym-
metry groups. This number is small enough that it seems eminently possible to compute to which
isometry class a given surface belongs if it admits a Killing field. Of course, even accounting for
numerical error, this case is rare in both the continuous and discrete settings. It may be a consider-
able challenge theoretically to classify all the possible flows possible by integrating λ-approximate
Killing fields, but any sort of classification theorem could narrow the possible classes of observable
symmetries and may make it easier to generate algorithmic approaches to finding global semantic
descriptions of continuous symmetries rather than localized vector fields.

With or without a better understanding of the theoretical structure of approximate Killing fields,
there are a number of potential application areas that could benefit from a better understanding of
continuous symmetries and isometry classes. For instance, isometric or near-isometric deforma-
tions of surfaces are of interest in designing techniques for surface deformation; isometry provides

39

some metric that can be used to judge the amount by which a surface is changed by a given de-
formation. Additionally, in the spirit of [16] it may be possible to use approximate symmetries as
indicators that a model should be modified to enhance its symmetry. For instance, techniques could
be employed to decrease the minimum eigenvalue λ of the matrix R, thus increasing the likelihood
that a surface admits global or local differential isometry. The spectrum of R might also be useful
in segmenting a given model. Outside the field of geometry processing, additional applications of
Killing fields might be possible in the process of simulating physical interactions due to general
relativity; while this paper discusses discrete Killing fields only on surfaces, the more general case
on a simplicial complex should not be appreciably more difficult.

On a larger scale, we still are far from a unified algorithmic treatment of symmetry for ge-
ometry processing applications. To make symmetry detection, enhancement, and understanding
a usable tool for the end user, the various methods involving continuous, discrete, intrinsic, and
extrinsic symmetries should be connected in such a way that the client is not forced to do the non-
trivial task of identifying which “class” of symmetries a surface exhibits to carry out a meaningful
operation or analysis. Similarly, more intuitive controls than vector fields and isometry classes
will be needed for interactive applications used by artists, modelers, or scientists who might not be
familiar with the language or structure of Riemannian geometry. These concerns aside, the contin-
uous approach presented here combined with previous or new discrete methods hold considerable
potential to make geometry processing a more natural and global process which takes advantage of
repeated structures to eliminate unnecessary, time- and space-consuming, and often tedious work
in generating, texturing, and representing surfaces on the computer.

40

References
[1] Berner, Alexander et al. “Generalized Intrinsic Symmetry Detection.” MPI Informatik Tech

Report MPI-I-2009-4-005 (2009).

[2] Blake, William. Songs of Innocence and of Experience. New York: Chartwell Books, 2009
(orig. 1794).

[3] Bobenko, Alexander, Peter Schröder, and John Sullivan, ed. Discrete Differential Geometry.
Birkhäuser Verlag: Berlin, 2008.

[4] Choi, Jae-Young and Young-Kyu Yang. “Vehicle Detection from Aerial Images Using Local
Shape Information.” In Advances in Image and Video Technology. Berlin: Springer, 2009.

[5] Elcott, Sharif and Peter Schröder. “Build Your Own DEC at Home.” SIGGRAPH 2005
Courses.

[6] Fisher, Matthew et al. “Design of Tangent Vector Fields.” International Conference on Com-
puter Graphics and Interactive Techniques 2007 (San Diego): 56:1-56:9.

[7] Gallot, Sylvestre, Dominique Hulin, and Jacques Lafontaine. Riemannian Geometry. 3rd ed.
New York: Springer, 2004.

[8] Gelfand, I.M. and S.V. Fomin. Calculus of Variations. Mineola: Dover, 2000.

[9] Guillemin, Victor and Alan Pollack. Differential Topology. Englewood Cliffs: Prentice-Hall,
1974.

[10] Hirani, Anil. “Discrete Exterior Calculus.” Caltech PhD Thesis (2003).

[11] Jost, Jürgen. Riemannian Geometry and Geometric Analysis. 5th ed. Berlin: Springer, 2008.

[12] Lasowski, Ruxandra et al. “A Probabilistic Framework for Partial Intrinsic Symmetries in
Geometric Data.” IEEE International Conference on Computer Vision 2009 (Kyoto): 963-
970.

[13] Li, Y. et al. “Geometry Synthesis on Surfaces using Field-Guided Shape Grammars.” IEEE
Transactions on Visualization and Computer Graphics, to appear 2010.

[14] Mitra, Niloy J. et al. “Discovering Structural Regularity in 3D Geometry.” ACM Transactions
on Graphics 27.3: 43:1-43:11.

[15] Mitra, Niloy J. et al. “Partial and Approximate Symmetry Detection for 3D Geometry.” ACM
Transactions on Graphics 25.3 (2006): 560-568.

[16] Mitra, Niloy J. et al. “Symmetrization.” ACM Transactions on Graphics 26.3: no. 63.

41

[17] Montiel, Sebastián and Antonio Ros. Curves and Surfaces. 2nd ed. Providence: American
Mathematical Society, 2005.

[18] Myers, Sumner. “Isometries of 2-Dimensional Riemannian Manifolds into Themselves.” Pro-
ceedings of the National Academy of Sciences of the United States of America 22.5: 297-300.

[19] Ovsjanikov, Maks et al. “Global Intrinsic Symmetries of Shapes.” Computer Graphics Forum
27.5: 1341-1348.

[20] Pauly, Mark et al. “Discovering Structural Regularity in 3D Geometry.” ACM Transactions
on Graphics 27.3 (2008): 42:1-43:11.

[21] Petersen, Peter. Riemannian Geometry. 2nd ed. New York: Springer, 2010.

[22] Reisfeld, Daniel, Haim Wolfson, and Yehezkel Yeshurun. “Context-free Attentional Opera-
tors: The Generalized Symmetry Transform.” International Journal of Computer Vision 14.2:
119-130 (1995).

[23] Saber, E. and A.M. Tekalp. “Face Detection and Facial Feature Extraction Using Color, Shape
and Symmetry-Based Cost functions.” 13th International Conference on Pattern Recognition
(Vienna): 654-659.

[24] Spivak, Michael. A Comprehensive Introduction to Differential Geometry. Houston: Publish
or Perish, 1999.

[25] Sun, Jian, Maks Ovsjanikov, and Leonidas Guibas. “A Concise and Provably Informative
Multi-Scale Signature Based on Heat Diffusion.” Eurographics Symposium on Geometry Pro-
cessing 28.5: 1383–1392.

[26] Troutman, John L. Variational Calculus and Optimal Control: Optimization with Elementary
Convexity. 2nd ed. New York: Springer, 1995.

[27] Warner, Frank. Foundations of Differentiable Manifolds and Lie Groups. New York:
Springer-Verlag, 1983.

42

	Introduction
	Mathematical Background
	Preliminaries
	Derivatives and Rates of Change on Surfaces
	Parallel Transport
	Local Isometries and Killing Vector Fields
	Variational Approach
	Differential Forms

	Connected Symmetry Groups

	Previous Work
	Extrinsic Symmetry Detection
	Intrinsic Symmetry Detection

	Connected Symmetries on Discrete Meshes
	Discrete Covariant Differentiation
	Discrete Killing Fields from Differential Forms
	Vector Field Integration

	Results
	Applications
	Conclusion
	Future Work

